Abstract

The spatial sensitivities of NIRO-100, ISS Oximeter and TRS-20 cerebral oxygenation monitors are mapped using the local perturbation method to inform on their penetration depths and susceptibilities to superficial contaminations. The results show that TRS-20 has the deepest mean penetration depth and is less sensitive than the other monitors to a localized absorption change in the superficial layer. However, an integration time of more than five seconds is required by the TRS-20 to achieve an acceptable level of signal-to-noise ratio, which is the poorest amongst the monitors. With the exception of NIRO-100 continuous wave method, the monitors are not significantly responsive to layer-wide absorption change that occurs in the superficial layer.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
    [CrossRef] [PubMed]
  2. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63(2), 921–935 (2012).
    [CrossRef] [PubMed]
  3. S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
    [CrossRef] [PubMed]
  4. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage85(Pt 1), 6–27 (2014).
    [CrossRef] [PubMed]
  5. C. E. Elwell and C. E. Cooper, “Making light work: Illuminating the future of biomedical optics,” Philos. Trans. R. Soc., A369(1955), 4358–4379 (2011).
    [CrossRef] [PubMed]
  6. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage85(Pt 1), 28–50 (2014).
    [CrossRef] [PubMed]
  7. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt.42(16), 2915–2922 (2003).
    [CrossRef] [PubMed]
  8. D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt.44(10), 1957–1968 (2005).
    [CrossRef] [PubMed]
  9. E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
    [CrossRef] [PubMed]
  10. S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).
    [CrossRef]
  11. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
    [CrossRef] [PubMed]
  12. S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE3597, 582–592 (1999).
    [CrossRef]
  13. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28(12), 2331–2336 (1989).
    [CrossRef] [PubMed]
  14. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
    [CrossRef] [PubMed]
  15. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: Approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(Suppl 1), S275–S288 (2004).
    [CrossRef] [PubMed]
  16. W. Cui, C. Kumar, and B. Chance, “Experimental study of migration depth for the photons measured at sample surface,” Proc. SPIE1431, 180–191 (1991).
    [CrossRef]
  17. N. C. Bruce, “Experimental study of the effect of absorbing and transmitting inclusions in highly scattering media,” Appl. Opt.33(28), 6692–6698 (1994).
    [CrossRef] [PubMed]
  18. A. V. Patil, J. Safaie, H. A. Moghaddam, F. Wallois, and R. Grebe, “Experimental investigation of NIRS spatial sensitivity,” Biomed. Opt. Express2(6), 1478–1493 (2011).
    [CrossRef] [PubMed]
  19. T. Vaithianathan, I. D. C. Tullis, N. Everdell, T. Leung, A. Gibson, J. Meek, and D. T. Delpy, “Design of a portable near infrared system for topographic imaging of the brain in babies,” Rev. Sci. Instrum.75(10), 3276–3283 (2004).
    [CrossRef]
  20. S. Gunadi and T. S. Leung, “Spatial Sensitivity of Acousto-Optic and Optical Near-Infrared Spectroscopy Sensing Measurements,” J. Biomed. Opt.16(12), 127005 (2011).
    [CrossRef] [PubMed]
  21. S. R. Arridge, “Photon-measurement density functions. Part I: Analytical forms,” Appl. Opt.34(31), 7395–7409 (1995).
    [CrossRef] [PubMed]
  22. L. H. Wang, S. L. Jacques, and X. M. Zhao, “Continuous-Wave Ultrasonic Modulation of Scattered Laser Light to Image Objects in Turbid Media,” Opt. Lett.20(6), 629–631 (1995).
    [CrossRef] [PubMed]
  23. S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: Theoretical and experimental investigation,” Phys. Med. Biol.47(23), 4131–4144 (2002).
    [CrossRef] [PubMed]
  24. S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
    [CrossRef]
  25. M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near-infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE4160, 204–210 (2000).
    [CrossRef]
  26. K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol.25(3), 248–253 (2013).
    [CrossRef] [PubMed]
  27. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
    [CrossRef] [PubMed]
  28. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  29. M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol.40(5), 955–961 (1995).
    [CrossRef] [PubMed]
  30. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
    [CrossRef] [PubMed]
  31. S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol.39(1), 177–196 (1994).
    [CrossRef] [PubMed]
  32. Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
    [PubMed]
  33. K. Suzuki, Y. Yamashita, K. Ohta, and B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary in vivo results,” Invest. Radiol.29(4), 410–414 (1994).
    [CrossRef] [PubMed]
  34. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
    [CrossRef] [PubMed]
  35. E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
    [CrossRef] [PubMed]
  36. T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt.15(5), 056002 (2010).
    [CrossRef] [PubMed]
  37. L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express4(12), 2893–2910 (2013).
    [CrossRef] [PubMed]
  38. L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage85(Pt 1), 127–135 (2014).
    [CrossRef] [PubMed]
  39. P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke32(11), 2492–2500 (2001).
    [CrossRef] [PubMed]
  40. S. Powell and T. S. Leung, “Highly parallel Monte-Carlo simulations of the acousto-optic effect in heterogeneous turbid media,” J. Biomed. Opt.17(4), 045002 (2012).
    [CrossRef] [PubMed]
  41. J. C. Hebden and S. R. Arridge, “Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain,” Appl. Opt.35(34), 6788–6796 (1996).
    [CrossRef] [PubMed]
  42. A. Knüttel, J. M. Schmitt, and J. R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon-density waves,” Appl. Opt.32(4), 381–389 (1993).
    [CrossRef] [PubMed]
  43. L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
    [CrossRef] [PubMed]
  44. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
    [CrossRef] [PubMed]
  45. R. Esposito, F. Martelli, and S. De Nicola, “Closed-form solution of the steady-state photon diffusion equation in the presence of absorbing inclusions,” Opt. Lett.39(4), 826–829 (2014).
    [CrossRef] [PubMed]
  46. A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express5(5), 1465–1482 (2014).
    [CrossRef] [PubMed]
  47. G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002).
    [CrossRef] [PubMed]
  48. T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage29(2), 368–382 (2006).
    [CrossRef] [PubMed]
  49. J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt.19(1), 016010 (2014).
    [CrossRef] [PubMed]
  50. L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt.13(5), 054019 (2008).
    [CrossRef] [PubMed]

