Abstract

The ex vivo and in vivo imaging, and quantitative characterization of the degradation of surgical sutures (∼500 μm diameter) up to ∼1cm depth is demonstrated using a custom dark-field photo-acoustic microscope (PAM). A practical algorithm is developed to accurately measure the suture diameter during the degradation process. The results from tissue simulating phantoms and mice are compared to ex vivo measurements with an optical microscope demonstrating that PAM has a great deal of potential to characterize the degradation process of surgical sutures. The implications of this work for industrial applications are discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Patel and E. Thomas, “Sutures, ligatures and staples,” Surgery23, 56–60 (2005).
  2. M. E. Moreira and V. J. Markovchik., “Wound management,” Emer. Med.Clin. N.Am25, 873–899 (2007).
  3. P. Palma, C. Riccetto, R. Fraga, R. Miaoka, and A. Prando, “Dynamic evaluation of pelvic floor reconstructive surgery using radiopadue meshes and three-dimensional helical ct,” International Braz. J. Urol36, 209–217 (2010).
    [CrossRef]
  4. I. Sandaite, F. Claus, A. Mullen, D. De Ridder, and J. Depreset, “Experimental mri-contrast imaging of suture and mesh materials with fe3o4 -containing polivinylidenefluoride polymers designed for pelvic floor surgery,” Neurourology and Urodynamics30, 1114–1115 (2011).
  5. F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D. A. Christopher, and D. H. Turnbull, “Advances in ultrasound biomicroscopy,” Ultrasound Med Biol26, 1–27 (2000).
    [CrossRef] [PubMed]
  6. O. Gilleard, D. Silver, Z. Ahmad, and V. Devaraj, “The accuracy of ultrasound in evaluating closed flexor tendon ruptures,” Eur. J. Plast. Surg.33, 71–74 (2010).
  7. D. M. El-Sherif and M. A. Wheatley, “Development of a novel method for synthesis of a polymeric ultrasound contrast agent,” J. Biomed. Mater. Res.66A, 347–355 (2003).
    [CrossRef]
  8. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335, 1458–1462 (2012).
    [CrossRef] [PubMed]
  9. D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat Protoc6, 1121–1129 (2011).
    [CrossRef] [PubMed]
  10. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat Methods7, 603–614 (2010).
    [CrossRef] [PubMed]
  11. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat Photonics3, 503–509 (2009).
    [CrossRef]
  12. E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy,” Phys Med Biol54, 1035–1046 (2009).
    [CrossRef] [PubMed]
  13. M. L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt Lett31, 474–476 (2006).
    [CrossRef] [PubMed]
  14. J. Gateau, M. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med Phys40, 013302 (2013).
    [CrossRef] [PubMed]
  15. H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat Protoc2, 797–804 (2007).
    [CrossRef] [PubMed]
  16. H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt Express14, 9317–9323 (2006).
    [CrossRef] [PubMed]
  17. K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt Lett30, 625–627 (2005).
    [CrossRef] [PubMed]
  18. X. Cai, C. Kim, M. Pramanik, and L. V. Wang, “Photoacoustic tomography of foreign bodies in soft biological tissue,” Journal of Biomedical Optics16, 046017 (2011).
    [CrossRef] [PubMed]
  19. B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J Biomed Opt15, 021314 (2010).
    [CrossRef] [PubMed]
  20. C. G. Hoelen and F. F. de Mul, “A new theoretical approach to photoacoustic signal generation,” J Acoust Soc Am106, 11 (1999).
  21. K. Wang, B. Su, P. Brecht, A. Oraevsky, and M. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans Med Imaging30, 203–214 (2012).
    [CrossRef]
  22. L. Wang, Biomedical Optics: Principles and Imaging (Wiley, Hoboken, New Jersey, 2007).
  23. D. Queiros, X. L. Dean-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J Biomed Opt18, 76014 (2013).
    [CrossRef]
  24. J. Aguirre, A. Giannoula, T. Minagawa, L. Funk, P. Turon, and T. Durduran, “A low memory cost model based reconstruction algorithm exploting translational symmetry for photoacoustic microscopy,” Biomed Opt Express4, 2813 (2013).
    [CrossRef]
  25. R. L. Reis and J. S. Roman, Biodegradable Systems in Tissue Engineering and Regenerative Medicine (CRC Press, 2004).
    [CrossRef]
  26. E. K. Odermatt, L. Funk, R. Bargon, D. P. Martin, S. Rizk, and S. F. Williams, “Monomax suture: A new long-term absorbable monofilament suture made from poly-4-hydroxybutyrate,” International Journal of Polymer Science2012216137 (2012).
    [CrossRef]
  27. T. Durduran, R. Choe, W. B. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
    [CrossRef]
  28. A. Rosenthal, V. Ntziachristos, and D. Razansky, “Model-based optoacoustic inversion with arbitrary-shape detectors,” Med Phys38, 4285–4295 (2011).
    [CrossRef] [PubMed]
  29. M. A. Araque Caballero, A. Rosenthal, J. Gateau, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic imaging using focused detector scanning,” Opt Lett37, 4080–4082 (2012).
    [CrossRef] [PubMed]
  30. G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J Acoust Soc Am112, 1536–1544 (2002).
    [CrossRef] [PubMed]
  31. A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans Ultrason Ferroelectr Freq Control58, 316–326 (2011).
    [CrossRef] [PubMed]
  32. X. L. Dean-Ben, D. Razansky, and V. Ntziachristos, “The effects of acoustic attenuation in optoacoustic signals,” Physics in Medicine and Biology56, 6129 (2011).
    [CrossRef] [PubMed]
  33. G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt Lett30, 507–509 (2005).
    [CrossRef] [PubMed]
  34. L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science335, 1458–1462 (2012).
    [CrossRef] [PubMed]

