Abstract

With a Gaussian-like broadband light source from high brightness Ce3+:YAG single-clad crystal fiber, a full-field optical coherence tomography using a home-designed Mirau objective realized high quality images of in vivo and excised skin tissues. With a 40 × silicone-oil-immersion Mirau objective, the achieved spatial resolutions in axial and lateral directions were 0.9 and 0.51 μm, respectively. Such a high spatial resolution enables the separation of lamellar structure of the full epidermis in both the cross-sectional and en face planes. The number of layers of stratum corneum and its thickness were quantitatively measured. This label free and non-invasive optical probe could be useful for evaluating the water barrier of skin tissue in clinics. As a preliminary in vivo experiment, the blood vessel in dermis was also observed, and the flowing of the red blood cells and location of the melanocyte were traced.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J. Eur. Acad. Dermatol. Venereol.20(7), 791–795 (2006).
    [PubMed]
  2. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37(6), 958–963 (1997).
    [CrossRef] [PubMed]
  3. M. S. Wu, D. J. Yee, and M. E. Sullivan, “Effect of a skin moisturizer on the water distribution in human stratum corneum,” J. Invest. Dermatol.81(5), 446–448 (1983).
    [CrossRef] [PubMed]
  4. K. A. Holbrook and G. F. Odland, “Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis,” J. Invest. Dermatol.62(4), 415–422 (1974).
    [CrossRef] [PubMed]
  5. W. J. Choi, I. Jeon, S. G. Ahn, J. H. Yoon, S. Kim, and B. H. Lee, “Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution,” Opt. Express18(22), 23285–23295 (2010).
    [CrossRef] [PubMed]
  6. W. J. Choi, K. S. Park, T. J. Eom, M. K. Oh, and B. H. Lee, “Tomographic imaging of a suspending single live cell using optical tweezer-combined full-field optical coherence tomography,” Opt. Lett.37(14), 2784–2786 (2012).
    [CrossRef] [PubMed]
  7. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt.41(4), 805–812 (2002).
    [CrossRef] [PubMed]
  8. E. Dalimier, A. Bruhat, K. Grieve, F. Harms, F. Martins, and A. C. Boccara, “High resolution in-vivo imaging of skin with full field optical coherence tomography,” Proc. SPIE8926, 8926P (2014).
  9. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt.43(14), 2874–2883 (2004).
    [CrossRef] [PubMed]
  10. G. Moneron, A. C. Boccara, and A. Dubois, “Stroboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett.30(11), 1351–1353 (2005).
    [CrossRef] [PubMed]
  11. G. E. Costin and V. J. Hearing, “Human skin pigmentation: melanocytes modulate skin color in response to stress,” FASEB J.21(4), 976–994 (2007).
    [CrossRef] [PubMed]
  12. S. Kippenberger, A. Brend, J. Bereiter-Hahn, A. R. Bosca, and R. Kaufmann, “The mechanism of melanocyte dendrite formation: the impact of differentiating keratinocyte,” Pigment Cell Res.11, 34–37 (1998).
  13. M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopy,” Acta Derm. Venereol.87(1), 4–8 (2007).
    [CrossRef] [PubMed]
  14. A. V. Rawlings and C. R. Harding, “Moisturization and skin barrier function,” Dermatol. Ther.17(s1Suppl 1), 43–48 (2004).
    [CrossRef] [PubMed]
  15. A. J. Byrne, “Bioengineering and subjective approaches to the clinical evaluation of dry skin,” Int. J. Cosmet. Sci.32(6), 410–421 (2010).
    [CrossRef] [PubMed]
  16. A. Böhling, S. Bielfeldt, A. Himmelmann, M. Keskin, and K. P. Wilhelm, “Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy,” Skin Res. Technol.20(1), 50–57 (2014).
    [CrossRef] [PubMed]
  17. K. König, “Hybrid multiphoton multimodal tomography of in vivo human skin,” Intravital1(1), 11–26 (2012).
    [CrossRef]
  18. Y. H. Liao, S. Y. Chen, S. Y. Chou, P. H. Wang, M. R. Tsai, and C. K. Sun, “Determination of chronological aging parameters in epidermal keratinocytes by in vivo harmonic generation microscopy,” Biomed. Opt. Express4(1), 77–88 (2013).
    [CrossRef] [PubMed]
  19. Z. Ya-Xian, T. Suetake, and H. Tagami, “Number of cell layers of the stratum corneum in normal skin - relationship to the anatomical location on the body, age, sex and physical parameters,” Arch. Dermatol. Res.291(10), 555–559 (1999).
    [CrossRef] [PubMed]
  20. C. C. Tsai, T. H. Chen, Y. S. Lin, Y. T. Wang, W. Chang, K. Y. Hsu, Y. H. Chang, P. K. Hsu, D. Y. Jheng, K. Y. Huang, E. Sun, and S. L. Huang, “Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Opt. Lett.35(6), 811–813 (2010).
    [CrossRef] [PubMed]
  21. C. C. Tsai, Y. S. Lin, S. C. Pei, C. K. Chang, T. H. Chen, N. C. Cheng, M. K. Tsai, C. C. Lai, W. Y. Li, C. K. Wei, and S. L. Huang, “Microstructural and microspectral characterization of a vertically aligned liquid crystal display panel,” Opt. Lett.36(4), 567–569 (2011).
    [CrossRef] [PubMed]
  22. C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett.29(5), 439–441 (2004).
    [CrossRef] [PubMed]
  23. K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:Sapphire crystal-fiber-based broadband light source,” IEEE Photon. Technol. Lett.24, 854–856 (2012).
  24. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett.27(7), 530–532 (2002).
    [CrossRef] [PubMed]
  25. S. Rehn, A. Planat-Chrétien, M. Berger, J. Dinten, C. Deumié, and A. da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
    [CrossRef]
  26. C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004).
    [CrossRef] [PubMed]
  27. M. Roy, P. Svahn, L. Cherel, and C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Lasers Eng.37(6), 631–641 (2002).
    [CrossRef]
  28. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997).
    [CrossRef] [PubMed]
  29. E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express3(3), 661–666 (2012).
    [CrossRef] [PubMed]
  30. M. Geerligs, Skin Layer Mechanics (Koninklijke Philips Electronics N.V., 2009).
  31. J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol.83(6), 410–413 (2003).
    [CrossRef] [PubMed]
  32. C. C. K. Tsai, C. K. Chang, K. Y. Hsu, T. S. Ho, Y. T. Wang, M. Y. Lin, J. W. Tjiu, and S. L. Huang, “In vivo 3-D cellular level imaging using Mirau-based full-field optical coherence tomography on skin tissue,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2014), BW4A.2.
  33. T. Gambichler, K. Valavanis, I. Plura, D. Georgas, P. Kampilafkos, and M. Stücker, “In vivo determination of epidermal thickness using high-definition optical coherence tomography,” Br. J. Dermatol.170(3), 737–739 (2014).
    [CrossRef] [PubMed]