2014 (6)

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage85(Pt 1), 6–27 (2014).
[CrossRef] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage85(Pt 1), 28–50 (2014).
[CrossRef] [PubMed]

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage85(Pt 1), 127–135 (2014).
[CrossRef] [PubMed]

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt.19(1), 016010 (2014).
[CrossRef] [PubMed]

R. Esposito, F. Martelli, and S. De Nicola, “Closed-form solution of the steady-state photon diffusion equation in the presence of absorbing inclusions,” Opt. Lett.39(4), 826–829 (2014).
[CrossRef] [PubMed]

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express5(5), 1465–1482 (2014).
[CrossRef] [PubMed]

2013 (2)

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express4(12), 2893–2910 (2013).
[CrossRef] [PubMed]

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol.25(3), 248–253 (2013).
[CrossRef] [PubMed]

2012 (3)

S. Powell and T. S. Leung, “Highly parallel Monte-Carlo simulations of the acousto-optic effect in heterogeneous turbid media,” J. Biomed. Opt.17(4), 045002 (2012).
[CrossRef] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63(2), 921–935 (2012).
[CrossRef] [PubMed]

2011 (4)

C. E. Elwell and C. E. Cooper, “Making light work: Illuminating the future of biomedical optics,” Philos. Trans. R. Soc., A369(1955), 4358–4379 (2011).
[CrossRef] [PubMed]

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
[PubMed]

S. Gunadi and T. S. Leung, “Spatial Sensitivity of Acousto-Optic and Optical Near-Infrared Spectroscopy Sensing Measurements,” J. Biomed. Opt.16(12), 127005 (2011).
[CrossRef] [PubMed]

A. V. Patil, J. Safaie, H. A. Moghaddam, F. Wallois, and R. Grebe, “Experimental investigation of NIRS spatial sensitivity,” Biomed. Opt. Express2(6), 1478–1493 (2011).
[CrossRef] [PubMed]

2010 (2)

T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt.15(5), 056002 (2010).
[CrossRef] [PubMed]

S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
[CrossRef] [PubMed]

2008 (1)

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt.13(5), 054019 (2008).
[CrossRef] [PubMed]

