Abstract

In this paper, we report the feasibility of integrating a novel low cost optical coherence tomography (OCT) system with a dermascope for point-of-care applications. The proposed OCT system is based on an enhanced time-domain optical coherence tomographic system, called multiple reference OCT (MR-OCT), which uses a single miniature voice coil actuator and a partial mirror for extending the axial scan range. The system can simultaneously register both the superficial dermascope image and the depth-resolved OCT sub-surface information by an interactive beam steering method. A practitioner is able to obtain the depth resolved information of the point of interest by simply using the mouse cursor. The proposed approach of combining a dermascope with a low cost OCT provides a unique powerful optical imaging modality for a range of dermatological applications. Hand-held dermascopic OCT devices would also enable point of care and remote health monitoring.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan, “Immunochromatographic diagnostic test analysis using Google Glass,” ACS Nano8(3), 3069–3079 (2014).
    [CrossRef] [PubMed]
  2. E. Jonathan and M. J. Leahy, “Investigating a smartphone imaging unit for photoplethysmography,” Physiol. Meas.31(11), N79–N83 (2010).
    [CrossRef] [PubMed]
  3. J. Bennett, “Top Ten Medical Uses of the iPhone”, http://internetmedicine.com/2012/12/14/top-ten-medical-uses-of-the-iphone/ , Accessed: 12th December (2013).
  4. R. P. Braun, J. H. Saurat, and L. E. French, “Dermoscopy of pigmented lesions: a valuable tool in the diagnosis of melanoma,” Swiss Med. Wkly.134(7-8), 83–90 (2004).
    [PubMed]
  5. R. P. Braun, H. S. Rabinovitz, M. Oliviero, A. W. Kopf, and J. H. Saurat, “Dermoscopy of pigmented skin lesions,” J. Am. Acad. Dermatol.52(1), 109–121 (2005).
    [CrossRef] [PubMed]
  6. A. Lallas, G. Argenziano, Z. Apalla, J. Y. Gourhant, P. Zaballos, V. Di Lernia, E. Moscarella, C. Longo, and I. Zalaudek, “Dermoscopic patterns of common facial inflammatory skin diseases,” J. Eur. Acad. Dermatol. Venereol.28(5), 609–614 (2014).
    [CrossRef] [PubMed]
  7. A. Lallas, A. Kyrgidis, T. G. Tzellos, Z. Apalla, E. Karakyriou, A. Karatolias, I. Lefaki, E. Sotiriou, D. Ioannides, G. Argenziano, and I. Zalaudek, “Accuracy of dermoscopic criteria for the diagnosis of psoriasis, dermatitis, lichen planus and pityriasis rosea,” Br. J. Dermatol.166(6), 1198–1205 (2012).
    [CrossRef] [PubMed]
  8. K. Peris, T. Micantonio, D. Piccolo, and M. C. Fargnoli, “Dermoscopic features of actinic keratosis,” J. Dtsch. Dermatol. Ges.5(11), 970–975 (2007).
    [CrossRef] [PubMed]
  9. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
    [CrossRef]
  10. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  11. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  12. V. D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. G. Heideman, T. G. van Leeuwen, and J. Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett.37(23), 4820–4822 (2012).
    [CrossRef] [PubMed]
  13. B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express21(14), 16648–16656 (2013).
    [CrossRef] [PubMed]
  14. E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optic versus microoptic devices for fiber-optic telecommunications systems: A comparison,” IEEE J. Sel. Top. Quantum Electron.2(2), 151–164 (1996).
    [CrossRef]
  15. V. D. Nguyen, B. I. Akca, K. Wörhoff, R. M. de Ridder, M. Pollnau, T. G. van Leeuwen, and J. Kalkman, “Spectral domain optical coherence tomography imaging with an integrated optics spectrometer,” Opt. Lett.36(7), 1293–1295 (2011).
    [CrossRef] [PubMed]
  16. Insight, “Small (and shrinking) Form Factor”, http://sweptlaser.com/small-form-factor/ , Accessed: 10th July (2014).
  17. J. Hogan, “Multiple-Reference Non-Invasive Analysis System,” U. S. Patent 7,526,329 (28th April 2009).
  18. J. Hogan, “Frequency Resolved Imaging System”, U.S. Patent 7,751,862 (6th July 2010).
  19. A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in the human retina by low-coherence reflectometry,” Opt. Lett.22(13), 1039–1041 (1997).
    [CrossRef] [PubMed]
  20. M. Zurauskas, J. Rogers, and A. G. Podoleanu, “Simultaneous multiple-depths en-face optical coherence tomography using multiple signal excitation of acousto-optic deflectors,” Opt. Express21(2), 1925–1936 (2013).
    [CrossRef] [PubMed]
  21. Nano optic devices, “Expanding light possibilities”, http://www.nanoopticdevices.com/ , Accessed: 11th July (2014).
  22. Tornado spectral systems, “Spectrometer-on-chip for OCT”, http://tornado-spectral.com/solutions/spectrometer-on-chip-oct , Accessed: 11th July (2014).
  23. A. Kasukurti, M. Potcoava, S. A. Desai, C. Eggleton, and D. W. M. Marr, “Single-cell isolation using a DVD optical pickup,” Opt. Express19(11), 10377–10386 (2011).
    [CrossRef] [PubMed]
  24. D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3(3), 155–169 (2011).
    [CrossRef]
  25. K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
    [CrossRef] [PubMed]