2014

A. Böhling, S. Bielfeldt, A. Himmelmann, M. Keskin, and K. P. Wilhelm, “Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy,” Skin Res. Technol.20(1), 50–57 (2014).
[CrossRef] [PubMed]

E. Dalimier, A. Bruhat, K. Grieve, F. Harms, F. Martins, and A. C. Boccara, “High resolution in-vivo imaging of skin with full field optical coherence tomography,” Proc. SPIE8926, 8926P (2014).

T. Gambichler, K. Valavanis, I. Plura, D. Georgas, P. Kampilafkos, and M. Stücker, “In vivo determination of epidermal thickness using high-definition optical coherence tomography,” Br. J. Dermatol.170(3), 737–739 (2014).
[CrossRef] [PubMed]

2013

2012

2011

2010

2007

G. E. Costin and V. J. Hearing, “Human skin pigmentation: melanocytes modulate skin color in response to stress,” FASEB J.21(4), 976–994 (2007).
[CrossRef] [PubMed]

M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopy,” Acta Derm. Venereol.87(1), 4–8 (2007).
[CrossRef] [PubMed]

2006

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J. Eur. Acad. Dermatol. Venereol.20(7), 791–795 (2006).
[PubMed]

2005

2004

C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett.29(5), 439–441 (2004).
[CrossRef] [PubMed]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt.43(14), 2874–2883 (2004).
[CrossRef] [PubMed]

A. V. Rawlings and C. R. Harding, “Moisturization and skin barrier function,” Dermatol. Ther.17(s1Suppl 1), 43–48 (2004).
[CrossRef] [PubMed]

C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004).
[CrossRef] [PubMed]

2003

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol.83(6), 410–413 (2003).
[CrossRef] [PubMed]

2002

1999

Z. Ya-Xian, T. Suetake, and H. Tagami, “Number of cell layers of the stratum corneum in normal skin - relationship to the anatomical location on the body, age, sex and physical parameters,” Arch. Dermatol. Res.291(10), 555–559 (1999).
[CrossRef] [PubMed]

1998

S. Kippenberger, A. Brend, J. Bereiter-Hahn, A. R. Bosca, and R. Kaufmann, “The mechanism of melanocyte dendrite formation: the impact of differentiating keratinocyte,” Pigment Cell Res.11, 34–37 (1998).