2007 (1)

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

2006 (3)

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage29(2), 368–382 (2006).
[CrossRef] [PubMed]

2005 (3)

D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt.44(10), 1957–1968 (2005).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

2004 (2)

T. Vaithianathan, I. D. C. Tullis, N. Everdell, T. Leung, A. Gibson, J. Meek, and D. T. Delpy, “Design of a portable near infrared system for topographic imaging of the brain in babies,” Rev. Sci. Instrum.75(10), 3276–3283 (2004).
[CrossRef]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: Approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (2)

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: Theoretical and experimental investigation,” Phys. Med. Biol.47(23), 4131–4144 (2002).
[CrossRef] [PubMed]

2001 (1)

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke32(11), 2492–2500 (2001).
[CrossRef] [PubMed]

2000 (1)

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near-infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE4160, 204–210 (2000).
[CrossRef]

1999 (2)

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE3597, 582–592 (1999).
[CrossRef]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

1996 (1)

1995 (6)

S. R. Arridge, “Photon-measurement density functions. Part I: Analytical forms,” Appl. Opt.34(31), 7395–7409 (1995).
[CrossRef] [PubMed]

L. H. Wang, S. L. Jacques, and X. M. Zhao, “Continuous-Wave Ultrasonic Modulation of Scattered Laser Light to Image Objects in Turbid Media,” Opt. Lett.20(6), 629–631 (1995).
[CrossRef] [PubMed]

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol.40(5), 955–961 (1995).
[CrossRef] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).
[CrossRef]

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
[CrossRef]

1994 (3)

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol.39(1), 177–196 (1994).
[CrossRef] [PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, and B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary in vivo results,” Invest. Radiol.29(4), 410–414 (1994).
[CrossRef] [PubMed]

N. C. Bruce, “Experimental study of the effect of absorbing and transmitting inclusions in highly scattering media,” Appl. Opt.33(28), 6692–6698 (1994).
[CrossRef] [PubMed]

1993 (1)

1992 (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

1991 (2)

1989 (1)

1988 (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Al-Rawi, P. G.

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke32(11), 2492–2500 (2001).
[CrossRef] [PubMed]

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Arridge, S. R.

Barbieri, B. B.

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).
[CrossRef]

Blasi, A.

S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
[CrossRef] [PubMed]

Boas, D. A.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt.19(1), 016010 (2014).
[CrossRef] [PubMed]

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage85(Pt 1), 127–135 (2014).
[CrossRef] [PubMed]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt.13(5), 054019 (2008).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage29(2), 368–382 (2006).
[CrossRef] [PubMed]

D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt.44(10), 1957–1968 (2005).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: Approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002).
[CrossRef] [PubMed]

Bruce, N. C.

Brühl, R.

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express5(5), 1465–1482 (2014).
[CrossRef] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Caffini, M.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage85(Pt 1), 28–50 (2014).
[CrossRef] [PubMed]

Chance, B.

K. Suzuki, Y. Yamashita, K. Ohta, and B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary in vivo results,” Invest. Radiol.29(4), 410–414 (1994).
[CrossRef] [PubMed]

W. Cui, C. Kumar, and B. Chance, “Experimental study of migration depth for the photons measured at sample surface,” Proc. SPIE1431, 180–191 (1991).
[CrossRef]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

Clemence, M.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

Contini, D.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage85(Pt 1), 28–50 (2014).
[CrossRef] [PubMed]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express4(12), 2893–2910 (2013).
[CrossRef] [PubMed]

Cooper, C. E.

C. E. Elwell and C. E. Cooper, “Making light work: Illuminating the future of biomedical optics,” Philos. Trans. R. Soc., A369(1955), 4358–4379 (2011).
[CrossRef] [PubMed]

Cooper, R. J.

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage85(Pt 1), 127–135 (2014).
[CrossRef] [PubMed]

Cope, M.

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
[CrossRef]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol.39(1), 177–196 (1994).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Correia, T.

T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt.15(5), 056002 (2010).
[CrossRef] [PubMed]

Cubeddu, R.

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Cui, W.

W. Cui, C. Kumar, and B. Chance, “Experimental study of migration depth for the photons measured at sample surface,” Proc. SPIE1431, 180–191 (1991).
[CrossRef]

Culver, J. P.

