Abstract

Recently, a dual photoacoustic and ultrasound contrast agent—named photoacoustic nanodroplet—has been introduced. Photoacoustic nanodroplets consist of a perfluorocarbon core, surfactant shell, and encapsulated photoabsorber. Upon pulsed laser irradiation the perfluorocarbon converts to gas, inducing a photoacoustic signal from vaporization and subsequent ultrasound contrast from the resulting gas microbubbles. In this work we synthesize nanodroplets which encapsulate gold nanorods with a peak absorption near 1064 nm. Such nanodroplets are optimal for extended photoacoustic imaging depth and contrast, safety and system cost. We characterized the nanodroplets for optical absorption, image contrast and vaporization threshold. We then imaged the particles in an ex vivo porcine tissue sample, reporting contrast enhancement in a biological environment. These 1064 nm triggerable photoacoustic nanodroplets are a robust biomedical tool to enhance image contrast at clinically relevant depths.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett.23(8), 648–650 (1998).
    [CrossRef] [PubMed]
  2. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
    [CrossRef]
  3. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
    [CrossRef] [PubMed]
  4. S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
    [CrossRef] [PubMed]
  5. S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express16(5), 3362–3367 (2008).
    [CrossRef] [PubMed]
  6. A. Pope-Harman, M. M.-C. Cheng, F. Robertson, J. Sakamoto, and M. Ferrari, “Biomedical Nanotechnology for Cancer,” Med. Clin. North Am.91(5), 899–927 (2007).
    [CrossRef] [PubMed]
  7. P. Sharma, S. Brown, G. Walter, S. Santra, and B. Moudgil, “Nanoparticles for bioimaging,” Adv. Colloid Interface Sci.123-126, 471–485 (2006).
    [CrossRef] [PubMed]
  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  9. G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical Applications of Photoacoustic Imaging with Exogenous Contrast Agents,” Ann. Biomed. Eng.40(2), 422–437 (2012).
    [CrossRef] [PubMed]
  10. J. L. Bo Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE J. Sel. Top. Quantum Electron.16(3), 588–599 (2010).
    [CrossRef]
  11. S. Y. Nam, L. M. Ricles, L. J. Suggs, and S. Y. Emelianov, “In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers,” PLoS ONE7(5), e37267 (2012).
    [CrossRef] [PubMed]
  12. D.-A. Clevert, K. Stock, B. Klein, J. Slotta-Huspenina, L. Prantl, U. Heemann, and M. Reiser, “Evaluation of Acoustic Radiation Force Impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumors of unknown etiology in comparison to histological findings,” Clin. Hemorheol. Microcirc.43(1-2), 95–107 (2009).
    [PubMed]
  13. R. Lencioni, D. Cioni, and C. Bartolozzi, “Tissue harmonic and contrast-specific imaging: back to gray scale in ultrasound,” Eur. Radiol.12(1), 151–165 (2002).
    [CrossRef] [PubMed]
  14. E. G. Schutt, D. H. Klein, R. M. Mattrey, and J. G. Riess, “Injectable Microbubbles as Contrast Agents for Diagnostic Ultrasound Imaging: The Key Role of Perfluorochemicals,” Angew. Chem. Int. Ed. Engl.42(28), 3218–3235 (2003).
    [CrossRef] [PubMed]
  15. J. R. Lindner, J. Song, F. Xu, A. L. Klibanov, K. Singbartl, K. Ley, and S. Kaul, “Noninvasive Ultrasound Imaging of Inflammation Using Microbubbles Targeted to Activated Leukocytes,” Circulation102(22), 2745–2750 (2000).
    [CrossRef] [PubMed]
  16. D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, “Imaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to αvβ3,” Circulation108(3), 336–341 (2003).
    [CrossRef] [PubMed]
  17. A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
    [CrossRef]
  18. G. Kim, S.-W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
    [CrossRef] [PubMed]
  19. L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects,” Photochem. Photobiol.85(1), 21–32 (2009).
    [CrossRef] [PubMed]
  20. K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun.3, 618 (2012).
    [CrossRef] [PubMed]
  21. E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express2(6), 1432–1442 (2011).
    [CrossRef] [PubMed]
  22. A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine Green-Loaded Photoacoustic Nanodroplets: Dual Contrast Nanoconstructs for Enhanced Photoacoustic and Ultrasound Imaging,” ACS Nano8(1), 250–259 (2014).
    [CrossRef] [PubMed]
  23. C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett.104(3), 033701 (2014).
    [CrossRef] [PubMed]
  24. C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett.39(9), 2599–2602 (2014).
    [CrossRef] [PubMed]
  25. N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
    [CrossRef] [PubMed]
  26. N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K.-H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release138(3), 268–276 (2009).
    [CrossRef] [PubMed]
  27. M. M. Kaneda, S. Caruthers, G. M. Lanza, and S. A. Wickline, “Perfluorocarbon Nanoemulsions for Quantitative Molecular Imaging and Targeted Therapeutics,” Ann. Biomed. Eng.37(10), 1922–1933 (2009).
    [CrossRef] [PubMed]
  28. N. Rapoport, Z. Gao, and A. Kennedy, “Multifunctional Nanoparticles for Combining Ultrasonic Tumor Imaging and Targeted Chemotherapy,” J. Natl. Cancer Inst.99(14), 1095–1106 (2007).
    [CrossRef] [PubMed]
  29. C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging,” Acc. Chem. Res.41(12), 1721–1730 (2008).
    [CrossRef] [PubMed]
  30. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
    [CrossRef] [PubMed]
  31. S.-S. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B101(34), 6661–6664 (1997).
    [CrossRef]
  32. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant,” J. Phys. Chem. B103(16), 3073–3077 (1999).
    [CrossRef]
  33. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron.9(2), 343–346 (2003).
    [CrossRef]
  34. K. Homan, S. Kim, Y.-S. Chen, B. Wang, S. Mallidi, and S. Emelianov, “Prospects of molecular photoacoustic imaging at 1064 nm wavelength,” Opt. Lett.35(15), 2663–2665 (2010).
    [CrossRef] [PubMed]
  35. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  36. J. Yang, T. Ling, W.-T. Wu, H. Liu, M.-R. Gao, C. Ling, L. Li, and X.-W. Du, “A top-down strategy towards monodisperse colloidal lead sulphide quantum dots,” Nat. Commun.4, 1695 (2013).
    [CrossRef] [PubMed]
  37. I. Radko, M. G. Nielsen, O. Albrektsen, and S. I. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express18(18), 18633–18641 (2010).
    [CrossRef] [PubMed]
  38. I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, “Silica-Coated Quantum Dots for Optical Evaluation of Perfluorocarbon Droplet Interactions with Cells,” Langmuir27(24), 15024–15033 (2011).
    [CrossRef] [PubMed]
  39. Y.-S. Chen, W. Frey, S. Aglyamov, and S. Emelianov, “Environment-Dependent Generation of Photoacoustic Waves from Plasmonic Nanoparticles,” Small8(1), 47–52 (2012).
    [CrossRef] [PubMed]
  40. Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol.46(1), 167–181 (2001).
    [CrossRef] [PubMed]
  41. J. L. Prince and J. Links, Medical Imaging Signals and Systems, 1st ed. (Prentice Hall, 2005).
  42. A. Oppelt, Imaging Systems for Medical Diagnostics: Fundamentals, Technical Solutions and Applications for Systems Applying Ionizing Radiation, Nuclear Magnetic Resonance and Ultrasound (John Wiley & Sons, 2011).
  43. A. Webb and G. C. Kagadis, “Introduction to Biomedical Imaging,” Med. Phys.30(8), 2267 (2003).
    [CrossRef]
  44. O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol.26(7), 1177–1189 (2000).
    [CrossRef] [PubMed]
  45. T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging,” Theranostics2(12), 1185–1198 (2012).
    [CrossRef] [PubMed]
  46. N. Reznik, R. Williams, and P. N. Burns, “Investigation of Vaporized Submicron Perfluorocarbon Droplets as an Ultrasound Contrast Agent,” Ultrasound Med. Biol.37(8), 1271–1279 (2011).
    [CrossRef] [PubMed]
  47. P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials33(11), 3262–3269 (2012).
    [CrossRef] [PubMed]
  48. N. Rapoport and K. H. Nam, “Droplet-To-Bubble Transition in Phase-Shift Nanoemulsions for Tumor Chemotherapy,” Int. J. Transp. Phenom.12, 51–62 (2011).
  49. American National Standards Institute and Laser Institute of America, American National Standard for Safe Use of Lasers (Laser Institute of America, 2007).
  50. R. Asami and K. Kawabata, “Repeatable vaporization of optically vaporizable perfluorocarbon droplets for photoacoustic contrast enhanced imaging,” in Ultrasonics Symposium (IUS), 2012 IEEE International (2012), pp. 1200–1203.
    [CrossRef]