2014 (2)

A. Lallas, G. Argenziano, Z. Apalla, J. Y. Gourhant, P. Zaballos, V. Di Lernia, E. Moscarella, C. Longo, and I. Zalaudek, “Dermoscopic patterns of common facial inflammatory skin diseases,” J. Eur. Acad. Dermatol. Venereol.28(5), 609–614 (2014).
[CrossRef] [PubMed]

S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan, “Immunochromatographic diagnostic test analysis using Google Glass,” ACS Nano8(3), 3069–3079 (2014).
[CrossRef] [PubMed]

2013 (2)

2012 (3)

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

V. D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. G. Heideman, T. G. van Leeuwen, and J. Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett.37(23), 4820–4822 (2012).
[CrossRef] [PubMed]

A. Lallas, A. Kyrgidis, T. G. Tzellos, Z. Apalla, E. Karakyriou, A. Karatolias, I. Lefaki, E. Sotiriou, D. Ioannides, G. Argenziano, and I. Zalaudek, “Accuracy of dermoscopic criteria for the diagnosis of psoriasis, dermatitis, lichen planus and pityriasis rosea,” Br. J. Dermatol.166(6), 1198–1205 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (1)

E. Jonathan and M. J. Leahy, “Investigating a smartphone imaging unit for photoplethysmography,” Physiol. Meas.31(11), N79–N83 (2010).
[CrossRef] [PubMed]

2007 (1)

K. Peris, T. Micantonio, D. Piccolo, and M. C. Fargnoli, “Dermoscopic features of actinic keratosis,” J. Dtsch. Dermatol. Ges.5(11), 970–975 (2007).
[CrossRef] [PubMed]

2005 (1)

R. P. Braun, H. S. Rabinovitz, M. Oliviero, A. W. Kopf, and J. H. Saurat, “Dermoscopy of pigmented skin lesions,” J. Am. Acad. Dermatol.52(1), 109–121 (2005).
[CrossRef] [PubMed]

2004 (1)

R. P. Braun, J. H. Saurat, and L. E. French, “Dermoscopy of pigmented lesions: a valuable tool in the diagnosis of melanoma,” Swiss Med. Wkly.134(7-8), 83–90 (2004).
[PubMed]

2003 (3)

1997 (1)

1996 (1)

E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optic versus microoptic devices for fiber-optic telecommunications systems: A comparison,” IEEE J. Sel. Top. Quantum Electron.2(2), 151–164 (1996).
[CrossRef]

Akca, B. I.