2013 (3)

J. Gateau, M. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med Phys40, 013302 (2013).
[CrossRef] [PubMed]

D. Queiros, X. L. Dean-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J Biomed Opt18, 76014 (2013).
[CrossRef]

J. Aguirre, A. Giannoula, T. Minagawa, L. Funk, P. Turon, and T. Durduran, “A low memory cost model based reconstruction algorithm exploting translational symmetry for photoacoustic microscopy,” Biomed Opt Express4, 2813 (2013).
[CrossRef]

2012 (5)

E. K. Odermatt, L. Funk, R. Bargon, D. P. Martin, S. Rizk, and S. F. Williams, “Monomax suture: A new long-term absorbable monofilament suture made from poly-4-hydroxybutyrate,” International Journal of Polymer Science2012216137 (2012).
[CrossRef]

K. Wang, B. Su, P. Brecht, A. Oraevsky, and M. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans Med Imaging30, 203–214 (2012).
[CrossRef]

M. A. Araque Caballero, A. Rosenthal, J. Gateau, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic imaging using focused detector scanning,” Opt Lett37, 4080–4082 (2012).
[CrossRef] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science335, 1458–1462 (2012).
[CrossRef] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335, 1458–1462 (2012).
[CrossRef] [PubMed]

2011 (6)

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat Protoc6, 1121–1129 (2011).
[CrossRef] [PubMed]

I. Sandaite, F. Claus, A. Mullen, D. De Ridder, and J. Depreset, “Experimental mri-contrast imaging of suture and mesh materials with fe3o4 -containing polivinylidenefluoride polymers designed for pelvic floor surgery,” Neurourology and Urodynamics30, 1114–1115 (2011).

X. Cai, C. Kim, M. Pramanik, and L. V. Wang, “Photoacoustic tomography of foreign bodies in soft biological tissue,” Journal of Biomedical Optics16, 046017 (2011).
[CrossRef] [PubMed]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Model-based optoacoustic inversion with arbitrary-shape detectors,” Med Phys38, 4285–4295 (2011).
[CrossRef] [PubMed]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans Ultrason Ferroelectr Freq Control58, 316–326 (2011).
[CrossRef] [PubMed]

X. L. Dean-Ben, D. Razansky, and V. Ntziachristos, “The effects of acoustic attenuation in optoacoustic signals,” Physics in Medicine and Biology56, 6129 (2011).
[CrossRef] [PubMed]

2010 (5)

P. Palma, C. Riccetto, R. Fraga, R. Miaoka, and A. Prando, “Dynamic evaluation of pelvic floor reconstructive surgery using radiopadue meshes and three-dimensional helical ct,” International Braz. J. Urol36, 209–217 (2010).
[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J Biomed Opt15, 021314 (2010).
[CrossRef] [PubMed]

O. Gilleard, D. Silver, Z. Ahmad, and V. Devaraj, “The accuracy of ultrasound in evaluating closed flexor tendon ruptures,” Eur. J. Plast. Surg.33, 71–74 (2010).