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002).
[CrossRef] [PubMed]

Dale, A. M.

D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt.44(10), 1957–1968 (2005).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: Approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

De Nicola, S.

Del Bianco, S.

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: Theoretical and experimental investigation,” Phys. Med. Biol.47(23), 4131–4144 (2002).
[CrossRef] [PubMed]

Delpy, D. T.

T. Vaithianathan, I. D. C. Tullis, N. Everdell, T. Leung, A. Gibson, J. Meek, and D. T. Delpy, “Design of a portable near infrared system for topographic imaging of the brain in babies,” Rev. Sci. Instrum.75(10), 3276–3283 (2004).
[CrossRef]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt.42(16), 2915–2922 (2003).
[CrossRef] [PubMed]

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
[CrossRef]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol.40(5), 955–961 (1995).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol.39(1), 177–196 (1994).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Diamond, S. G.

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage29(2), 368–382 (2006).
[CrossRef] [PubMed]

Dubb, J.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt.19(1), 016010 (2014).
[CrossRef] [PubMed]

Duncan, A.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

Elwell, C. E.

C. E. Elwell and C. E. Cooper, “Making light work: Illuminating the future of biomedical optics,” Philos. Trans. R. Soc., A369(1955), 4358–4379 (2011).
[CrossRef] [PubMed]

S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
[CrossRef] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

Esposito, R.

Everdell, N.

T. Vaithianathan, I. D. C. Tullis, N. Everdell, T. Leung, A. Gibson, J. Meek, and D. T. Delpy, “Design of a portable near infrared system for topographic imaging of the brain in babies,” Rev. Sci. Instrum.75(10), 3276–3283 (2004).
[CrossRef]

Fang, Q.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt.19(1), 016010 (2014).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).
[CrossRef]

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63(2), 921–935 (2012).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Firbank, M.

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol.40(5), 955–961 (1995).
[CrossRef] [PubMed]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Franceschini, M. A.

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage29(2), 368–382 (2006).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: Approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Franceschini, M.-A.

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).
[CrossRef]

Futatsubashi, M.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Gagnon, L.

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage85(Pt 1), 127–135 (2014).
[CrossRef] [PubMed]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt.13(5), 054019 (2008).
[CrossRef] [PubMed]

Gauthier, C.

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt.13(5), 054019 (2008).
[CrossRef] [PubMed]

Gibson, A.

T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt.15(5), 056002 (2010).
[CrossRef] [PubMed]

T. Vaithianathan, I. D. C. Tullis, N. Everdell, T. Leung, A. Gibson, J. Meek, and D. T. Delpy, “Design of a portable near infrared system for topographic imaging of the brain in babies,” Rev. Sci. Instrum.75(10), 3276–3283 (2004).
[CrossRef]

Gratton, E.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).
[CrossRef]

Grebe, R.

Gunadi, S.

S. Gunadi and T. S. Leung, “Spatial Sensitivity of Acousto-Optic and Optical Near-Infrared Spectroscopy Sensing Measurements,” J. Biomed. Opt.16(12), 127005 (2011).
[CrossRef] [PubMed]

Hebden, J.

T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt.15(5), 056002 (2010).
[CrossRef] [PubMed]

Hebden, J. C.

Heine, A.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Hirano, I.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near-infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE4160, 204–210 (2000).
[CrossRef]

Hoge, R. D.

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt.13(5), 054019 (2008).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage29(2), 368–382 (2006).
[CrossRef] [PubMed]

Hueber, D.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Huppert, T. J.

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage29(2), 368–382 (2006).
[CrossRef] [PubMed]

Iihara, K.

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol.25(3), 248–253 (2013).
[CrossRef] [PubMed]

Ima, E.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
[PubMed]

Inatomi, Y.

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol.25(3), 248–253 (2013).
[CrossRef] [PubMed]

Irie, T.

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol.25(3), 248–253 (2013).
[CrossRef] [PubMed]

Ittermann, B.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Jacobs, A. M.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Jacques, S. L.