2014 (3)

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine Green-Loaded Photoacoustic Nanodroplets: Dual Contrast Nanoconstructs for Enhanced Photoacoustic and Ultrasound Imaging,” ACS Nano8(1), 250–259 (2014).
[CrossRef] [PubMed]

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett.104(3), 033701 (2014).
[CrossRef] [PubMed]

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett.39(9), 2599–2602 (2014).
[CrossRef] [PubMed]

2013 (1)

J. Yang, T. Ling, W.-T. Wu, H. Liu, M.-R. Gao, C. Ling, L. Li, and X.-W. Du, “A top-down strategy towards monodisperse colloidal lead sulphide quantum dots,” Nat. Commun.4, 1695 (2013).
[CrossRef] [PubMed]

2012 (6)

Y.-S. Chen, W. Frey, S. Aglyamov, and S. Emelianov, “Environment-Dependent Generation of Photoacoustic Waves from Plasmonic Nanoparticles,” Small8(1), 47–52 (2012).
[CrossRef] [PubMed]

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical Applications of Photoacoustic Imaging with Exogenous Contrast Agents,” Ann. Biomed. Eng.40(2), 422–437 (2012).
[CrossRef] [PubMed]

S. Y. Nam, L. M. Ricles, L. J. Suggs, and S. Y. Emelianov, “In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers,” PLoS ONE7(5), e37267 (2012).
[CrossRef] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun.3, 618 (2012).
[CrossRef] [PubMed]

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging,” Theranostics2(12), 1185–1198 (2012).
[CrossRef] [PubMed]

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials33(11), 3262–3269 (2012).
[CrossRef] [PubMed]

2011 (5)

N. Rapoport and K. H. Nam, “Droplet-To-Bubble Transition in Phase-Shift Nanoemulsions for Tumor Chemotherapy,” Int. J. Transp. Phenom.12, 51–62 (2011).

N. Reznik, R. Williams, and P. N. Burns, “Investigation of Vaporized Submicron Perfluorocarbon Droplets as an Ultrasound Contrast Agent,” Ultrasound Med. Biol.37(8), 1271–1279 (2011).
[CrossRef] [PubMed]

E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express2(6), 1432–1442 (2011).
[CrossRef] [PubMed]

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, “Silica-Coated Quantum Dots for Optical Evaluation of Perfluorocarbon Droplet Interactions with Cells,” Langmuir27(24), 15024–15033 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (4)

D.-A. Clevert, K. Stock, B. Klein, J. Slotta-Huspenina, L. Prantl, U. Heemann, and M. Reiser, “Evaluation of Acoustic Radiation Force Impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumors of unknown etiology in comparison to histological findings,” Clin. Hemorheol. Microcirc.43(1-2), 95–107 (2009).
[PubMed]

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K.-H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release138(3), 268–276 (2009).
[CrossRef] [PubMed]

M. M. Kaneda, S. Caruthers, G. M. Lanza, and S. A. Wickline, “Perfluorocarbon Nanoemulsions for Quantitative Molecular Imaging and Targeted Therapeutics,” Ann. Biomed. Eng.37(10), 1922–1933 (2009).
[CrossRef] [PubMed]

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

2008 (3)

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging,” Acc. Chem. Res.41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express16(5), 3362–3367 (2008).
[CrossRef] [PubMed]

2007 (5)

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

G. Kim, S.-W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

N. Rapoport, Z. Gao, and A. Kennedy, “Multifunctional Nanoparticles for Combining Ultrasonic Tumor Imaging and Targeted Chemotherapy,” J. Natl. Cancer Inst.99(14), 1095–1106 (2007).
[CrossRef] [PubMed]

A. Pope-Harman, M. M.-C. Cheng, F. Robertson, J. Sakamoto, and M. Ferrari, “Biomedical Nanotechnology for Cancer,” Med. Clin. North Am.91(5), 899–927 (2007).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
[CrossRef] [PubMed]

2006 (4)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

P. Sharma, S. Brown, G. Walter, S. Santra, and B. Moudgil, “Nanoparticles for bioimaging,” Adv. Colloid Interface Sci.123-126, 471–485 (2006).
[CrossRef] [PubMed]

2005 (1)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
[CrossRef] [PubMed]

2003 (4)

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron.9(2), 343–346 (2003).
[CrossRef]

A. Webb and G. C. Kagadis, “Introduction to Biomedical Imaging,” Med. Phys.30(8), 2267 (2003).
[CrossRef]

E. G. Schutt, D. H. Klein, R. M. Mattrey, and J. G. Riess, “Injectable Microbubbles as Contrast Agents for Diagnostic Ultrasound Imaging: The Key Role of Perfluorochemicals,” Angew. Chem. Int. Ed. Engl.42(28), 3218–3235 (2003).
[CrossRef] [PubMed]

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, “Imaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to αvβ3,” Circulation108(3), 336–341 (2003).
[CrossRef] [PubMed]

2002 (1)

R. Lencioni, D. Cioni, and C. Bartolozzi, “Tissue harmonic and contrast-specific imaging: back to gray scale in ultrasound,” Eur. Radiol.12(1), 151–165 (2002).
[CrossRef] [PubMed]

2001 (1)

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol.46(1), 167–181 (2001).
[CrossRef] [PubMed]

2000 (2)

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol.26(7), 1177–1189 (2000).
[CrossRef] [PubMed]

J. R. Lindner, J. Song, F. Xu, A. L. Klibanov, K. Singbartl, K. Ley, and S. Kaul, “Noninvasive Ultrasound Imaging of Inflammation Using Microbubbles Targeted to Activated Leukocytes,” Circulation102(22), 2745–2750 (2000).
[CrossRef] [PubMed]

1999 (1)

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant,” J. Phys. Chem. B103(16), 3073–3077 (1999).
[CrossRef]

1998 (1)

1997 (1)

S.-S. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B101(34), 6661–6664 (1997).
[CrossRef]

Agarwal, A.