Alex, A.

Apalla, Z.

A. Lallas, G. Argenziano, Z. Apalla, J. Y. Gourhant, P. Zaballos, V. Di Lernia, E. Moscarella, C. Longo, and I. Zalaudek, “Dermoscopic patterns of common facial inflammatory skin diseases,” J. Eur. Acad. Dermatol. Venereol.28(5), 609–614 (2014).
[CrossRef] [PubMed]

A. Lallas, A. Kyrgidis, T. G. Tzellos, Z. Apalla, E. Karakyriou, A. Karatolias, I. Lefaki, E. Sotiriou, D. Ioannides, G. Argenziano, and I. Zalaudek, “Accuracy of dermoscopic criteria for the diagnosis of psoriasis, dermatitis, lichen planus and pityriasis rosea,” Br. J. Dermatol.166(6), 1198–1205 (2012).
[CrossRef] [PubMed]

Argenziano, G.

A. Lallas, G. Argenziano, Z. Apalla, J. Y. Gourhant, P. Zaballos, V. Di Lernia, E. Moscarella, C. Longo, and I. Zalaudek, “Dermoscopic patterns of common facial inflammatory skin diseases,” J. Eur. Acad. Dermatol. Venereol.28(5), 609–614 (2014).
[CrossRef] [PubMed]

A. Lallas, A. Kyrgidis, T. G. Tzellos, Z. Apalla, E. Karakyriou, A. Karatolias, I. Lefaki, E. Sotiriou, D. Ioannides, G. Argenziano, and I. Zalaudek, “Accuracy of dermoscopic criteria for the diagnosis of psoriasis, dermatitis, lichen planus and pityriasis rosea,” Br. J. Dermatol.166(6), 1198–1205 (2012).
[CrossRef] [PubMed]

Beeker, W.

Braun, R. P.

R. P. Braun, H. S. Rabinovitz, M. Oliviero, A. W. Kopf, and J. H. Saurat, “Dermoscopy of pigmented skin lesions,” J. Am. Acad. Dermatol.52(1), 109–121 (2005).
[CrossRef] [PubMed]

R. P. Braun, J. H. Saurat, and L. E. French, “Dermoscopy of pigmented lesions: a valuable tool in the diagnosis of melanoma,” Swiss Med. Wkly.134(7-8), 83–90 (2004).
[PubMed]

Caire, R.

S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan, “Immunochromatographic diagnostic test analysis using Google Glass,” ACS Nano8(3), 3069–3079 (2014).
[CrossRef] [PubMed]

Chang, S.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3(3), 155–169 (2011).
[CrossRef]

Choma, M.

Choo-Smith, L.-P.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3(3), 155–169 (2011).
[CrossRef]

Cortazar, B.

S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan, “Immunochromatographic diagnostic test analysis using Google Glass,” ACS Nano8(3), 3069–3079 (2014).
[CrossRef] [PubMed]

de Boer, J. F.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

de Ridder, R. M.

Desai, S. A.

Di Lernia, V.

A. Lallas, G. Argenziano, Z. Apalla, J. Y. Gourhant, P. Zaballos, V. Di Lernia, E. Moscarella, C. Longo, and I. Zalaudek, “Dermoscopic patterns of common facial inflammatory skin diseases,” J. Eur. Acad. Dermatol. Venereol.28(5), 609–614 (2014).
[CrossRef] [PubMed]

Disano, J.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3(3), 155–169 (2011).
[CrossRef]

Dobre, G. M.

Drexler, W.

Eggleton, C.

Fargnoli, M. C.

K. Peris, T. Micantonio, D. Piccolo, and M. C. Fargnoli, “Dermoscopic features of actinic keratosis,” J. Dtsch. Dermatol. Ges.5(11), 970–975 (2007).
[CrossRef] [PubMed]

Feng, S.