L. H. Wang, S. L. Jacques, and X. M. Zhao, “Continuous-Wave Ultrasonic Modulation of Scattered Laser Light to Image Objects in Turbid Media,” Opt. Lett.20(6), 629–631 (1995).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Jelzow, A.

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express5(5), 1465–1482 (2014).
[CrossRef] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Kanno, T.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Kirilina, E.

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express5(5), 1465–1482 (2014).
[CrossRef] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Kirkpatrick, P. J.

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke32(11), 2492–2500 (2001).
[CrossRef] [PubMed]

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
[CrossRef]

Kleiser, S.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage85(Pt 1), 6–27 (2014).
[CrossRef] [PubMed]

Knutson, J. R.

Knüttel, A.

Kobayashi, Y.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE3597, 582–592 (1999).
[CrossRef]

Kumar, C.

W. Cui, C. Kumar, and B. Chance, “Experimental study of migration depth for the photons measured at sample surface,” Proc. SPIE1431, 180–191 (1991).
[CrossRef]

Kuwajima, K.

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol.25(3), 248–253 (2013).
[CrossRef] [PubMed]

Lesage, F.

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt.13(5), 054019 (2008).
[CrossRef] [PubMed]

Leung, T.

T. Vaithianathan, I. D. C. Tullis, N. Everdell, T. Leung, A. Gibson, J. Meek, and D. T. Delpy, “Design of a portable near infrared system for topographic imaging of the brain in babies,” Rev. Sci. Instrum.75(10), 3276–3283 (2004).
[CrossRef]

Leung, T. S.

S. Powell and T. S. Leung, “Highly parallel Monte-Carlo simulations of the acousto-optic effect in heterogeneous turbid media,” J. Biomed. Opt.17(4), 045002 (2012).
[CrossRef] [PubMed]

S. Gunadi and T. S. Leung, “Spatial Sensitivity of Acousto-Optic and Optical Near-Infrared Spectroscopy Sensing Measurements,” J. Biomed. Opt.16(12), 127005 (2011).
[CrossRef] [PubMed]

Lloyd-Fox, S.

S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
[CrossRef] [PubMed]

Macdonald, R.

Maier, J. S.

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).
[CrossRef]

Martelli, F.

R. Esposito, F. Martelli, and S. De Nicola, “Closed-form solution of the steady-state photon diffusion equation in the presence of absorbing inclusions,” Opt. Lett.39(4), 826–829 (2014).
[CrossRef] [PubMed]

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: Theoretical and experimental investigation,” Phys. Med. Biol.47(23), 4131–4144 (2002).
[CrossRef] [PubMed]

Mata Pavia, J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage85(Pt 1), 6–27 (2014).
[CrossRef] [PubMed]

Matcher, S. J.

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
[CrossRef]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol.39(1), 177–196 (1994).
[CrossRef] [PubMed]

Maulik, D.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Meek, J.

T. Vaithianathan, I. D. C. Tullis, N. Everdell, T. Leung, A. Gibson, J. Meek, and D. T. Delpy, “Design of a portable near infrared system for topographic imaging of the brain in babies,” Rev. Sci. Instrum.75(10), 3276–3283 (2004).
[CrossRef]

Meek, J. H.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

Metz, A. J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage85(Pt 1), 6–27 (2014).
[CrossRef] [PubMed]

Miyazaki, A.

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol.25(3), 248–253 (2013).
[CrossRef] [PubMed]

Moes, C. J. M.

Moghaddam, H. A.

Nahid, K.

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
[CrossRef]

Nakano, T.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near-infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE4160, 204–210 (2000).
[CrossRef]

Nasu, H.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
[PubMed]

Niessing, M.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Nobesawa, S.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Oda, M.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
[PubMed]

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near-infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE4160, 204–210 (2000).
[CrossRef]

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol.40(5), 955–961 (1995).
[CrossRef] [PubMed]

Ogden, T. M.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt.19(1), 016010 (2014).
[CrossRef] [PubMed]

Ogura, H.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
[PubMed]

Ohmae, E.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
[PubMed]

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near-infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE4160, 204–210 (2000).
[CrossRef]

Ohnishi, Y.

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol.25(3), 248–253 (2013).
[CrossRef] [PubMed]

Ohta, K.