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Agayan, R. R.

G. Kim, S.-W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

Aglyamov, S.

Y.-S. Chen, W. Frey, S. Aglyamov, and S. Emelianov, “Environment-Dependent Generation of Photoacoustic Waves from Plasmonic Nanoparticles,” Small8(1), 47–52 (2012).
[CrossRef] [PubMed]

Aglyamov, S. R.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
[CrossRef] [PubMed]

Akiyama, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

Albrektsen, O.

Alkilany, A. M.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging,” Acc. Chem. Res.41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

Amirian, J. H.

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express16(5), 3362–3367 (2008).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Arnal, B.

Asami, R.

R. Asami and K. Kawabata, “Repeatable vaporization of optically vaporizable perfluorocarbon droplets for photoacoustic contrast enhanced imaging,” in Ultrasonics Symposium (IUS), 2012 IEEE International (2012), pp. 1200–1203.
[CrossRef]

Ashkenazi, S.

G. Kim, S.-W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Banerjee, B.

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging,” Theranostics2(12), 1185–1198 (2012).
[CrossRef] [PubMed]

Bartolozzi, C.

R. Lencioni, D. Cioni, and C. Bartolozzi, “Tissue harmonic and contrast-specific imaging: back to gray scale in ultrasound,” Eur. Radiol.12(1), 151–165 (2002).
[CrossRef] [PubMed]

Baxter, S. C.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging,” Acc. Chem. Res.41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

Bo Wang, J. L.

J. L. Bo Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE J. Sel. Top. Quantum Electron.16(3), 588–599 (2010).
[CrossRef]

Bozhevolnyi, S. I.

Brown, S.

P. Sharma, S. Brown, G. Walter, S. Santra, and B. Moudgil, “Nanoparticles for bioimaging,” Adv. Colloid Interface Sci.123-126, 471–485 (2006).
[CrossRef] [PubMed]

Burns, P. N.

N. Reznik, R. Williams, and P. N. Burns, “Investigation of Vaporized Submicron Perfluorocarbon Droplets as an Ultrasound Contrast Agent,” Ultrasound Med. Biol.37(8), 1271–1279 (2011).
[CrossRef] [PubMed]

Cariveau, M.

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol.46(1), 167–181 (2001).
[CrossRef] [PubMed]

Carpenter, J. E.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, “Imaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to αvβ3,” Circulation108(3), 336–341 (2003).
[CrossRef] [PubMed]

Carson, P. L.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol.26(7), 1177–1189 (2000).
[CrossRef] [PubMed]

Caruthers, S.

M. M. Kaneda, S. Caruthers, G. M. Lanza, and S. A. Wickline, “Perfluorocarbon Nanoemulsions for Quantitative Molecular Imaging and Targeted Therapeutics,” Ann. Biomed. Eng.37(10), 1922–1933 (2009).
[CrossRef] [PubMed]

Chang, S.-S.

S.-S. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B101(34), 6661–6664 (1997).
[CrossRef]

Chen, Y.-S.

Y.-S. Chen, W. Frey, S. Aglyamov, and S. Emelianov, “Environment-Dependent Generation of Photoacoustic Waves from Plasmonic Nanoparticles,” Small8(1), 47–52 (2012).
[CrossRef] [PubMed]

K. Homan, S. Kim, Y.-S. Chen, B. Wang, S. Mallidi, and S. Emelianov, “Prospects of molecular photoacoustic imaging at 1064 nm wavelength,” Opt. Lett.35(15), 2663–2665 (2010).
[CrossRef] [PubMed]

Cheng, J.-X.

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

Cheng, M. M.-C.

A. Pope-Harman, M. M.-C. Cheng, F. Robertson, J. Sakamoto, and M. Ferrari, “Biomedical Nanotechnology for Cancer,” Med. Clin. North Am.91(5), 899–927 (2007).
[CrossRef] [PubMed]

Cioni, D.

R. Lencioni, D. Cioni, and C. Bartolozzi, “Tissue harmonic and contrast-specific imaging: back to gray scale in ultrasound,” Eur. Radiol.12(1), 151–165 (2002).
[CrossRef] [PubMed]

Clevert, D.-A.

D.-A. Clevert, K. Stock, B. Klein, J. Slotta-Huspenina, L. Prantl, U. Heemann, and M. Reiser, “Evaluation of Acoustic Radiation Force Impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumors of unknown etiology in comparison to histological findings,” Clin. Hemorheol. Microcirc.43(1-2), 95–107 (2009).
[PubMed]

Day, K. C.

G. Kim, S.-W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Day, M.

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Day, M. A.

G. Kim, S.-W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

Dayton, P. A.

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials33(11), 3262–3269 (2012).
[CrossRef] [PubMed]

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging,” Theranostics2(12), 1185–1198 (2012).
[CrossRef] [PubMed]

de Mul, F. F. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron.9(2), 343–346 (2003).
[CrossRef]

C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett.23(8), 648–650 (1998).
[CrossRef] [PubMed]

Dekker, A.

Du, X.-W.

J. Yang, T. Ling, W.-T. Wu, H. Liu, M.-R. Gao, C. Ling, L. Li, and X.-W. Du, “A top-down strategy towards monodisperse colloidal lead sulphide quantum dots,” Nat. Commun.4, 1695 (2013).
[CrossRef] [PubMed]

Du, Y.

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol.46(1), 167–181 (2001).
[CrossRef] [PubMed]

Eldevik, O. P.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol.26(7), 1177–1189 (2000).
[CrossRef] [PubMed]

Ellegala, D. B.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, “Imaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to αvβ3,” Circulation108(3), 336–341 (2003).
[CrossRef] [PubMed]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant,” J. Phys. Chem. B103(16), 3073–3077 (1999).
[CrossRef]

Emelianov, S.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine Green-Loaded Photoacoustic Nanodroplets: Dual Contrast Nanoconstructs for Enhanced Photoacoustic and Ultrasound Imaging,” ACS Nano8(1), 250–259 (2014).
[CrossRef] [PubMed]

Y.-S. Chen, W. Frey, S. Aglyamov, and S. Emelianov, “Environment-Dependent Generation of Photoacoustic Waves from Plasmonic Nanoparticles,” Small8(1), 47–52 (2012).
[CrossRef] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun.3, 618 (2012).
[CrossRef] [PubMed]

K. Homan, S. Kim, Y.-S. Chen, B. Wang, S. Mallidi, and S. Emelianov, “Prospects of molecular photoacoustic imaging at 1064 nm wavelength,” Opt. Lett.35(15), 2663–2665 (2010).
[CrossRef] [PubMed]

Emelianov, S. Y.