S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan, “Immunochromatographic diagnostic test analysis using Google Glass,” ACS Nano8(3), 3069–3079 (2014).
[CrossRef] [PubMed]

Fercher, A.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Flueraru, C.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3(3), 155–169 (2011).
[CrossRef]

French, L. E.

R. P. Braun, J. H. Saurat, and L. E. French, “Dermoscopy of pigmented lesions: a valuable tool in the diagnosis of melanoma,” Swiss Med. Wkly.134(7-8), 83–90 (2004).
[PubMed]

Gourhant, J. Y.

A. Lallas, G. Argenziano, Z. Apalla, J. Y. Gourhant, P. Zaballos, V. Di Lernia, E. Moscarella, C. Longo, and I. Zalaudek, “Dermoscopic patterns of common facial inflammatory skin diseases,” J. Eur. Acad. Dermatol. Venereol.28(5), 609–614 (2014).
[CrossRef] [PubMed]

Heideman, R. G.

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Hoekman, M.

Ioannides, D.

A. Lallas, A. Kyrgidis, T. G. Tzellos, Z. Apalla, E. Karakyriou, A. Karatolias, I. Lefaki, E. Sotiriou, D. Ioannides, G. Argenziano, and I. Zalaudek, “Accuracy of dermoscopic criteria for the diagnosis of psoriasis, dermatitis, lichen planus and pityriasis rosea,” Br. J. Dermatol.166(6), 1198–1205 (2012).
[CrossRef] [PubMed]

Izatt, J.

Jackson, D. A.

Jonathan, E.

E. Jonathan and M. J. Leahy, “Investigating a smartphone imaging unit for photoplethysmography,” Physiol. Meas.31(11), N79–N83 (2010).
[CrossRef] [PubMed]

Kalkman, J.

Karakyriou, E.

A. Lallas, A. Kyrgidis, T. G. Tzellos, Z. Apalla, E. Karakyriou, A. Karatolias, I. Lefaki, E. Sotiriou, D. Ioannides, G. Argenziano, and I. Zalaudek, “Accuracy of dermoscopic criteria for the diagnosis of psoriasis, dermatitis, lichen planus and pityriasis rosea,” Br. J. Dermatol.166(6), 1198–1205 (2012).
[CrossRef] [PubMed]

Karatolias, A.

A. Lallas, A. Kyrgidis, T. G. Tzellos, Z. Apalla, E. Karakyriou, A. Karatolias, I. Lefaki, E. Sotiriou, D. Ioannides, G. Argenziano, and I. Zalaudek, “Accuracy of dermoscopic criteria for the diagnosis of psoriasis, dermatitis, lichen planus and pityriasis rosea,” Br. J. Dermatol.166(6), 1198–1205 (2012).
[CrossRef] [PubMed]

Kasukurti, A.

Khoe, G. D.

E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optic versus microoptic devices for fiber-optic telecommunications systems: A comparison,” IEEE J. Sel. Top. Quantum Electron.2(2), 151–164 (1996).
[CrossRef]

Kim, K. H.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Kopf, A. W.

R. P. Braun, H. S. Rabinovitz, M. Oliviero, A. W. Kopf, and J. H. Saurat, “Dermoscopy of pigmented skin lesions,” J. Am. Acad. Dermatol.52(1), 109–121 (2005).
[CrossRef] [PubMed]

Kyrgidis, A.

A. Lallas, A. Kyrgidis, T. G. Tzellos, Z. Apalla, E. Karakyriou, A. Karatolias, I. Lefaki, E. Sotiriou, D. Ioannides, G. Argenziano, and I. Zalaudek, “Accuracy of dermoscopic criteria for the diagnosis of psoriasis, dermatitis, lichen planus and pityriasis rosea,” Br. J. Dermatol.166(6), 1198–1205 (2012).
[CrossRef] [PubMed]

Lallas, A.