K. Suzuki, Y. Yamashita, K. Ohta, and B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary in vivo results,” Invest. Radiol.29(4), 410–414 (1994).
[CrossRef] [PubMed]

Okada, E.

Okada, H.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Ouchi, Y.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Ozaki, T.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE3597, 582–592 (1999).
[CrossRef]

Patil, A. V.

Patterson, M. S.

Pifferi, A.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage85(Pt 1), 28–50 (2014).
[CrossRef] [PubMed]

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Powell, S.

S. Powell and T. S. Leung, “Highly parallel Monte-Carlo simulations of the acousto-optic effect in heterogeneous turbid media,” J. Biomed. Opt.17(4), 045002 (2012).
[CrossRef] [PubMed]

Prahl, S. A.

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63(2), 921–935 (2012).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Re, R.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage85(Pt 1), 28–50 (2014).
[CrossRef] [PubMed]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express4(12), 2893–2910 (2013).
[CrossRef] [PubMed]

Rosenfeld, W.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Safaie, J.

Sakahara, H.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
[PubMed]

Schmitt, J. M.

Scholkmann, F.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage85(Pt 1), 6–27 (2014).
[CrossRef] [PubMed]

Selb, J.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt.19(1), 016010 (2014).
[CrossRef] [PubMed]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt.13(5), 054019 (2008).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

Shimizu, K.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near-infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE4160, 204–210 (2000).
[CrossRef]

Shimomura, F.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near-infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE4160, 204–210 (2000).
[CrossRef]

Smielewski, P.

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke32(11), 2492–2500 (2001).
[CrossRef] [PubMed]

Sorensen, A. G.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

Spinelli, L.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage85(Pt 1), 28–50 (2014).
[CrossRef] [PubMed]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express4(12), 2893–2910 (2013).
[CrossRef] [PubMed]

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Stankovic, M. R.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Stott, J. J.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

Strangman, G.

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002).
[CrossRef] [PubMed]

Stubblefield, P. G.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Suzuki, A.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near-infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE4160, 204–210 (2000).
[CrossRef]

Suzuki, K.

K. Suzuki, Y. Yamashita, K. Ohta, and B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary in vivo results,” Invest. Radiol.29(4), 410–414 (1994).
[CrossRef] [PubMed]

Suzuki, S.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE3597, 582–592 (1999).
[CrossRef]

Suzuki, T.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
[PubMed]

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near-infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE4160, 204–210 (2000).
[CrossRef]

Tachtsidis, I.

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express5(5), 1465–1482 (2014).
[CrossRef] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Takasaki, S.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE3597, 582–592 (1999).
[CrossRef]

Teruya, C.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
[PubMed]

Thompson, J. H.

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002).
[CrossRef] [PubMed]

Torricelli, A.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage85(Pt 1), 28–50 (2014).
[CrossRef] [PubMed]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express4(12), 2893–2910 (2013).
[CrossRef] [PubMed]

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Tsuchiya, Y.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near-infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE4160, 204–210 (2000).
[CrossRef]

Tullis, I. D. C.

T. Vaithianathan, I. D. C. Tullis, N. Everdell, T. Leung, A. Gibson, J. Meek, and D. T. Delpy, “Design of a portable near infrared system for topographic imaging of the brain in babies,” Rev. Sci. Instrum.75(10), 3276–3283 (2004).
[CrossRef]

Tyszczuk, L.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

Ueda, Y.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
[PubMed]

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Vaithianathan, T.

T. Vaithianathan, I. D. C. Tullis, N. Everdell, T. Leung, A. Gibson, J. Meek, and D. T. Delpy, “Design of a portable near infrared system for topographic imaging of the brain in babies,” Rev. Sci. Instrum.75(10), 3276–3283 (2004).
[CrossRef]

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

van Gemert, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
[CrossRef] [PubMed]

van Marie, J.

van Staveren, H. J.

Wabnitz, H.

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express5(5), 1465–1482 (2014).
[CrossRef] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Walker, S. A.

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).
[CrossRef]

Wallois, F.

Wang, L. H.