1997

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37(6), 958–963 (1997).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997).
[CrossRef] [PubMed]

1983

M. S. Wu, D. J. Yee, and M. E. Sullivan, “Effect of a skin moisturizer on the water distribution in human stratum corneum,” J. Invest. Dermatol.81(5), 446–448 (1983).
[CrossRef] [PubMed]

1974

K. A. Holbrook and G. F. Odland, “Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis,” J. Invest. Dermatol.62(4), 415–422 (1974).
[CrossRef] [PubMed]

Ahn, S. G.

Altmeyer, P.

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J. Eur. Acad. Dermatol. Venereol.20(7), 791–795 (2006).
[PubMed]

Aranda, J.

Auksorius, E.

Beaurepaire, E.

Bereiter-Hahn, J.

S. Kippenberger, A. Brend, J. Bereiter-Hahn, A. R. Bosca, and R. Kaufmann, “The mechanism of melanocyte dendrite formation: the impact of differentiating keratinocyte,” Pigment Cell Res.11, 34–37 (1998).

Berger, M.

S. Rehn, A. Planat-Chrétien, M. Berger, J. Dinten, C. Deumié, and A. da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
[CrossRef]

Bielfeldt, S.

A. Böhling, S. Bielfeldt, A. Himmelmann, M. Keskin, and K. P. Wilhelm, “Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy,” Skin Res. Technol.20(1), 50–57 (2014).
[CrossRef] [PubMed]

Birngruber, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37(6), 958–963 (1997).
[CrossRef] [PubMed]

Boccara, A. C.

Boccara, C.

Böhling, A.

A. Böhling, S. Bielfeldt, A. Himmelmann, M. Keskin, and K. P. Wilhelm, “Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy,” Skin Res. Technol.20(1), 50–57 (2014).
[CrossRef] [PubMed]

Boms, S.

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J. Eur. Acad. Dermatol. Venereol.20(7), 791–795 (2006).
[PubMed]

Bosca, A. R.

S. Kippenberger, A. Brend, J. Bereiter-Hahn, A. R. Bosca, and R. Kaufmann, “The mechanism of melanocyte dendrite formation: the impact of differentiating keratinocyte,” Pigment Cell Res.11, 34–37 (1998).

Bouma, B. E.

Brend, A.

S. Kippenberger, A. Brend, J. Bereiter-Hahn, A. R. Bosca, and R. Kaufmann, “The mechanism of melanocyte dendrite formation: the impact of differentiating keratinocyte,” Pigment Cell Res.11, 34–37 (1998).

Bromberg, Y.

Bruhat, A.

E. Dalimier, A. Bruhat, K. Grieve, F. Harms, F. Martins, and A. C. Boccara, “High resolution in-vivo imaging of skin with full field optical coherence tomography,” Proc. SPIE8926, 8926P (2014).

Byrne, A. J.

A. J. Byrne, “Bioengineering and subjective approaches to the clinical evaluation of dry skin,” Int. J. Cosmet. Sci.32(6), 410–421 (2010).
[CrossRef] [PubMed]

Chang, C. K.

Chang, W.

Chang, Y. H.

Chen, J. C.

Chen, S. Y.

Chen, T. H.

Cheng, N. C.

Cherel, L.

M. Roy, P. Svahn, L. Cherel, and C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Lasers Eng.37(6), 631–641 (2002).
[CrossRef]

Choi, W. J.

Chou, S. Y.

Coron, E.

Costin, G. E.

G. E. Costin and V. J. Hearing, “Human skin pigmentation: melanocytes modulate skin color in response to stress,” FASEB J.21(4), 976–994 (2007).
[CrossRef] [PubMed]

da Silva, A.

S. Rehn, A. Planat-Chrétien, M. Berger, J. Dinten, C. Deumié, and A. da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
[CrossRef]

Dalimier, E.

E. Dalimier, A. Bruhat, K. Grieve, F. Harms, F. Martins, and A. C. Boccara, “High resolution in-vivo imaging of skin with full field optical coherence tomography,” Proc. SPIE8926, 8926P (2014).

Deumié, C.

S. Rehn, A. Planat-Chrétien, M. Berger, J. Dinten, C. Deumié, and A. da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
[CrossRef]

Dinten, J.

S. Rehn, A. Planat-Chrétien, M. Berger, J. Dinten, C. Deumié, and A. da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
[CrossRef]

Dong, C. Y.

C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004).
[CrossRef] [PubMed]

Dubois, A.

Egawa, M.

M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopy,” Acta Derm. Venereol.87(1), 4–8 (2007).
[CrossRef] [PubMed]

Engelhardt, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37(6), 958–963 (1997).
[CrossRef] [PubMed]

Eom, T. J.

Gambichler, T.