A. Lallas, G. Argenziano, Z. Apalla, J. Y. Gourhant, P. Zaballos, V. Di Lernia, E. Moscarella, C. Longo, and I. Zalaudek, “Dermoscopic patterns of common facial inflammatory skin diseases,” J. Eur. Acad. Dermatol. Venereol.28(5), 609–614 (2014).
[CrossRef] [PubMed]

A. Lallas, A. Kyrgidis, T. G. Tzellos, Z. Apalla, E. Karakyriou, A. Karatolias, I. Lefaki, E. Sotiriou, D. Ioannides, G. Argenziano, and I. Zalaudek, “Accuracy of dermoscopic criteria for the diagnosis of psoriasis, dermatitis, lichen planus and pityriasis rosea,” Br. J. Dermatol.166(6), 1198–1205 (2012).
[CrossRef] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Leahy, M. J.

E. Jonathan and M. J. Leahy, “Investigating a smartphone imaging unit for photoplethysmography,” Physiol. Meas.31(11), N79–N83 (2010).
[CrossRef] [PubMed]

Lefaki, I.

A. Lallas, A. Kyrgidis, T. G. Tzellos, Z. Apalla, E. Karakyriou, A. Karatolias, I. Lefaki, E. Sotiriou, D. Ioannides, G. Argenziano, and I. Zalaudek, “Accuracy of dermoscopic criteria for the diagnosis of psoriasis, dermatitis, lichen planus and pityriasis rosea,” Br. J. Dermatol.166(6), 1198–1205 (2012).
[CrossRef] [PubMed]

Leinse, A.

Leitgeb, R.

Longo, C.

A. Lallas, G. Argenziano, Z. Apalla, J. Y. Gourhant, P. Zaballos, V. Di Lernia, E. Moscarella, C. Longo, and I. Zalaudek, “Dermoscopic patterns of common facial inflammatory skin diseases,” J. Eur. Acad. Dermatol. Venereol.28(5), 609–614 (2014).
[CrossRef] [PubMed]

Lydon, M.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Maguluri, G.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Mao, Y.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3(3), 155–169 (2011).
[CrossRef]

Marr, D. W. M.

Micantonio, T.

K. Peris, T. Micantonio, D. Piccolo, and M. C. Fargnoli, “Dermoscopic features of actinic keratosis,” J. Dtsch. Dermatol. Ges.5(11), 970–975 (2007).
[CrossRef] [PubMed]

Moscarella, E.

A. Lallas, G. Argenziano, Z. Apalla, J. Y. Gourhant, P. Zaballos, V. Di Lernia, E. Moscarella, C. Longo, and I. Zalaudek, “Dermoscopic patterns of common facial inflammatory skin diseases,” J. Eur. Acad. Dermatol. Venereol.28(5), 609–614 (2014).
[CrossRef] [PubMed]

Nguyen, V. D.

Oliviero, M.

R. P. Braun, H. S. Rabinovitz, M. Oliviero, A. W. Kopf, and J. H. Saurat, “Dermoscopy of pigmented skin lesions,” J. Am. Acad. Dermatol.52(1), 109–121 (2005).
[CrossRef] [PubMed]

Ozcan, A.

S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan, “Immunochromatographic diagnostic test analysis using Google Glass,” ACS Nano8(3), 3069–3079 (2014).
[CrossRef] [PubMed]

Park, B. H.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Pennings, E.

E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optic versus microoptic devices for fiber-optic telecommunications systems: A comparison,” IEEE J. Sel. Top. Quantum Electron.2(2), 151–164 (1996).
[CrossRef]

Peris, K.

K. Peris, T. Micantonio, D. Piccolo, and M. C. Fargnoli, “Dermoscopic features of actinic keratosis,” J. Dtsch. Dermatol. Ges.5(11), 970–975 (2007).
[CrossRef] [PubMed]

Piccolo, D.

K. Peris, T. Micantonio, D. Piccolo, and M. C. Fargnoli, “Dermoscopic features of actinic keratosis,” J. Dtsch. Dermatol. Ges.5(11), 970–975 (2007).
[CrossRef] [PubMed]

Pierce, M. C.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Podoleanu, A. G.