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat Methods7, 603–614 (2010).
[CrossRef] [PubMed]

2009 (2)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat Photonics3, 503–509 (2009).
[CrossRef]

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy,” Phys Med Biol54, 1035–1046 (2009).
[CrossRef] [PubMed]

2007 (2)

M. E. Moreira and V. J. Markovchik., “Wound management,” Emer. Med.Clin. N.Am25, 873–899 (2007).

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat Protoc2, 797–804 (2007).
[CrossRef] [PubMed]

2006 (2)

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt Express14, 9317–9323 (2006).
[CrossRef] [PubMed]

M. L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt Lett31, 474–476 (2006).
[CrossRef] [PubMed]

2005 (3)

K. A. Patel and E. Thomas, “Sutures, ligatures and staples,” Surgery23, 56–60 (2005).

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt Lett30, 625–627 (2005).
[CrossRef] [PubMed]

G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt Lett30, 507–509 (2005).
[CrossRef] [PubMed]

2003 (1)

D. M. El-Sherif and M. A. Wheatley, “Development of a novel method for synthesis of a polymeric ultrasound contrast agent,” J. Biomed. Mater. Res.66A, 347–355 (2003).
[CrossRef]

2002 (1)

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J Acoust Soc Am112, 1536–1544 (2002).
[CrossRef] [PubMed]

2000 (1)

F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D. A. Christopher, and D. H. Turnbull, “Advances in ultrasound biomicroscopy,” Ultrasound Med Biol26, 1–27 (2000).
[CrossRef] [PubMed]

1999 (1)

C. G. Hoelen and F. F. de Mul, “A new theoretical approach to photoacoustic signal generation,” J Acoust Soc Am106, 11 (1999).

Aguirre, J.

J. Aguirre, A. Giannoula, T. Minagawa, L. Funk, P. Turon, and T. Durduran, “A low memory cost model based reconstruction algorithm exploting translational symmetry for photoacoustic microscopy,” Biomed Opt Express4, 2813 (2013).
[CrossRef]

Ahmad, Z.

O. Gilleard, D. Silver, Z. Ahmad, and V. Devaraj, “The accuracy of ultrasound in evaluating closed flexor tendon ruptures,” Eur. J. Plast. Surg.33, 71–74 (2010).

Anastasio, M.

K. Wang, B. Su, P. Brecht, A. Oraevsky, and M. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans Med Imaging30, 203–214 (2012).
[CrossRef]

Araque Caballero, M. A.

M. A. Araque Caballero, A. Rosenthal, J. Gateau, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic imaging using focused detector scanning,” Opt Lett37, 4080–4082 (2012).
[CrossRef] [PubMed]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Bargon, R.

E. K. Odermatt, L. Funk, R. Bargon, D. P. Martin, S. Rizk, and S. F. Williams, “Monomax suture: A new long-term absorbable monofilament suture made from poly-4-hydroxybutyrate,” International Journal of Polymer Science2012216137 (2012).
[CrossRef]

Beard, P. C.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy,” Phys Med Biol54, 1035–1046 (2009).
[CrossRef] [PubMed]

Brecht, P.

K. Wang, B. Su, P. Brecht, A. Oraevsky, and M. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans Med Imaging30, 203–214 (2012).
[CrossRef]

Buehler, A.

D. Queiros, X. L. Dean-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J Biomed Opt18, 76014 (2013).
[CrossRef]

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat Protoc6, 1121–1129 (2011).
[CrossRef] [PubMed]

Caballero, M. A.

J. Gateau, M. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med Phys40, 013302 (2013).
[CrossRef] [PubMed]

Cai, X.