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

Wolf, M.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage85(Pt 1), 6–27 (2014).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Wolf, U.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage85(Pt 1), 6–27 (2014).
[CrossRef] [PubMed]

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Yamanaka, T.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
[PubMed]

Yamashita, D.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
[PubMed]

Yamashita, Y.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
[PubMed]

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near-infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE4160, 204–210 (2000).
[CrossRef]

K. Suzuki, Y. Yamashita, K. Ohta, and B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary in vivo results,” Invest. Radiol.29(4), 410–414 (1994).
[CrossRef] [PubMed]

Yoshikawa, E.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Yoshimoto, K.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
[PubMed]

Yoshitani, K.

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol.25(3), 248–253 (2013).
[CrossRef] [PubMed]

Yücel, M. A.

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage85(Pt 1), 127–135 (2014).
[CrossRef] [PubMed]

Zaccanti, G.

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: Theoretical and experimental investigation,” Phys. Med. Biol.47(23), 4131–4144 (2002).
[CrossRef] [PubMed]

Zhao, X. M.

Zimmermann, R.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage85(Pt 1), 6–27 (2014).
[CrossRef] [PubMed]

Zucchelli, L.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage85(Pt 1), 28–50 (2014).
[CrossRef] [PubMed]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express4(12), 2893–2910 (2013).
[CrossRef] [PubMed]

Appl. Opt. (8)

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
[CrossRef] [PubMed]

A. Knüttel, J. M. Schmitt, and J. R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon-density waves,” Appl. Opt.32(4), 381–389 (1993).
[CrossRef] [PubMed]

N. C. Bruce, “Experimental study of the effect of absorbing and transmitting inclusions in highly scattering media,” Appl. Opt.33(28), 6692–6698 (1994).
[CrossRef] [PubMed]

S. R. Arridge, “Photon-measurement density functions. Part I: Analytical forms,” Appl. Opt.34(31), 7395–7409 (1995).
[CrossRef] [PubMed]

J. C. Hebden and S. R. Arridge, “Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain,” Appl. Opt.35(34), 6788–6796 (1996).
[CrossRef] [PubMed]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt.42(16), 2915–2922 (2003).
[CrossRef] [PubMed]

D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt.44(10), 1957–1968 (2005).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

Biomed. Opt. Express (3)

Invest. Radiol. (1)

K. Suzuki, Y. Yamashita, K. Ohta, and B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary in vivo results,” Invest. Radiol.29(4), 410–414 (1994).
[CrossRef] [PubMed]

J. Biomed. Opt. (7)

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt.15(5), 056002 (2010).
[CrossRef] [PubMed]

S. Powell and T. S. Leung, “Highly parallel Monte-Carlo simulations of the acousto-optic effect in heterogeneous turbid media,” J. Biomed. Opt.17(4), 045002 (2012).
[CrossRef] [PubMed]

S. Gunadi and T. S. Leung, “Spatial Sensitivity of Acousto-Optic and Optical Near-Infrared Spectroscopy Sensing Measurements,” J. Biomed. Opt.16(12), 127005 (2011).
[CrossRef] [PubMed]

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt.19(1), 016010 (2014).
[CrossRef] [PubMed]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt.13(5), 054019 (2008).
[CrossRef] [PubMed]

J. Neurosurg. Anesthesiol. (1)

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol.25(3), 248–253 (2013).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Neuroimage (9)

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage85(Pt 1), 127–135 (2014).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage29(2), 368–382 (2006).
[CrossRef] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63(2), 921–935 (2012).
[CrossRef] [PubMed]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage85(Pt 1), 6–27 (2014).
[CrossRef] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage85(Pt 1), 28–50 (2014).
[CrossRef] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: Approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Neurosci. Biobehav. Rev. (1)

S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
[CrossRef] [PubMed]

Opt. Eng. (1)

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).
[CrossRef]

Opt. Lett. (2)

Philos. Trans. R. Soc., A (1)

C. E. Elwell and C. E. Cooper, “Making light work: Illuminating the future of biomedical optics,” Philos. Trans. R. Soc., A369(1955), 4358–4379 (2011).
[CrossRef] [PubMed]

Phys. Med. Biol. (6)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol.40(5), 955–961 (1995).
[CrossRef] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol.39(1), 177–196 (1994).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: Theoretical and experimental investigation,” Phys. Med. Biol.47(23), 4131–4144 (2002).
[CrossRef] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Proc. SPIE (4)