T. Gambichler, K. Valavanis, I. Plura, D. Georgas, P. Kampilafkos, and M. Stücker, “In vivo determination of epidermal thickness using high-definition optical coherence tomography,” Br. J. Dermatol.170(3), 737–739 (2014).
[CrossRef] [PubMed]

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J. Eur. Acad. Dermatol. Venereol.20(7), 791–795 (2006).
[PubMed]

Georgas, D.

T. Gambichler, K. Valavanis, I. Plura, D. Georgas, P. Kampilafkos, and M. Stücker, “In vivo determination of epidermal thickness using high-definition optical coherence tomography,” Br. J. Dermatol.170(3), 737–739 (2014).
[CrossRef] [PubMed]

Goldstein, A. M.

Grieve, K.

E. Dalimier, A. Bruhat, K. Grieve, F. Harms, F. Martins, and A. C. Boccara, “High resolution in-vivo imaging of skin with full field optical coherence tomography,” Proc. SPIE8926, 8926P (2014).

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt.43(14), 2874–2883 (2004).
[CrossRef] [PubMed]

Harding, C. R.

A. V. Rawlings and C. R. Harding, “Moisturization and skin barrier function,” Dermatol. Ther.17(s1Suppl 1), 43–48 (2004).
[CrossRef] [PubMed]

Harms, F.

E. Dalimier, A. Bruhat, K. Grieve, F. Harms, F. Martins, and A. C. Boccara, “High resolution in-vivo imaging of skin with full field optical coherence tomography,” Proc. SPIE8926, 8926P (2014).

Hearing, V. J.

G. E. Costin and V. J. Hearing, “Human skin pigmentation: melanocytes modulate skin color in response to stress,” FASEB J.21(4), 976–994 (2007).
[CrossRef] [PubMed]

Himmelmann, A.

A. Böhling, S. Bielfeldt, A. Himmelmann, M. Keskin, and K. P. Wilhelm, “Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy,” Skin Res. Technol.20(1), 50–57 (2014).
[CrossRef] [PubMed]

Hirao, T.

M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopy,” Acta Derm. Venereol.87(1), 4–8 (2007).
[CrossRef] [PubMed]

Ho, T. S.

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:Sapphire crystal-fiber-based broadband light source,” IEEE Photon. Technol. Lett.24, 854–856 (2012).

Hoffmann, K.

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J. Eur. Acad. Dermatol. Venereol.20(7), 791–795 (2006).
[PubMed]

Holbrook, K. A.

K. A. Holbrook and G. F. Odland, “Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis,” J. Invest. Dermatol.62(4), 415–422 (1974).
[CrossRef] [PubMed]

Hsu, K. Y.

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:Sapphire crystal-fiber-based broadband light source,” IEEE Photon. Technol. Lett.24, 854–856 (2012).

C. C. Tsai, T. H. Chen, Y. S. Lin, Y. T. Wang, W. Chang, K. Y. Hsu, Y. H. Chang, P. K. Hsu, D. Y. Jheng, K. Y. Huang, E. Sun, and S. L. Huang, “Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Opt. Lett.35(6), 811–813 (2010).
[CrossRef] [PubMed]

Hsu, P. K.

Huang, K. Y.

Huang, S. L.

Jeon, I.

Jheng, D. Y.

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:Sapphire crystal-fiber-based broadband light source,” IEEE Photon. Technol. Lett.24, 854–856 (2012).

C. C. Tsai, T. H. Chen, Y. S. Lin, Y. T. Wang, W. Chang, K. Y. Hsu, Y. H. Chang, P. K. Hsu, D. Y. Jheng, K. Y. Huang, E. Sun, and S. L. Huang, “Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Opt. Lett.35(6), 811–813 (2010).
[CrossRef] [PubMed]

Juškaitis, R.

Kampilafkos, P.

T. Gambichler, K. Valavanis, I. Plura, D. Georgas, P. Kampilafkos, and M. Stücker, “In vivo determination of epidermal thickness using high-definition optical coherence tomography,” Br. J. Dermatol.170(3), 737–739 (2014).
[CrossRef] [PubMed]

Kaplan, P. D.

C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004).
[CrossRef] [PubMed]

Kaufmann, R.

S. Kippenberger, A. Brend, J. Bereiter-Hahn, A. R. Bosca, and R. Kaufmann, “The mechanism of melanocyte dendrite formation: the impact of differentiating keratinocyte,” Pigment Cell Res.11, 34–37 (1998).

Kazlauskas, A.

Keskin, M.

A. Böhling, S. Bielfeldt, A. Himmelmann, M. Keskin, and K. P. Wilhelm, “Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy,” Skin Res. Technol.20(1), 50–57 (2014).
[CrossRef] [PubMed]

Kim, S.

Kippenberger, S.