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical Applications of Photoacoustic Imaging with Exogenous Contrast Agents,” Ann. Biomed. Eng.40(2), 422–437 (2012).
[CrossRef] [PubMed]

S. Y. Nam, L. M. Ricles, L. J. Suggs, and S. Y. Emelianov, “In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers,” PLoS ONE7(5), e37267 (2012).
[CrossRef] [PubMed]

J. L. Bo Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE J. Sel. Top. Quantum Electron.16(3), 588–599 (2010).
[CrossRef]

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express16(5), 3362–3367 (2008).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
[CrossRef] [PubMed]

Ferrari, M.

A. Pope-Harman, M. M.-C. Cheng, F. Robertson, J. Sakamoto, and M. Ferrari, “Biomedical Nanotechnology for Cancer,” Med. Clin. North Am.91(5), 899–927 (2007).
[CrossRef] [PubMed]

Fowlkes, J. B.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol.26(7), 1177–1189 (2000).
[CrossRef] [PubMed]

Frenz, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
[CrossRef] [PubMed]

Frey, W.

Y.-S. Chen, W. Frey, S. Aglyamov, and S. Emelianov, “Environment-Dependent Generation of Photoacoustic Waves from Plasmonic Nanoparticles,” Small8(1), 47–52 (2012).
[CrossRef] [PubMed]

Gao, M.-R.

J. Yang, T. Ling, W.-T. Wu, H. Liu, M.-R. Gao, C. Ling, L. Li, and X.-W. Du, “A top-down strategy towards monodisperse colloidal lead sulphide quantum dots,” Nat. Commun.4, 1695 (2013).
[CrossRef] [PubMed]

Gao, Z.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

N. Rapoport, Z. Gao, and A. Kennedy, “Multifunctional Nanoparticles for Combining Ultrasonic Tumor Imaging and Targeted Chemotherapy,” J. Natl. Cancer Inst.99(14), 1095–1106 (2007).
[CrossRef] [PubMed]

Goldsmith, E. C.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging,” Acc. Chem. Res.41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

Gole, A. M.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging,” Acc. Chem. Res.41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

Gorelikov, I.

E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express2(6), 1432–1442 (2011).
[CrossRef] [PubMed]

I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, “Silica-Coated Quantum Dots for Optical Evaluation of Perfluorocarbon Droplet Interactions with Cells,” Langmuir27(24), 15024–15033 (2011).
[CrossRef] [PubMed]

Gupta, R.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Hannah, A.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine Green-Loaded Photoacoustic Nanodroplets: Dual Contrast Nanoconstructs for Enhanced Photoacoustic and Ultrasound Imaging,” ACS Nano8(1), 250–259 (2014).
[CrossRef] [PubMed]

Heemann, U.

D.-A. Clevert, K. Stock, B. Klein, J. Slotta-Huspenina, L. Prantl, U. Heemann, and M. Reiser, “Evaluation of Acoustic Radiation Force Impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumors of unknown etiology in comparison to histological findings,” Clin. Hemorheol. Microcirc.43(1-2), 95–107 (2009).
[PubMed]

Hoelen, C. G. A.

Homan, K.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine Green-Loaded Photoacoustic Nanodroplets: Dual Contrast Nanoconstructs for Enhanced Photoacoustic and Ultrasound Imaging,” ACS Nano8(1), 250–259 (2014).
[CrossRef] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun.3, 618 (2012).
[CrossRef] [PubMed]

K. Homan, S. Kim, Y.-S. Chen, B. Wang, S. Mallidi, and S. Emelianov, “Prospects of molecular photoacoustic imaging at 1064 nm wavelength,” Opt. Lett.35(15), 2663–2665 (2010).
[CrossRef] [PubMed]

Hondebrink, E.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron.9(2), 343–346 (2003).
[CrossRef]

Hu, X. H.

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol.46(1), 167–181 (2001).
[CrossRef] [PubMed]

Huang, S. W.

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Huang, S.-W.

G. Kim, S.-W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

Jaeger, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Jeong, E.-K.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

Kagadis, G. C.

A. Webb and G. C. Kagadis, “Introduction to Biomedical Imaging,” Med. Phys.30(8), 2267 (2003).
[CrossRef]

Kalmus, G. W.

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol.46(1), 167–181 (2001).
[CrossRef] [PubMed]

Kaneda, M. M.

M. M. Kaneda, S. Caruthers, G. M. Lanza, and S. A. Wickline, “Perfluorocarbon Nanoemulsions for Quantitative Molecular Imaging and Targeted Therapeutics,” Ann. Biomed. Eng.37(10), 1922–1933 (2009).
[CrossRef] [PubMed]

Karpiouk, A. B.

J. L. Bo Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE J. Sel. Top. Quantum Electron.16(3), 588–599 (2010).
[CrossRef]

Katayama, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

Kaul, S.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, “Imaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to αvβ3,” Circulation108(3), 336–341 (2003).
[CrossRef] [PubMed]

J. R. Lindner, J. Song, F. Xu, A. L. Klibanov, K. Singbartl, K. Ley, and S. Kaul, “Noninvasive Ultrasound Imaging of Inflammation Using Microbubbles Targeted to Activated Leukocytes,” Circulation102(22), 2745–2750 (2000).
[CrossRef] [PubMed]

Kawabata, K.

R. Asami and K. Kawabata, “Repeatable vaporization of optically vaporizable perfluorocarbon droplets for photoacoustic contrast enhanced imaging,” in Ultrasonics Symposium (IUS), 2012 IEEE International (2012), pp. 1200–1203.
[CrossRef]

Kawano, T.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

Kennedy, A.

N. Rapoport, Z. Gao, and A. Kennedy, “Multifunctional Nanoparticles for Combining Ultrasonic Tumor Imaging and Targeted Chemotherapy,” J. Natl. Cancer Inst.99(14), 1095–1106 (2007).
[CrossRef] [PubMed]

Kennedy, A. M.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K.-H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release138(3), 268–276 (2009).
[CrossRef] [PubMed]

Kim, G.

G. Kim, S.-W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

Kim, S.

Kim, T.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

Klein, B.

D.-A. Clevert, K. Stock, B. Klein, J. Slotta-Huspenina, L. Prantl, U. Heemann, and M. Reiser, “Evaluation of Acoustic Radiation Force Impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumors of unknown etiology in comparison to histological findings,” Clin. Hemorheol. Microcirc.43(1-2), 95–107 (2009).
[PubMed]

Klein, D. H.

E. G. Schutt, D. H. Klein, R. M. Mattrey, and J. G. Riess, “Injectable Microbubbles as Contrast Agents for Diagnostic Ultrasound Imaging: The Key Role of Perfluorochemicals,” Angew. Chem. Int. Ed. Engl.42(28), 3218–3235 (2003).
[CrossRef] [PubMed]

Klibanov, A. L.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, “Imaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to αvβ3,” Circulation108(3), 336–341 (2003).
[CrossRef] [PubMed]

J. R. Lindner, J. Song, F. Xu, A. L. Klibanov, K. Singbartl, K. Ley, and S. Kaul, “Noninvasive Ultrasound Imaging of Inflammation Using Microbubbles Targeted to Activated Leukocytes,” Circulation102(22), 2745–2750 (2000).
[CrossRef] [PubMed]

Kolios, M.