X. Cai, C. Kim, M. Pramanik, and L. V. Wang, “Photoacoustic tomography of foreign bodies in soft biological tissue,” Journal of Biomedical Optics16, 046017 (2011).
[CrossRef] [PubMed]

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Christopher, D. A.

F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D. A. Christopher, and D. H. Turnbull, “Advances in ultrasound biomicroscopy,” Ultrasound Med Biol26, 1–27 (2000).
[CrossRef] [PubMed]

Claus, F.

I. Sandaite, F. Claus, A. Mullen, D. De Ridder, and J. Depreset, “Experimental mri-contrast imaging of suture and mesh materials with fe3o4 -containing polivinylidenefluoride polymers designed for pelvic floor surgery,” Neurourology and Urodynamics30, 1114–1115 (2011).

Cox, B. T.

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J Biomed Opt15, 021314 (2010).
[CrossRef] [PubMed]

de Mul, F. F.

C. G. Hoelen and F. F. de Mul, “A new theoretical approach to photoacoustic signal generation,” J Acoust Soc Am106, 11 (1999).

De Ridder, D.

I. Sandaite, F. Claus, A. Mullen, D. De Ridder, and J. Depreset, “Experimental mri-contrast imaging of suture and mesh materials with fe3o4 -containing polivinylidenefluoride polymers designed for pelvic floor surgery,” Neurourology and Urodynamics30, 1114–1115 (2011).

Dean-Ben, X. L.

D. Queiros, X. L. Dean-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J Biomed Opt18, 76014 (2013).
[CrossRef]

X. L. Dean-Ben, D. Razansky, and V. Ntziachristos, “The effects of acoustic attenuation in optoacoustic signals,” Physics in Medicine and Biology56, 6129 (2011).
[CrossRef] [PubMed]

Depreset, J.

I. Sandaite, F. Claus, A. Mullen, D. De Ridder, and J. Depreset, “Experimental mri-contrast imaging of suture and mesh materials with fe3o4 -containing polivinylidenefluoride polymers designed for pelvic floor surgery,” Neurourology and Urodynamics30, 1114–1115 (2011).

Devaraj, V.

O. Gilleard, D. Silver, Z. Ahmad, and V. Devaraj, “The accuracy of ultrasound in evaluating closed flexor tendon ruptures,” Eur. J. Plast. Surg.33, 71–74 (2010).

Dima, A.

J. Gateau, M. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med Phys40, 013302 (2013).
[CrossRef] [PubMed]

Durduran, T.

J. Aguirre, A. Giannoula, T. Minagawa, L. Funk, P. Turon, and T. Durduran, “A low memory cost model based reconstruction algorithm exploting translational symmetry for photoacoustic microscopy,” Biomed Opt Express4, 2813 (2013).
[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

El-Sherif, D. M.

D. M. El-Sherif and M. A. Wheatley, “Development of a novel method for synthesis of a polymeric ultrasound contrast agent,” J. Biomed. Mater. Res.66A, 347–355 (2003).
[CrossRef]

Foster, F. S.

F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D. A. Christopher, and D. H. Turnbull, “Advances in ultrasound biomicroscopy,” Ultrasound Med Biol26, 1–27 (2000).
[CrossRef] [PubMed]

Fraga, R.

P. Palma, C. Riccetto, R. Fraga, R. Miaoka, and A. Prando, “Dynamic evaluation of pelvic floor reconstructive surgery using radiopadue meshes and three-dimensional helical ct,” International Braz. J. Urol36, 209–217 (2010).
[CrossRef]

Funk, L.

J. Aguirre, A. Giannoula, T. Minagawa, L. Funk, P. Turon, and T. Durduran, “A low memory cost model based reconstruction algorithm exploting translational symmetry for photoacoustic microscopy,” Biomed Opt Express4, 2813 (2013).
[CrossRef]

E. K. Odermatt, L. Funk, R. Bargon, D. P. Martin, S. Rizk, and S. F. Williams, “Monomax suture: A new long-term absorbable monofilament suture made from poly-4-hydroxybutyrate,” International Journal of Polymer Science2012216137 (2012).
[CrossRef]

Gateau, J.