S. Kippenberger, A. Brend, J. Bereiter-Hahn, A. R. Bosca, and R. Kaufmann, “The mechanism of melanocyte dendrite formation: the impact of differentiating keratinocyte,” Pigment Cell Res.11, 34–37 (1998).

König, K.

K. König, “Hybrid multiphoton multimodal tomography of in vivo human skin,” Intravital1(1), 11–26 (2012).
[CrossRef]

Kreuter, A.

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J. Eur. Acad. Dermatol. Venereol.20(7), 791–795 (2006).
[PubMed]

Lai, C. C.

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:Sapphire crystal-fiber-based broadband light source,” IEEE Photon. Technol. Lett.24, 854–856 (2012).

C. C. Tsai, Y. S. Lin, S. C. Pei, C. K. Chang, T. H. Chen, N. C. Cheng, M. K. Tsai, C. C. Lai, W. Y. Li, C. K. Wei, and S. L. Huang, “Microstructural and microspectral characterization of a vertically aligned liquid crystal display panel,” Opt. Lett.36(4), 567–569 (2011).
[CrossRef] [PubMed]

Lankenau, E.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37(6), 958–963 (1997).
[CrossRef] [PubMed]

Lecaque, R.

Lee, B. H.

Li, W. Y.

Liao, Y. H.

Y. H. Liao, S. Y. Chen, S. Y. Chou, P. H. Wang, M. R. Tsai, and C. K. Sun, “Determination of chronological aging parameters in epidermal keratinocytes by in vivo harmonic generation microscopy,” Biomed. Opt. Express4(1), 77–88 (2013).
[CrossRef] [PubMed]

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:Sapphire crystal-fiber-based broadband light source,” IEEE Photon. Technol. Lett.24, 854–856 (2012).

Lin, Y. S.

Liu, L.

Lo, C. Y.

Martins, F.

E. Dalimier, A. Bruhat, K. Grieve, F. Harms, F. Martins, and A. C. Boccara, “High resolution in-vivo imaging of skin with full field optical coherence tomography,” Proc. SPIE8926, 8926P (2014).

Moneron, G.

Motiejunaite, R.

Moussa, G.

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J. Eur. Acad. Dermatol. Venereol.20(7), 791–795 (2006).
[PubMed]

Neil, M. A. A.

Odland, G. F.

K. A. Holbrook and G. F. Odland, “Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis,” J. Invest. Dermatol.62(4), 415–422 (1974).
[CrossRef] [PubMed]

Oh, M. K.

Park, K. S.

Pei, S. C.

Pieretti, A.

Planat-Chrétien, A.

S. Rehn, A. Planat-Chrétien, M. Berger, J. Dinten, C. Deumié, and A. da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
[CrossRef]

Plura, I.

T. Gambichler, K. Valavanis, I. Plura, D. Georgas, P. Kampilafkos, and M. Stücker, “In vivo determination of epidermal thickness using high-definition optical coherence tomography,” Br. J. Dermatol.170(3), 737–739 (2014).
[CrossRef] [PubMed]

Poulsen, T.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol.83(6), 410–413 (2003).
[CrossRef] [PubMed]

Rawlings, A. V.

A. V. Rawlings and C. R. Harding, “Moisturization and skin barrier function,” Dermatol. Ther.17(s1Suppl 1), 43–48 (2004).
[CrossRef] [PubMed]

Rehn, S.

S. Rehn, A. Planat-Chrétien, M. Berger, J. Dinten, C. Deumié, and A. da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
[CrossRef]

Roy, M.

M. Roy, P. Svahn, L. Cherel, and C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Lasers Eng.37(6), 631–641 (2002).
[CrossRef]

Sand, M.

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J. Eur. Acad. Dermatol. Venereol.20(7), 791–795 (2006).
[PubMed]

Sandby-Møller, J.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol.83(6), 410–413 (2003).
[CrossRef] [PubMed]

Sheppard, C. J. R.

M. Roy, P. Svahn, L. Cherel, and C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Lasers Eng.37(6), 631–641 (2002).
[CrossRef]

So, P. T. C.

C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004).
[CrossRef] [PubMed]

Stücker, M.

T. Gambichler, K. Valavanis, I. Plura, D. Georgas, P. Kampilafkos, and M. Stücker, “In vivo determination of epidermal thickness using high-definition optical coherence tomography,” Br. J. Dermatol.170(3), 737–739 (2014).
[CrossRef] [PubMed]

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J. Eur. Acad. Dermatol. Venereol.20(7), 791–795 (2006).
[PubMed]

Suetake, T.