Pollnau, M.

Popescu, D. P.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3(3), 155–169 (2011).
[CrossRef]

Potcoava, M.

Považay, B.

Rabinovitz, H. S.

R. P. Braun, H. S. Rabinovitz, M. Oliviero, A. W. Kopf, and J. H. Saurat, “Dermoscopy of pigmented skin lesions,” J. Am. Acad. Dermatol.52(1), 109–121 (2005).
[CrossRef] [PubMed]

Rogers, J.

Sarunic, M.

Saurat, J. H.

R. P. Braun, H. S. Rabinovitz, M. Oliviero, A. W. Kopf, and J. H. Saurat, “Dermoscopy of pigmented skin lesions,” J. Am. Acad. Dermatol.52(1), 109–121 (2005).
[CrossRef] [PubMed]

R. P. Braun, J. H. Saurat, and L. E. French, “Dermoscopy of pigmented lesions: a valuable tool in the diagnosis of melanoma,” Swiss Med. Wkly.134(7-8), 83–90 (2004).
[PubMed]

Sheridan, R.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Sherif, S.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3(3), 155–169 (2011).
[CrossRef]

Smit, M. K.

E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optic versus microoptic devices for fiber-optic telecommunications systems: A comparison,” IEEE J. Sel. Top. Quantum Electron.2(2), 151–164 (1996).
[CrossRef]

Sotiriou, E.

A. Lallas, A. Kyrgidis, T. G. Tzellos, Z. Apalla, E. Karakyriou, A. Karatolias, I. Lefaki, E. Sotiriou, D. Ioannides, G. Argenziano, and I. Zalaudek, “Accuracy of dermoscopic criteria for the diagnosis of psoriasis, dermatitis, lichen planus and pityriasis rosea,” Br. J. Dermatol.166(6), 1198–1205 (2012).
[CrossRef] [PubMed]

Sowa, M. G.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3(3), 155–169 (2011).
[CrossRef]

Staring, T.

E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optic versus microoptic devices for fiber-optic telecommunications systems: A comparison,” IEEE J. Sel. Top. Quantum Electron.2(2), 151–164 (1996).
[CrossRef]

Turan, M.

S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan, “Immunochromatographic diagnostic test analysis using Google Glass,” ACS Nano8(3), 3069–3079 (2014).
[CrossRef] [PubMed]

Tzellos, T. G.

A. Lallas, A. Kyrgidis, T. G. Tzellos, Z. Apalla, E. Karakyriou, A. Karatolias, I. Lefaki, E. Sotiriou, D. Ioannides, G. Argenziano, and I. Zalaudek, “Accuracy of dermoscopic criteria for the diagnosis of psoriasis, dermatitis, lichen planus and pityriasis rosea,” Br. J. Dermatol.166(6), 1198–1205 (2012).
[CrossRef] [PubMed]

van Leeuwen, T. G.

Webb, D. J.

Weiss, N.

Wong, A.

S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan, “Immunochromatographic diagnostic test analysis using Google Glass,” ACS Nano8(3), 3069–3079 (2014).
[CrossRef] [PubMed]

Wörhoff, K.

Yang, C.

Yoon, S. J.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Zaballos, P.

A. Lallas, G. Argenziano, Z. Apalla, J. Y. Gourhant, P. Zaballos, V. Di Lernia, E. Moscarella, C. Longo, and I. Zalaudek, “Dermoscopic patterns of common facial inflammatory skin diseases,” J. Eur. Acad. Dermatol. Venereol.28(5), 609–614 (2014).
[CrossRef] [PubMed]

Zalaudek, I.