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
[CrossRef]

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near-infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE4160, 204–210 (2000).
[CrossRef]

W. Cui, C. Kumar, and B. Chance, “Experimental study of migration depth for the photons measured at sample surface,” Proc. SPIE1431, 180–191 (1991).
[CrossRef]

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE3597, 582–592 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Vaithianathan, I. D. C. Tullis, N. Everdell, T. Leung, A. Gibson, J. Meek, and D. T. Delpy, “Design of a portable near infrared system for topographic imaging of the brain in babies,” Rev. Sci. Instrum.75(10), 3276–3283 (2004).
[CrossRef]

Stroke (1)

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke32(11), 2492–2500 (2001).
[CrossRef] [PubMed]

Technol. Cancer Res. Treat. (1)

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat.10(5), 393–401 (2011).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram of the experimental setup in reflection mode [BE: black enclosure, TS: translation stage, TR: thin metallic rod, LA: local absorber, SX: scanning axis, P: phantom, S: optical source, D: optical detector]; (b) a picture of the setup; (c) Intralipid phantom: distance between S and D is 30 mm [BS: black surface, G: clear glass, y: y-axis distance from G, x: x-axis distance from S, SA: scanning area]; (d) and (e) alternative views of the Intralipid phantom with the TRS-20 optodes’ holder, which was attached using the provided adhesive; (f) an image of LA being held by a 0.5 mm TR.

Fig. 2
Fig. 2

An example of the TPSF and the fitted TPSF from the Hamamatsu supplied software by fitting the whole TPSF (TRS-20 software automatically sets the peak of the instrument function as t = 0 during calibration).

Fig. 3
Fig. 3

The spatial sensitivity maps J(x,y)* measured with 2 seconds of integration time: (a) TRS-20; (b) NIRO-100 using the SRS method; (c) NIRO-100 using the CW method; (d) ISS Oximeter; TRS-20 has the largest observable measurement variation but is generally more sensitive to deeper regions while other monitors are most sensitive to localized change in the SPL and their measurements have low variability. The color scales of (b) and (d) are deliberately kept distinct from others so the changes can be observable.

Fig. 4
Fig. 4

The <J(y)>* at different depths: the ISS-FD method has the highest <J(y)> across y and every method is generally less sensitive to the SPL change in μa except the NIRO-CW method (the dashed grey line shows the boundary of the SPL).

Fig. 5
Fig. 5

The spatial sensitivity map of the 760nm of the TRS-20 using an integration time of: (a) 5 and (b) 10 seconds; they show considerably improvement in %RSD (28.6% and 17.2% respectively) and the monitor is consistently most sensitive to deeper regions than SPL.

Fig. 6
Fig. 6

The <J(y)> profiles* of the TRS-TD method for integration time = (a) 2, (b) 5 and (c) 10 seconds; and they show minimal <J(SPL)> and higher sensitivity in deeper regions (the dashed grey line shows the boundary of the SPL).

Tables (2)

Tables Icon

Table 1 Summary of mean penetration depth, mean sensitivity values in the SPL and ROI, and %RSD of all monitors with additional results of other wavelengths (values reported refer to the first wavelength* unless otherwise stated and only 690 nm results for ISS-FD due to failure in post calibration test for other wavelength)

Tables Icon

Table 2 Summary of mean penetration depth, mean sensitivity values in the SPL and ROI, and %RSD of TRS-20 for 2, 5 and 10 seconds integration time (values reported refer to the first wavelength* results unless otherwise stated)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

J( x,y )= μ a ( x,y ) μ a ref ( x ) μ a ref ( x ) ×100% = Δ μ a ( x,y ) μ a ref ( x ) ×100%
Δ μ a = ΔOD PL
k μ a = 1 3(1hλ) ( ln(10) OD ρ 2 ρ ) 2
μ a = ω 2c ( S Φ S AC S AC S Φ )
R( s,t )= ( 4πDc ) 3 2 z 0 t 5 2 exp( μ a ct )exp( s 2 + z 0 2 4Dct )
%RSD=median{ σ( J 1,2,3,4,5 ( x,y ) ) μ( J 1,2,3,4,5 ( x,y ) ) }
y = i J( y i ) y i i J( y i )

Metrics