J. Gateau, M. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med Phys40, 013302 (2013).
[CrossRef] [PubMed]

M. A. Araque Caballero, A. Rosenthal, J. Gateau, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic imaging using focused detector scanning,” Opt Lett37, 4080–4082 (2012).
[CrossRef] [PubMed]

Giannoula, A.

J. Aguirre, A. Giannoula, T. Minagawa, L. Funk, P. Turon, and T. Durduran, “A low memory cost model based reconstruction algorithm exploting translational symmetry for photoacoustic microscopy,” Biomed Opt Express4, 2813 (2013).
[CrossRef]

Gilleard, O.

O. Gilleard, D. Silver, Z. Ahmad, and V. Devaraj, “The accuracy of ultrasound in evaluating closed flexor tendon ruptures,” Eur. J. Plast. Surg.33, 71–74 (2010).

Harasiewicz, K. A.

F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D. A. Christopher, and D. H. Turnbull, “Advances in ultrasound biomicroscopy,” Ultrasound Med Biol26, 1–27 (2000).
[CrossRef] [PubMed]

Hoelen, C. G.

C. G. Hoelen and F. F. de Mul, “A new theoretical approach to photoacoustic signal generation,” J Acoust Soc Am106, 11 (1999).

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science335, 1458–1462 (2012).
[CrossRef] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335, 1458–1462 (2012).
[CrossRef] [PubMed]

Jacques, S. L.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J Acoust Soc Am112, 1536–1544 (2002).
[CrossRef] [PubMed]

Kim, C.

X. Cai, C. Kim, M. Pramanik, and L. V. Wang, “Photoacoustic tomography of foreign bodies in soft biological tissue,” Journal of Biomedical Optics16, 046017 (2011).
[CrossRef] [PubMed]

Ku, G.

G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt Lett30, 507–509 (2005).
[CrossRef] [PubMed]

Laufer, J. G.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy,” Phys Med Biol54, 1035–1046 (2009).
[CrossRef] [PubMed]

Li, M. L.

M. L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt Lett31, 474–476 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt Express14, 9317–9323 (2006).
[CrossRef] [PubMed]

Markovchik., V. J.

M. E. Moreira and V. J. Markovchik., “Wound management,” Emer. Med.Clin. N.Am25, 873–899 (2007).

Martin, D. P.

E. K. Odermatt, L. Funk, R. Bargon, D. P. Martin, S. Rizk, and S. F. Williams, “Monomax suture: A new long-term absorbable monofilament suture made from poly-4-hydroxybutyrate,” International Journal of Polymer Science2012216137 (2012).
[CrossRef]

Maslov, K.

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat Protoc2, 797–804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt Express14, 9317–9323 (2006).
[CrossRef] [PubMed]

M. L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt Lett31, 474–476 (2006).
[CrossRef] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt Lett30, 625–627 (2005).
[CrossRef] [PubMed]

Miaoka, R.

P. Palma, C. Riccetto, R. Fraga, R. Miaoka, and A. Prando, “Dynamic evaluation of pelvic floor reconstructive surgery using radiopadue meshes and three-dimensional helical ct,” International Braz. J. Urol36, 209–217 (2010).
[CrossRef]

Minagawa, T.

J. Aguirre, A. Giannoula, T. Minagawa, L. Funk, P. Turon, and T. Durduran, “A low memory cost model based reconstruction algorithm exploting translational symmetry for photoacoustic microscopy,” Biomed Opt Express4, 2813 (2013).
[CrossRef]

Moreira, M. E.

M. E. Moreira and V. J. Markovchik., “Wound management,” Emer. Med.Clin. N.Am25, 873–899 (2007).

Mullen, A.

I. Sandaite, F. Claus, A. Mullen, D. De Ridder, and J. Depreset, “Experimental mri-contrast imaging of suture and mesh materials with fe3o4 -containing polivinylidenefluoride polymers designed for pelvic floor surgery,” Neurourology and Urodynamics30, 1114–1115 (2011).

Ntziachristos, V.