Z. Ya-Xian, T. Suetake, and H. Tagami, “Number of cell layers of the stratum corneum in normal skin - relationship to the anatomical location on the body, age, sex and physical parameters,” Arch. Dermatol. Res.291(10), 555–559 (1999).
[CrossRef] [PubMed]

Sullivan, M. E.

M. S. Wu, D. J. Yee, and M. E. Sullivan, “Effect of a skin moisturizer on the water distribution in human stratum corneum,” J. Invest. Dermatol.81(5), 446–448 (1983).
[CrossRef] [PubMed]

Sun, C. K.

Sun, E.

Svahn, P.

M. Roy, P. Svahn, L. Cherel, and C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Lasers Eng.37(6), 631–641 (2002).
[CrossRef]

Tagami, H.

Z. Ya-Xian, T. Suetake, and H. Tagami, “Number of cell layers of the stratum corneum in normal skin - relationship to the anatomical location on the body, age, sex and physical parameters,” Arch. Dermatol. Res.291(10), 555–559 (1999).
[CrossRef] [PubMed]

Takahashi, M.

M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopy,” Acta Derm. Venereol.87(1), 4–8 (2007).
[CrossRef] [PubMed]

Tearney, G. J.

Tsai, C. C.

Tsai, M. K.

Tsai, M. R.

Tu, S. Y.

Vabre, L.

Valavanis, K.

T. Gambichler, K. Valavanis, I. Plura, D. Georgas, P. Kampilafkos, and M. Stücker, “In vivo determination of epidermal thickness using high-definition optical coherence tomography,” Br. J. Dermatol.170(3), 737–739 (2014).
[CrossRef] [PubMed]

Wang, P. H.

Wang, Y. T.

Wei, C. K.

Welzel, J.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37(6), 958–963 (1997).
[CrossRef] [PubMed]

Wilhelm, K. P.

A. Böhling, S. Bielfeldt, A. Himmelmann, M. Keskin, and K. P. Wilhelm, “Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy,” Skin Res. Technol.20(1), 50–57 (2014).
[CrossRef] [PubMed]

Wilson, T.

Wu, M. S.

M. S. Wu, D. J. Yee, and M. E. Sullivan, “Effect of a skin moisturizer on the water distribution in human stratum corneum,” J. Invest. Dermatol.81(5), 446–448 (1983).
[CrossRef] [PubMed]

Wulf, H. C.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol.83(6), 410–413 (2003).
[CrossRef] [PubMed]

Ya-Xian, Z.

Z. Ya-Xian, T. Suetake, and H. Tagami, “Number of cell layers of the stratum corneum in normal skin - relationship to the anatomical location on the body, age, sex and physical parameters,” Arch. Dermatol. Res.291(10), 555–559 (1999).
[CrossRef] [PubMed]

Yee, D. J.

M. S. Wu, D. J. Yee, and M. E. Sullivan, “Effect of a skin moisturizer on the water distribution in human stratum corneum,” J. Invest. Dermatol.81(5), 446–448 (1983).
[CrossRef] [PubMed]

Yoon, J. H.

Yu, B.

C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004).
[CrossRef] [PubMed]

Acta Derm. Venereol.

M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopy,” Acta Derm. Venereol.87(1), 4–8 (2007).
[CrossRef] [PubMed]

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol.83(6), 410–413 (2003).
[CrossRef] [PubMed]

Appl. Opt.

Arch. Dermatol. Res.

Z. Ya-Xian, T. Suetake, and H. Tagami, “Number of cell layers of the stratum corneum in normal skin - relationship to the anatomical location on the body, age, sex and physical parameters,” Arch. Dermatol. Res.291(10), 555–559 (1999).
[CrossRef] [PubMed]

Biomed. Opt. Express

Br. J. Dermatol.

T. Gambichler, K. Valavanis, I. Plura, D. Georgas, P. Kampilafkos, and M. Stücker, “In vivo determination of epidermal thickness using high-definition optical coherence tomography,” Br. J. Dermatol.170(3), 737–739 (2014).
[CrossRef] [PubMed]

Dermatol. Ther.

A. V. Rawlings and C. R. Harding, “Moisturization and skin barrier function,” Dermatol. Ther.17(s1Suppl 1), 43–48 (2004).
[CrossRef] [PubMed]

FASEB J.

G. E. Costin and V. J. Hearing, “Human skin pigmentation: melanocytes modulate skin color in response to stress,” FASEB J.21(4), 976–994 (2007).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett.

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:Sapphire crystal-fiber-based broadband light source,” IEEE Photon. Technol. Lett.24, 854–856 (2012).

Int. J. Cosmet. Sci.