A. Lallas, G. Argenziano, Z. Apalla, J. Y. Gourhant, P. Zaballos, V. Di Lernia, E. Moscarella, C. Longo, and I. Zalaudek, “Dermoscopic patterns of common facial inflammatory skin diseases,” J. Eur. Acad. Dermatol. Venereol.28(5), 609–614 (2014).
[CrossRef] [PubMed]

A. Lallas, A. Kyrgidis, T. G. Tzellos, Z. Apalla, E. Karakyriou, A. Karatolias, I. Lefaki, E. Sotiriou, D. Ioannides, G. Argenziano, and I. Zalaudek, “Accuracy of dermoscopic criteria for the diagnosis of psoriasis, dermatitis, lichen planus and pityriasis rosea,” Br. J. Dermatol.166(6), 1198–1205 (2012).
[CrossRef] [PubMed]

Zurauskas, M.

ACS Nano (1)

S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan, “Immunochromatographic diagnostic test analysis using Google Glass,” ACS Nano8(3), 3069–3079 (2014).
[CrossRef] [PubMed]

Biophys. Rev. (1)

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3(3), 155–169 (2011).
[CrossRef]

Br. J. Dermatol. (1)

A. Lallas, A. Kyrgidis, T. G. Tzellos, Z. Apalla, E. Karakyriou, A. Karatolias, I. Lefaki, E. Sotiriou, D. Ioannides, G. Argenziano, and I. Zalaudek, “Accuracy of dermoscopic criteria for the diagnosis of psoriasis, dermatitis, lichen planus and pityriasis rosea,” Br. J. Dermatol.166(6), 1198–1205 (2012).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optic versus microoptic devices for fiber-optic telecommunications systems: A comparison,” IEEE J. Sel. Top. Quantum Electron.2(2), 151–164 (1996).
[CrossRef]

J. Am. Acad. Dermatol. (1)

R. P. Braun, H. S. Rabinovitz, M. Oliviero, A. W. Kopf, and J. H. Saurat, “Dermoscopy of pigmented skin lesions,” J. Am. Acad. Dermatol.52(1), 109–121 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

J. Dtsch. Dermatol. Ges. (1)

K. Peris, T. Micantonio, D. Piccolo, and M. C. Fargnoli, “Dermoscopic features of actinic keratosis,” J. Dtsch. Dermatol. Ges.5(11), 970–975 (2007).
[CrossRef] [PubMed]

J. Eur. Acad. Dermatol. Venereol. (1)

A. Lallas, G. Argenziano, Z. Apalla, J. Y. Gourhant, P. Zaballos, V. Di Lernia, E. Moscarella, C. Longo, and I. Zalaudek, “Dermoscopic patterns of common facial inflammatory skin diseases,” J. Eur. Acad. Dermatol. Venereol.28(5), 609–614 (2014).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Physiol. Meas. (1)

E. Jonathan and M. J. Leahy, “Investigating a smartphone imaging unit for photoplethysmography,” Physiol. Meas.31(11), N79–N83 (2010).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Swiss Med. Wkly. (1)

R. P. Braun, J. H. Saurat, and L. E. French, “Dermoscopy of pigmented lesions: a valuable tool in the diagnosis of melanoma,” Swiss Med. Wkly.134(7-8), 83–90 (2004).
[PubMed]

Other (6)

Nano optic devices, “Expanding light possibilities”, http://www.nanoopticdevices.com/ , Accessed: 11th July (2014).

Tornado spectral systems, “Spectrometer-on-chip for OCT”, http://tornado-spectral.com/solutions/spectrometer-on-chip-oct , Accessed: 11th July (2014).

Insight, “Small (and shrinking) Form Factor”, http://sweptlaser.com/small-form-factor/ , Accessed: 10th July (2014).

J. Hogan, “Multiple-Reference Non-Invasive Analysis System,” U. S. Patent 7,526,329 (28th April 2009).

J. Hogan, “Frequency Resolved Imaging System”, U.S. Patent 7,751,862 (6th July 2010).

J. Bennett, “Top Ten Medical Uses of the iPhone”, http://internetmedicine.com/2012/12/14/top-ten-medical-uses-of-the-iphone/ , Accessed: 12th December (2013).