Kolkman, R. G. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron.9(2), 343–346 (2003).
[CrossRef]

Kopelman, R.

G. Kim, S.-W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

Kotov, N.

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Kripfgans, O. D.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol.26(7), 1177–1189 (2000).
[CrossRef] [PubMed]

Lanza, G. M.

M. M. Kaneda, S. Caruthers, G. M. Lanza, and S. A. Wickline, “Perfluorocarbon Nanoemulsions for Quantitative Molecular Imaging and Targeted Therapeutics,” Ann. Biomed. Eng.37(10), 1922–1933 (2009).
[CrossRef] [PubMed]

Larson-Smith, K.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett.104(3), 033701 (2014).
[CrossRef] [PubMed]

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett.39(9), 2599–2602 (2014).
[CrossRef] [PubMed]

Lee, C.-L.

S.-S. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B101(34), 6661–6664 (1997).
[CrossRef]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Lemor, R.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
[CrossRef] [PubMed]

Lencioni, R.

R. Lencioni, D. Cioni, and C. Bartolozzi, “Tissue harmonic and contrast-specific imaging: back to gray scale in ultrasound,” Eur. Radiol.12(1), 151–165 (2002).
[CrossRef] [PubMed]

Leong-Poi, H.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, “Imaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to αvβ3,” Circulation108(3), 336–341 (2003).
[CrossRef] [PubMed]

Ley, K.

J. R. Lindner, J. Song, F. Xu, A. L. Klibanov, K. Singbartl, K. Ley, and S. Kaul, “Noninvasive Ultrasound Imaging of Inflammation Using Microbubbles Targeted to Activated Leukocytes,” Circulation102(22), 2745–2750 (2000).
[CrossRef] [PubMed]

Li, L.

J. Yang, T. Ling, W.-T. Wu, H. Liu, M.-R. Gao, C. Ling, L. Li, and X.-W. Du, “A top-down strategy towards monodisperse colloidal lead sulphide quantum dots,” Nat. Commun.4, 1695 (2013).
[CrossRef] [PubMed]

Lindner, J. R.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, “Imaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to αvβ3,” Circulation108(3), 336–341 (2003).
[CrossRef] [PubMed]

J. R. Lindner, J. Song, F. Xu, A. L. Klibanov, K. Singbartl, K. Ley, and S. Kaul, “Noninvasive Ultrasound Imaging of Inflammation Using Microbubbles Targeted to Activated Leukocytes,” Circulation102(22), 2745–2750 (2000).
[CrossRef] [PubMed]

Ling, C.

J. Yang, T. Ling, W.-T. Wu, H. Liu, M.-R. Gao, C. Ling, L. Li, and X.-W. Du, “A top-down strategy towards monodisperse colloidal lead sulphide quantum dots,” Nat. Commun.4, 1695 (2013).
[CrossRef] [PubMed]

Ling, T.

J. Yang, T. Ling, W.-T. Wu, H. Liu, M.-R. Gao, C. Ling, L. Li, and X.-W. Du, “A top-down strategy towards monodisperse colloidal lead sulphide quantum dots,” Nat. Commun.4, 1695 (2013).
[CrossRef] [PubMed]

Link, S.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant,” J. Phys. Chem. B103(16), 3073–3077 (1999).
[CrossRef]

Litovsky, S. H.

Liu, H.

J. Yang, T. Ling, W.-T. Wu, H. Liu, M.-R. Gao, C. Ling, L. Li, and X.-W. Du, “A top-down strategy towards monodisperse colloidal lead sulphide quantum dots,” Nat. Commun.4, 1695 (2013).
[CrossRef] [PubMed]

Liu, X.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

Lombardo, M.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett.104(3), 033701 (2014).
[CrossRef] [PubMed]

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett.39(9), 2599–2602 (2014).
[CrossRef] [PubMed]

Lu, J. Q.

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol.46(1), 167–181 (2001).
[CrossRef] [PubMed]

Luke, G.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine Green-Loaded Photoacoustic Nanodroplets: Dual Contrast Nanoconstructs for Enhanced Photoacoustic and Ultrasound Imaging,” ACS Nano8(1), 250–259 (2014).
[CrossRef] [PubMed]

Luke, G. P.

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical Applications of Photoacoustic Imaging with Exogenous Contrast Agents,” Ann. Biomed. Eng.40(2), 422–437 (2012).
[CrossRef] [PubMed]

Luois, S.

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging,” Theranostics2(12), 1185–1198 (2012).
[CrossRef] [PubMed]

Luois, S. H.

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials33(11), 3262–3269 (2012).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Ma, X.

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol.46(1), 167–181 (2001).
[CrossRef] [PubMed]

Mallidi, S.

Martin, A. L.

I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, “Silica-Coated Quantum Dots for Optical Evaluation of Perfluorocarbon Droplet Interactions with Cells,” Langmuir27(24), 15024–15033 (2011).
[CrossRef] [PubMed]

Matsunaga, T. O.

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging,” Theranostics2(12), 1185–1198 (2012).
[CrossRef] [PubMed]

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials33(11), 3262–3269 (2012).
[CrossRef] [PubMed]

Matsuura, N.

I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, “Silica-Coated Quantum Dots for Optical Evaluation of Perfluorocarbon Droplet Interactions with Cells,” Langmuir27(24), 15024–15033 (2011).
[CrossRef] [PubMed]

E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express2(6), 1432–1442 (2011).
[CrossRef] [PubMed]

Mattrey, R. M.

E. G. Schutt, D. H. Klein, R. M. Mattrey, and J. G. Riess, “Injectable Microbubbles as Contrast Agents for Diagnostic Ultrasound Imaging: The Key Role of Perfluorochemicals,” Angew. Chem. Int. Ed. Engl.42(28), 3218–3235 (2003).
[CrossRef] [PubMed]

Matula, T.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett.104(3), 033701 (2014).
[CrossRef] [PubMed]

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett.39(9), 2599–2602 (2014).
[CrossRef] [PubMed]

Miller, D. L.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol.26(7), 1177–1189 (2000).
[CrossRef] [PubMed]

Mohamed, M. B.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant,” J. Phys. Chem. B103(16), 3073–3077 (1999).
[CrossRef]

Mohan, P.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

Moudgil, B.

P. Sharma, S. Brown, G. Walter, S. Santra, and B. Moudgil, “Nanoparticles for bioimaging,” Adv. Colloid Interface Sci.123-126, 471–485 (2006).
[CrossRef] [PubMed]

Mullin, L. B.

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials33(11), 3262–3269 (2012).
[CrossRef] [PubMed]

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging,” Theranostics2(12), 1185–1198 (2012).
[CrossRef] [PubMed]

Murphy, C. J.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging,” Acc. Chem. Res.41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

Nam, K. H.

N. Rapoport and K. H. Nam, “Droplet-To-Bubble Transition in Phase-Shift Nanoemulsions for Tumor Chemotherapy,” Int. J. Transp. Phenom.12, 51–62 (2011).

Nam, K.-H.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K.-H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release138(3), 268–276 (2009).
[CrossRef] [PubMed]

Nam, S. Y.