A. J. Byrne, “Bioengineering and subjective approaches to the clinical evaluation of dry skin,” Int. J. Cosmet. Sci.32(6), 410–421 (2010).
[CrossRef] [PubMed]

Intravital

K. König, “Hybrid multiphoton multimodal tomography of in vivo human skin,” Intravital1(1), 11–26 (2012).
[CrossRef]

J. Am. Acad. Dermatol.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37(6), 958–963 (1997).
[CrossRef] [PubMed]

J. Eur. Acad. Dermatol. Venereol.

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J. Eur. Acad. Dermatol. Venereol.20(7), 791–795 (2006).
[PubMed]

J. Invest. Dermatol.

M. S. Wu, D. J. Yee, and M. E. Sullivan, “Effect of a skin moisturizer on the water distribution in human stratum corneum,” J. Invest. Dermatol.81(5), 446–448 (1983).
[CrossRef] [PubMed]

K. A. Holbrook and G. F. Odland, “Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis,” J. Invest. Dermatol.62(4), 415–422 (1974).
[CrossRef] [PubMed]

Microsc. Res. Tech.

C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lasers Eng.

M. Roy, P. Svahn, L. Cherel, and C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Lasers Eng.37(6), 631–641 (2002).
[CrossRef]

Opt. Lett.

C. C. Tsai, Y. S. Lin, S. C. Pei, C. K. Chang, T. H. Chen, N. C. Cheng, M. K. Tsai, C. C. Lai, W. Y. Li, C. K. Wei, and S. L. Huang, “Microstructural and microspectral characterization of a vertically aligned liquid crystal display panel,” Opt. Lett.36(4), 567–569 (2011).
[CrossRef] [PubMed]

W. J. Choi, K. S. Park, T. J. Eom, M. K. Oh, and B. H. Lee, “Tomographic imaging of a suspending single live cell using optical tweezer-combined full-field optical coherence tomography,” Opt. Lett.37(14), 2784–2786 (2012).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997).
[CrossRef] [PubMed]

G. Moneron, A. C. Boccara, and A. Dubois, “Stroboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett.30(11), 1351–1353 (2005).
[CrossRef] [PubMed]

C. C. Tsai, T. H. Chen, Y. S. Lin, Y. T. Wang, W. Chang, K. Y. Hsu, Y. H. Chang, P. K. Hsu, D. Y. Jheng, K. Y. Huang, E. Sun, and S. L. Huang, “Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Opt. Lett.35(6), 811–813 (2010).
[CrossRef] [PubMed]

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett.27(7), 530–532 (2002).
[CrossRef] [PubMed]

C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett.29(5), 439–441 (2004).
[CrossRef] [PubMed]

Pigment Cell Res.

S. Kippenberger, A. Brend, J. Bereiter-Hahn, A. R. Bosca, and R. Kaufmann, “The mechanism of melanocyte dendrite formation: the impact of differentiating keratinocyte,” Pigment Cell Res.11, 34–37 (1998).

Proc. SPIE

S. Rehn, A. Planat-Chrétien, M. Berger, J. Dinten, C. Deumié, and A. da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
[CrossRef]

E. Dalimier, A. Bruhat, K. Grieve, F. Harms, F. Martins, and A. C. Boccara, “High resolution in-vivo imaging of skin with full field optical coherence tomography,” Proc. SPIE8926, 8926P (2014).

Skin Res. Technol.

A. Böhling, S. Bielfeldt, A. Himmelmann, M. Keskin, and K. P. Wilhelm, “Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy,” Skin Res. Technol.20(1), 50–57 (2014).
[CrossRef] [PubMed]

Other

M. Geerligs, Skin Layer Mechanics (Koninklijke Philips Electronics N.V., 2009).

C. C. K. Tsai, C. K. Chang, K. Y. Hsu, T. S. Ho, Y. T. Wang, M. Y. Lin, J. W. Tjiu, and S. L. Huang, “In vivo 3-D cellular level imaging using Mirau-based full-field optical coherence tomography on skin tissue,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2014), BW4A.2.

Supplementary Material (3)

» Media 1: AVI (3073 KB)     
» Media 2: AVI (4011 KB)     
» Media 3: AVI (1697 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The cross-sectional image (natural logarithmic gray level, 8-bit filtered by Image J) of excised buttock (55-year-old, female) and (b) the corresponding anatomical sketch of skin tissue. In between (a) and (b) shows the corresponding layers. The white arrow indicates the nucleus of stratum spinosum. (c) shows the in vivo cross-sectional image of the forearm skin (35-year-old, male), where yellow and blue arrows indicate the dermis-epidermis junction and blood vessel, respectively. The green arrow heads mark the boundaries of SC. In (a), the SC is much thicker than that of (c) because of z-axial expansion induced by water hydration. In (c), 58% glycerin was used as the index-matching liquid between in vivo human skin and CG. In (a)-(c), red arrows are the boundaries between CGs and index-matching liquids. (d) shows the en face image of (c) at a depth of 46 μm (position of pink dash-dot line in (c)). In (d), the purple arrows point to the melanocyte along its dendrites, traced from melanin caps of the shallower en face images. The white spots in (c) and (d) pointed by orange arrows are the melanin caps. Media 1 and Media 2 respectively show the positional scans of cross-sectional and en face planes correspondingly for (c) and (d) from a 3-D image stack. (e) shows the oblique view of 3-D image of in vivo human skin. The scale bars are all 15 μm. The incident power onto the sample and the CCD exposure time from 3-D stack are 5 mW and 210 μs. To compare (a) with (c), in vivo skin tissue can provide active morphological information, like exact LPs of SC, melanin caps, and dynamically flowing of red blood cells (see Media 2).