Supplementary Material (3)

» Media 1: MPG (3972 KB)     
» Media 2: MPG (738 KB)     
» Media 3: MPG (3826 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup of a dermascope integrated MR-OCT system based on bulk optics configuration. SLD-superluminescent diode, L1-L4 – Lenses, PM-partial mirror, RM-reference mirror, VCM-voice coil motor, SG-signal generator, PD-photodetector, XY-GS-galvo scanner, DM-dichroic mirror, OW-optical window, CD-camera driver, CCD-charge coupled device.

Fig. 2
Fig. 2

(a) Schematic representation of the systematic increases in the magnitude of each successive scan region associated with the increasing number of reflections of the reference light. “s”-scan range of VCM and “d”- separation distance between partial and reference mirror at the center of scan. (b) Reflection between PM and RM for the first three orders. (c) Calculated scan range measurement of VCM used in experiment with s = 55 μm and d = 90 μm resulting in a total scan range of 1mm.

Fig. 3
Fig. 3

Flowchart of the MR-OCT processing scheme.

Fig. 4
Fig. 4

Flowchart for co- registering the MR-OCT beam with a dermascope image. ROI – region of interest.

Fig. 5
Fig. 5

Reconstructed movement of sample mirror. The x-axis corresponds to actual sample mirror movement and the y-axis is the reconstructed image of the movement.

Fig. 6
Fig. 6

Measured sensitivity plot of the MR-OCT system with 10 successive reflection orders with 1.1 dB roll-off per order.

Fig. 7
Fig. 7

(a) Dermascope image of a fingertip area. (b-e) shows the MR-OCT A-scans of a human fingertip recorded in vivo at different regions of interest marked as b-e in (a).The signal peaks indicate the (optical) positions of the reflecting interface. The measured dermal to epidermal junction thickness using the MR-OCT system was ~540μm.

Fig. 8
Fig. 8

(a) MR-OCT cross section image of a fingertip with dimension ~[1 mm (z) × 1.5 mm (x)]. (b) Cross-sectional A-scan profile of a fingertip using the MR-OCT system. (c) SS-OCT cross section image of a fingertip with dimension ~[1 mm (z) × 1.5 mm (x)]. (d) Cross-sectional A-scan profile of a fingertip using the SS-OCT system. The measured dermal to epidermal junction thickness using MR-OCT system was ~540 μm, which compared well with the measurement by the SS-OCT system (~550 μm).

Fig. 9
Fig. 9

(a) Dermascope image of a wound near forearm region. (b-e) shows the MR-OCT A-scans of a wound region recorded in vivo at different region of interest marked as b-e in (a). The signal peaks in (b-d) shows the optical reflections from wound area representing burnt region whereas (e) represents the reflection from a healthy region.

Fig. 10
Fig. 10

(a) MR-OCT cross section image of a wound near the forearm region with dimensions ~[1 mm (z) × 1.5 mm (x)]. (b) A-scan profile of a wound using the MR-OCT system. (c) SS-OCT cross section image of a wound with dimension ~[1 mm (z) × 1.5 mm (x)]. (d) A-scan profile of a wound using the SS-OCT system. The measured burn depth using the MR-OCT system was ~650 μm, which compared well with the measurement by the SS-OCT system.

Tables (1)

Tables Icon

Table 1 Comparison MR-OCT vs. Integrated optics FD-OCT

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f ^ nb = 2ns λ 0 t VCM
I d (k)= I o +AG(ΔL)cos( 2kΔL )
I d (k,n)= I Rn + I S + I PM +2 I Rn I s n=1 N [ G(Δ L n )cos(2kΔ L n ) ]
D=( s 2 )+(n1)d+( ns 2 )
y n [n,i]=filter(H( f n ),y[i])
dx[n]=( N p d s + N p 2 )(n1)
V (x,y) =( V R P (x,y) L (x,y) )

Metrics