S. Y. Nam, L. M. Ricles, L. J. Suggs, and S. Y. Emelianov, “In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers,” PLoS ONE7(5), e37267 (2012).
[CrossRef] [PubMed]

Niederhauser, J. J.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
[CrossRef] [PubMed]

Nielsen, M. G.

Niidome, T.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

Niidome, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

O’Donnell, M.

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett.39(9), 2599–2602 (2014).
[CrossRef] [PubMed]

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett.104(3), 033701 (2014).
[CrossRef] [PubMed]

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

G. Kim, S.-W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

Okamoto, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

Parker, D. L.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

Payne, A.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

Pelivanov, I.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett.104(3), 033701 (2014).
[CrossRef] [PubMed]

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett.39(9), 2599–2602 (2014).
[CrossRef] [PubMed]

Perez, C.

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett.39(9), 2599–2602 (2014).
[CrossRef] [PubMed]

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett.104(3), 033701 (2014).
[CrossRef] [PubMed]

Pongers, R.

Pope-Harman, A.

A. Pope-Harman, M. M.-C. Cheng, F. Robertson, J. Sakamoto, and M. Ferrari, “Biomedical Nanotechnology for Cancer,” Med. Clin. North Am.91(5), 899–927 (2007).
[CrossRef] [PubMed]

Pozzo, D.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett.104(3), 033701 (2014).
[CrossRef] [PubMed]

Pozzo, L.

Prantl, L.

D.-A. Clevert, K. Stock, B. Klein, J. Slotta-Huspenina, L. Prantl, U. Heemann, and M. Reiser, “Evaluation of Acoustic Radiation Force Impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumors of unknown etiology in comparison to histological findings,” Clin. Hemorheol. Microcirc.43(1-2), 95–107 (2009).
[PubMed]

Radko, I.

Rapoport, N.

N. Rapoport and K. H. Nam, “Droplet-To-Bubble Transition in Phase-Shift Nanoemulsions for Tumor Chemotherapy,” Int. J. Transp. Phenom.12, 51–62 (2011).

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

N. Rapoport, Z. Gao, and A. Kennedy, “Multifunctional Nanoparticles for Combining Ultrasonic Tumor Imaging and Targeted Chemotherapy,” J. Natl. Cancer Inst.99(14), 1095–1106 (2007).
[CrossRef] [PubMed]

Rapoport, N. Y.

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K.-H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release138(3), 268–276 (2009).
[CrossRef] [PubMed]

Reiser, M.

D.-A. Clevert, K. Stock, B. Klein, J. Slotta-Huspenina, L. Prantl, U. Heemann, and M. Reiser, “Evaluation of Acoustic Radiation Force Impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumors of unknown etiology in comparison to histological findings,” Clin. Hemorheol. Microcirc.43(1-2), 95–107 (2009).
[PubMed]

Reznik, N.

N. Reznik, R. Williams, and P. N. Burns, “Investigation of Vaporized Submicron Perfluorocarbon Droplets as an Ultrasound Contrast Agent,” Ultrasound Med. Biol.37(8), 1271–1279 (2011).
[CrossRef] [PubMed]

Ricles, L. M.

S. Y. Nam, L. M. Ricles, L. J. Suggs, and S. Y. Emelianov, “In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers,” PLoS ONE7(5), e37267 (2012).
[CrossRef] [PubMed]

Riess, J. G.

E. G. Schutt, D. H. Klein, R. M. Mattrey, and J. G. Riess, “Injectable Microbubbles as Contrast Agents for Diagnostic Ultrasound Imaging: The Key Role of Perfluorochemicals,” Angew. Chem. Int. Ed. Engl.42(28), 3218–3235 (2003).
[CrossRef] [PubMed]

Robertson, F.

A. Pope-Harman, M. M.-C. Cheng, F. Robertson, J. Sakamoto, and M. Ferrari, “Biomedical Nanotechnology for Cancer,” Med. Clin. North Am.91(5), 899–927 (2007).
[CrossRef] [PubMed]

Rui, M.

Sakamoto, J.

A. Pope-Harman, M. M.-C. Cheng, F. Robertson, J. Sakamoto, and M. Ferrari, “Biomedical Nanotechnology for Cancer,” Med. Clin. North Am.91(5), 899–927 (2007).
[CrossRef] [PubMed]

Santra, S.

P. Sharma, S. Brown, G. Walter, S. Santra, and B. Moudgil, “Nanoparticles for bioimaging,” Adv. Colloid Interface Sci.123-126, 471–485 (2006).
[CrossRef] [PubMed]

Scaife, C.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

Scaife, C. L.

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K.-H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release138(3), 268–276 (2009).
[CrossRef] [PubMed]

Schutt, E. G.

E. G. Schutt, D. H. Klein, R. M. Mattrey, and J. G. Riess, “Injectable Microbubbles as Contrast Agents for Diagnostic Ultrasound Imaging: The Key Role of Perfluorochemicals,” Angew. Chem. Int. Ed. Engl.42(28), 3218–3235 (2003).
[CrossRef] [PubMed]

Seo, M.

I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, “Silica-Coated Quantum Dots for Optical Evaluation of Perfluorocarbon Droplet Interactions with Cells,” Langmuir27(24), 15024–15033 (2011).
[CrossRef] [PubMed]

Sethuraman, S.

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express16(5), 3362–3367 (2008).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
[CrossRef] [PubMed]

Shaffrey, M. E.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, “Imaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to αvβ3,” Circulation108(3), 336–341 (2003).
[CrossRef] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Sharma, P.

P. Sharma, S. Brown, G. Walter, S. Santra, and B. Moudgil, “Nanoparticles for bioimaging,” Adv. Colloid Interface Sci.123-126, 471–485 (2006).
[CrossRef] [PubMed]

Shea, J.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

Shea, J. E.

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K.-H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release138(3), 268–276 (2009).
[CrossRef] [PubMed]

Sheeran, P. S.

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials33(11), 3262–3269 (2012).
[CrossRef] [PubMed]

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging,” Theranostics2(12), 1185–1198 (2012).
[CrossRef] [PubMed]

Singbartl, K.

J. R. Lindner, J. Song, F. Xu, A. L. Klibanov, K. Singbartl, K. Ley, and S. Kaul, “Noninvasive Ultrasound Imaging of Inflammation Using Microbubbles Targeted to Activated Leukocytes,” Circulation102(22), 2745–2750 (2000).
[CrossRef] [PubMed]

Sisco, P. N.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging,” Acc. Chem. Res.41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

Sklenar, J.

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, “Imaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to αvβ3,” Circulation108(3), 336–341 (2003).
[CrossRef] [PubMed]

Slotta-Huspenina, J.

D.-A. Clevert, K. Stock, B. Klein, J. Slotta-Huspenina, L. Prantl, U. Heemann, and M. Reiser, “Evaluation of Acoustic Radiation Force Impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumors of unknown etiology in comparison to histological findings,” Clin. Hemorheol. Microcirc.43(1-2), 95–107 (2009).
[PubMed]

Smalling, R. W.