Fig. 2
Fig. 2

(a) Experimental setup of the Mirau-based FF-OCT. LD: 445-nm laser diode; CM1 and CM2: collimating and focusing modules; SCF: single-clad crystal fiber; MMF: multi-mode fiber; L1: 20 × objective lens (NA: 0.4); LWPF: optical long-wave-pass filter; BPCB: broadband polarizing cubic beamsplitter; M: mirror; AQWP: achromatic quarter wave plate; PZT: piezo-electric transducer; L2: home-designed Mirau objective; S: sample; CG: cover glass; LS: transversally moved linear stage; L3: tube lens (focal length: 15 cm); CCD: charge-coupled device camera. In (a), green arrows show the polarization states. (b) The schematic illustration of L2. OL: 40 × silicone-oil-immersion objective; GP1 and GP2: first and second glass plates; BBC: broadband beamsplitter coating; RC: reflection coating; RH: ring holder; B: 500-μm-diameter black absorber (n = 1.48); nwater and noil: refractive indices of water and silicone oil. (c) The emission spectrum of Ce3+:YAG SCF, where the inset shows the end view of SCF. (d) and (e) show the optical path difference and the lateral scanning in water, which reveal the axial and transversal resolutions in water are respectively 0.91 and 0.56 μm. The inset of (e) is a straight broken glass plate imaged by the FF-OCT, to find the transversal resolution, where the interval between two red solid circles is 0.225 μm (CCD pixel resolution).

Fig. 3
Fig. 3

(a) The magnified carrier signal measured by the Mirau-based FF-OCT. In (a), red and green markers are respectively the averaged intensities of N/P = 3 and 4; whereas, red and greed lines depict the interval separations. (b) The calculated envelopes in linear scale using Eq. (2) by N/P = 3, 4, 39, 156, and Hilbert transform after using a band-pass filter, respectively. The inset shows the envelopes in logarithmic scale, where the noise floors of N/P = 3, 4, and the sequential raw signal with Hilbert transform after the band-pass filter are very close.

Fig. 4
Fig. 4

Cross-sectional images of an excised tissue from buttock (54-year-old, female). (a) and (b) are the single-trip en face (depth = 60 μm) and cross-sectional (y = 80 μm) 8-bit-depth images (with nature logarithm scale processed by ImageJ) at a 3-D volume measurement time of 2 minutes. (c) and (d) are images at the same positions of (a) and (b) with an average after 10 scans. Media 3 shows the en face variances at different depths of (c). The incident powers on sample and CCD exposure time of (a)-(d) are 460 μW and 3.1 ms. In (d), yellow arrows indicate the basal cells and blue arrow points out the microvessel. The physical interval between two en face images is about 0.19 μm. (a) and (c) are the en face images respectively located at the positions of pink dash-dot lines correspondingly in (b) and (d). In (a)-(d), all the scale bars are 20 μm. (e) The intensity profiles (gray and red curves) in 10log scale along gray and red dash-dot arrows of (b) and (d), respectively. After 10 averages, the noise level is improved by 2.15 dB, which is less than the theoretical estimation of 3.16 dB.

Fig. 5
Fig. 5

Images of isolated SC from excised buttock sample. (a)-(d) are the cross-sectional images in x-z planes at the corresponding positions of y = 45, 56.25, 67.5, and 78.75 μm from 3-D en face stack. Red and yellow arrows respectively refer to the wrinkles and the hollow cavities of the sample. The scale bars are all 15 μm. (e) The cross-line profile of (a) along white dash-dot arrow, where red points and blue dash line are separately peak values and set threshold of the intensity profile. The interval between two nearest peaks means a CLT. The number of CLT is NOL. The interval between first and last peaks means TT. Ith is the intensity threshold between signal spikes and noise floor.

Tables (1)

Tables Icon

Table 1 LPs with standard deviations for the isolated SC from Fig. 5 with deducting 40% water hydration.

Metrics