J. L. Bo Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE J. Sel. Top. Quantum Electron.16(3), 588–599 (2010).
[CrossRef]

S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express16(5), 3362–3367 (2008).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
[CrossRef] [PubMed]

Sokolov, K. V.

J. L. Bo Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE J. Sel. Top. Quantum Electron.16(3), 588–599 (2010).
[CrossRef]

Song, J.

J. R. Lindner, J. Song, F. Xu, A. L. Klibanov, K. Singbartl, K. Ley, and S. Kaul, “Noninvasive Ultrasound Imaging of Inflammation Using Microbubbles Targeted to Activated Leukocytes,” Circulation102(22), 2745–2750 (2000).
[CrossRef] [PubMed]

Steenbergen, W.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron.9(2), 343–346 (2003).
[CrossRef]

Stock, K.

D.-A. Clevert, K. Stock, B. Klein, J. Slotta-Huspenina, L. Prantl, U. Heemann, and M. Reiser, “Evaluation of Acoustic Radiation Force Impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumors of unknown etiology in comparison to histological findings,” Clin. Hemorheol. Microcirc.43(1-2), 95–107 (2009).
[PubMed]

Stone, J. W.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging,” Acc. Chem. Res.41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

Streeter, J. E.

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging,” Theranostics2(12), 1185–1198 (2012).
[CrossRef] [PubMed]

Strohm, E.

Su, J. L.

J. L. Bo Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE J. Sel. Top. Quantum Electron.16(3), 588–599 (2010).
[CrossRef]

Suggs, L. J.

S. Y. Nam, L. M. Ricles, L. J. Suggs, and S. Y. Emelianov, “In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers,” PLoS ONE7(5), e37267 (2012).
[CrossRef] [PubMed]

Takahashi, H.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

Todd, N.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

Tong, L.

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Walter, G.

P. Sharma, S. Brown, G. Walter, S. Santra, and B. Moudgil, “Nanoparticles for bioimaging,” Adv. Colloid Interface Sci.123-126, 471–485 (2006).
[CrossRef] [PubMed]

Wang, B.

Wang, C. R. C.

S.-S. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B101(34), 6661–6664 (1997).
[CrossRef]

Wang, L. V.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Webb, A.

A. Webb and G. C. Kagadis, “Introduction to Biomedical Imaging,” Med. Phys.30(8), 2267 (2003).
[CrossRef]

Weber, P.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
[CrossRef] [PubMed]

Wei, A.

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

Wei, C. W.

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett.39(9), 2599–2602 (2014).
[CrossRef] [PubMed]

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett.104(3), 033701 (2014).
[CrossRef] [PubMed]

Wei, Q.

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

Wickline, S. A.

M. M. Kaneda, S. Caruthers, G. M. Lanza, and S. A. Wickline, “Perfluorocarbon Nanoemulsions for Quantitative Molecular Imaging and Targeted Therapeutics,” Ann. Biomed. Eng.37(10), 1922–1933 (2009).
[CrossRef] [PubMed]

Williams, R.

N. Reznik, R. Williams, and P. N. Burns, “Investigation of Vaporized Submicron Perfluorocarbon Droplets as an Ultrasound Contrast Agent,” Ultrasound Med. Biol.37(8), 1271–1279 (2011).
[CrossRef] [PubMed]

Wilson, K.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine Green-Loaded Photoacoustic Nanodroplets: Dual Contrast Nanoconstructs for Enhanced Photoacoustic and Ultrasound Imaging,” ACS Nano8(1), 250–259 (2014).
[CrossRef] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun.3, 618 (2012).
[CrossRef] [PubMed]

Wu, W.-T.

J. Yang, T. Ling, W.-T. Wu, H. Liu, M.-R. Gao, C. Ling, L. Li, and X.-W. Du, “A top-down strategy towards monodisperse colloidal lead sulphide quantum dots,” Nat. Commun.4, 1695 (2013).
[CrossRef] [PubMed]

Xia, J.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett.104(3), 033701 (2014).
[CrossRef] [PubMed]

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett.39(9), 2599–2602 (2014).
[CrossRef] [PubMed]

Xu, F.

J. R. Lindner, J. Song, F. Xu, A. L. Klibanov, K. Singbartl, K. Ley, and S. Kaul, “Noninvasive Ultrasound Imaging of Inflammation Using Microbubbles Targeted to Activated Leukocytes,” Circulation102(22), 2745–2750 (2000).
[CrossRef] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Yamagata, M.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

Yang, J.

J. Yang, T. Ling, W.-T. Wu, H. Liu, M.-R. Gao, C. Ling, L. Li, and X.-W. Du, “A top-down strategy towards monodisperse colloidal lead sulphide quantum dots,” Nat. Commun.4, 1695 (2013).
[CrossRef] [PubMed]

Yeager, D.

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical Applications of Photoacoustic Imaging with Exogenous Contrast Agents,” Ann. Biomed. Eng.40(2), 422–437 (2012).
[CrossRef] [PubMed]

Yu, S.-S.

S.-S. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B101(34), 6661–6664 (1997).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging,” Acc. Chem. Res.41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

ACS Nano (1)

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine Green-Loaded Photoacoustic Nanodroplets: Dual Contrast Nanoconstructs for Enhanced Photoacoustic and Ultrasound Imaging,” ACS Nano8(1), 250–259 (2014).
[CrossRef] [PubMed]

Adv. Colloid Interface Sci. (1)

P. Sharma, S. Brown, G. Walter, S. Santra, and B. Moudgil, “Nanoparticles for bioimaging,” Adv. Colloid Interface Sci.123-126, 471–485 (2006).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

E. G. Schutt, D. H. Klein, R. M. Mattrey, and J. G. Riess, “Injectable Microbubbles as Contrast Agents for Diagnostic Ultrasound Imaging: The Key Role of Perfluorochemicals,” Angew. Chem. Int. Ed. Engl.42(28), 3218–3235 (2003).
[CrossRef] [PubMed]

Ann. Biomed. Eng. (2)

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical Applications of Photoacoustic Imaging with Exogenous Contrast Agents,” Ann. Biomed. Eng.40(2), 422–437 (2012).
[CrossRef] [PubMed]

M. M. Kaneda, S. Caruthers, G. M. Lanza, and S. A. Wickline, “Perfluorocarbon Nanoemulsions for Quantitative Molecular Imaging and Targeted Therapeutics,” Ann. Biomed. Eng.37(10), 1922–1933 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett.104(3), 033701 (2014).
[CrossRef] [PubMed]

Biomaterials (1)

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials33(11), 3262–3269 (2012).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Circulation (2)

J. R. Lindner, J. Song, F. Xu, A. L. Klibanov, K. Singbartl, K. Ley, and S. Kaul, “Noninvasive Ultrasound Imaging of Inflammation Using Microbubbles Targeted to Activated Leukocytes,” Circulation102(22), 2745–2750 (2000).
[CrossRef] [PubMed]

D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, “Imaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to αvβ3,” Circulation108(3), 336–341 (2003).
[CrossRef] [PubMed]

Clin. Hemorheol. Microcirc. (1)

D.-A. Clevert, K. Stock, B. Klein, J. Slotta-Huspenina, L. Prantl, U. Heemann, and M. Reiser, “Evaluation of Acoustic Radiation Force Impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumors of unknown etiology in comparison to histological findings,” Clin. Hemorheol. Microcirc.43(1-2), 95–107 (2009).
[PubMed]

Eur. Radiol. (1)

R. Lencioni, D. Cioni, and C. Bartolozzi, “Tissue harmonic and contrast-specific imaging: back to gray scale in ultrasound,” Eur. Radiol.12(1), 151–165 (2002).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

J. L. Bo Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE J. Sel. Top. Quantum Electron.16(3), 588–599 (2010).
[CrossRef]

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron.9(2), 343–346 (2003).
[CrossRef]

IEEE Trans. Med. Imaging (1)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
[CrossRef] [PubMed]

Int. J. Transp. Phenom. (1)

N. Rapoport and K. H. Nam, “Droplet-To-Bubble Transition in Phase-Shift Nanoemulsions for Tumor Chemotherapy,” Int. J. Transp. Phenom.12, 51–62 (2011).

J. Appl. Phys. (1)

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

J. Biomed. Opt. (1)

G. Kim, S.-W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

J. Control. Release (3)

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D. L. Parker, E.-K. Jeong, and A. M. Kennedy, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Control. Release153(1), 4–15 (2011).
[CrossRef] [PubMed]

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K.-H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release138(3), 268–276 (2009).
[CrossRef] [PubMed]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

J. Natl. Cancer Inst. (1)

N. Rapoport, Z. Gao, and A. Kennedy, “Multifunctional Nanoparticles for Combining Ultrasonic Tumor Imaging and Targeted Chemotherapy,” J. Natl. Cancer Inst.99(14), 1095–1106 (2007).
[CrossRef] [PubMed]

J. Phys. Chem. B (3)

S.-S. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B101(34), 6661–6664 (1997).
[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant,” J. Phys. Chem. B103(16), 3073–3077 (1999).
[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Langmuir (1)

I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, “Silica-Coated Quantum Dots for Optical Evaluation of Perfluorocarbon Droplet Interactions with Cells,” Langmuir27(24), 15024–15033 (2011).
[CrossRef] [PubMed]

Med. Clin. North Am. (1)

A. Pope-Harman, M. M.-C. Cheng, F. Robertson, J. Sakamoto, and M. Ferrari, “Biomedical Nanotechnology for Cancer,” Med. Clin. North Am.91(5), 899–927 (2007).
[CrossRef] [PubMed]

Med. Phys. (1)

A. Webb and G. C. Kagadis, “Introduction to Biomedical Imaging,” Med. Phys.30(8), 2267 (2003).
[CrossRef]

Nat. Commun. (2)

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun.3, 618 (2012).
[CrossRef] [PubMed]

J. Yang, T. Ling, W.-T. Wu, H. Liu, M.-R. Gao, C. Ling, L. Li, and X.-W. Du, “A top-down strategy towards monodisperse colloidal lead sulphide quantum dots,” Nat. Commun.4, 1695 (2013).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Photochem. Photobiol. (1)

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol.46(1), 167–181 (2001).
[CrossRef] [PubMed]

PLoS ONE (1)

S. Y. Nam, L. M. Ricles, L. J. Suggs, and S. Y. Emelianov, “In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers,” PLoS ONE7(5), e37267 (2012).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Small (1)

Y.-S. Chen, W. Frey, S. Aglyamov, and S. Emelianov, “Environment-Dependent Generation of Photoacoustic Waves from Plasmonic Nanoparticles,” Small8(1), 47–52 (2012).
[CrossRef] [PubMed]

Theranostics (1)

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging,” Theranostics2(12), 1185–1198 (2012).
[CrossRef] [PubMed]

Ultrasound Med. Biol. (2)

N. Reznik, R. Williams, and P. N. Burns, “Investigation of Vaporized Submicron Perfluorocarbon Droplets as an Ultrasound Contrast Agent,” Ultrasound Med. Biol.37(8), 1271–1279 (2011).
[CrossRef] [PubMed]

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol.26(7), 1177–1189 (2000).
[CrossRef] [PubMed]

Other (4)

American National Standards Institute and Laser Institute of America, American National Standard for Safe Use of Lasers (Laser Institute of America, 2007).

R. Asami and K. Kawabata, “Repeatable vaporization of optically vaporizable perfluorocarbon droplets for photoacoustic contrast enhanced imaging,” in Ultrasonics Symposium (IUS), 2012 IEEE International (2012), pp. 1200–1203.
[CrossRef]

J. L. Prince and J. Links, Medical Imaging Signals and Systems, 1st ed. (Prentice Hall, 2005).

A. Oppelt, Imaging Systems for Medical Diagnostics: Fundamentals, Technical Solutions and Applications for Systems Applying Ionizing Radiation, Nuclear Magnetic Resonance and Ultrasound (John Wiley & Sons, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmission electron microscope image (a) of gold nanorods. Scale bar = 50 nm. Aqueous nanorods (b) phase separated from colorless PFC. Fluorinated nanorods in PFC (c), phase separated from water. Absorption spectrum (d) of PEGylated gold nanorods.

Fig. 2
Fig. 2

Phantom imaging setup (a): tissue-mimicking polyacrylamide embedded with PAnDs and irradiated with 1064 nm pulsed laser light. Ex vivo imaging schematic (b): porcine tissue injected with PAnDs, then probed simultaneously using B-mode ultrasound and photoacoustic imaging techniques.

Fig. 3
Fig. 3

Ultrasound image of a PAnD-embedded polyacrylamide phantom. A mask was used to selectively irradiate the phantom into a star shape, inducing droplet vaporization and thus increased US echogenicity in the region. Scale bar = 10 mm.

Fig. 4
Fig. 4

Ultrasound signal difference as a function of laser fluence (a). Ultrasound signal difference at low laser fluences (b), demonstrating the fluence at which measurable vaporization is detected. Droplet-laden polyacrylamide construct before pulsed laser irradiation (c-e). Construct after irradiation at various fluences (f-h), showing droplet vaporization. Images displayed on a 50 dB scale. Scale bar = 5 mm.

Fig. 5
Fig. 5

Photoacoustic images of ex vivo porcine tissue injected with PAnDs (a), imaged before and during pulsed laser irradiation. Scale bar = 5 mm. Average PA signal over time (b) for native tissue and tissue injected with PAnDs. Ultrasound images of the same tissue sample (c) imaged before and during laser irradiation. Scale bar = 5 mm. Average US echogenicity over time (d) for PAnD injected tissue.

Tables (1)

Tables Icon

Table 1 Contrast and contrast-to-noise ratio for various samples measured with and without PAnDs.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Contras t abs [ μ( A i,ROI )μ( A i,blank ) μ( A i,blank ) ]
Contras t local =[ μ( A i,ROI )μ( A i,tissue ) μ( A i,tissue ) ]
CN R abs =20lo g 10 [ μ( A i,ROI )μ( A i,blank ) σ( A i,blank ) ]
CN R local =20lo g 10 [ μ( A i,ROI )μ( A i,tissue ) σ( A i,tissue ) ]
signal ( dB )= pixels in ROI 20lo g 10 (A)
Δsignal ( dB )= signa l after irradiation signa l before irradiation

Metrics