J. Gateau, M. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med Phys40, 013302 (2013).
[CrossRef] [PubMed]

D. Queiros, X. L. Dean-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J Biomed Opt18, 76014 (2013).
[CrossRef]

M. A. Araque Caballero, A. Rosenthal, J. Gateau, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic imaging using focused detector scanning,” Opt Lett37, 4080–4082 (2012).
[CrossRef] [PubMed]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Model-based optoacoustic inversion with arbitrary-shape detectors,” Med Phys38, 4285–4295 (2011).
[CrossRef] [PubMed]

X. L. Dean-Ben, D. Razansky, and V. Ntziachristos, “The effects of acoustic attenuation in optoacoustic signals,” Physics in Medicine and Biology56, 6129 (2011).
[CrossRef] [PubMed]

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat Protoc6, 1121–1129 (2011).
[CrossRef] [PubMed]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans Ultrason Ferroelectr Freq Control58, 316–326 (2011).
[CrossRef] [PubMed]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat Methods7, 603–614 (2010).
[CrossRef] [PubMed]

Odermatt, E. K.

E. K. Odermatt, L. Funk, R. Bargon, D. P. Martin, S. Rizk, and S. F. Williams, “Monomax suture: A new long-term absorbable monofilament suture made from poly-4-hydroxybutyrate,” International Journal of Polymer Science2012216137 (2012).
[CrossRef]

Oraevsky, A.

K. Wang, B. Su, P. Brecht, A. Oraevsky, and M. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans Med Imaging30, 203–214 (2012).
[CrossRef]

Palma, P.

P. Palma, C. Riccetto, R. Fraga, R. Miaoka, and A. Prando, “Dynamic evaluation of pelvic floor reconstructive surgery using radiopadue meshes and three-dimensional helical ct,” International Braz. J. Urol36, 209–217 (2010).
[CrossRef]

Paltauf, G.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J Acoust Soc Am112, 1536–1544 (2002).
[CrossRef] [PubMed]

Patel, K. A.

K. A. Patel and E. Thomas, “Sutures, ligatures and staples,” Surgery23, 56–60 (2005).

Pavlin, C. J.

F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D. A. Christopher, and D. H. Turnbull, “Advances in ultrasound biomicroscopy,” Ultrasound Med Biol26, 1–27 (2000).
[CrossRef] [PubMed]

Pedley, R. B.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy,” Phys Med Biol54, 1035–1046 (2009).
[CrossRef] [PubMed]

Prahl, S. A.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J Acoust Soc Am112, 1536–1544 (2002).
[CrossRef] [PubMed]

Pramanik, M.

X. Cai, C. Kim, M. Pramanik, and L. V. Wang, “Photoacoustic tomography of foreign bodies in soft biological tissue,” Journal of Biomedical Optics16, 046017 (2011).
[CrossRef] [PubMed]

Prando, A.

P. Palma, C. Riccetto, R. Fraga, R. Miaoka, and A. Prando, “Dynamic evaluation of pelvic floor reconstructive surgery using radiopadue meshes and three-dimensional helical ct,” International Braz. J. Urol36, 209–217 (2010).
[CrossRef]

Queiros, D.

D. Queiros, X. L. Dean-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J Biomed Opt18, 76014 (2013).
[CrossRef]

Razansky, D.

D. Queiros, X. L. Dean-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J Biomed Opt18, 76014 (2013).
[CrossRef]

M. A. Araque Caballero, A. Rosenthal, J. Gateau, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic imaging using focused detector scanning,” Opt Lett37, 4080–4082 (2012).
[CrossRef] [PubMed]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Model-based optoacoustic inversion with arbitrary-shape detectors,” Med Phys38, 4285–4295 (2011).
[CrossRef] [PubMed]

X. L. Dean-Ben, D. Razansky, and V. Ntziachristos, “The effects of acoustic attenuation in optoacoustic signals,” Physics in Medicine and Biology56, 6129 (2011).
[CrossRef] [PubMed]

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat Protoc6, 1121–1129 (2011).
[CrossRef] [PubMed]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans Ultrason Ferroelectr Freq Control58, 316–326 (2011).
[CrossRef] [PubMed]

Reis, R. L.

R. L. Reis and J. S. Roman, Biodegradable Systems in Tissue Engineering and Regenerative Medicine (CRC Press, 2004).
[CrossRef]

Riccetto, C.

P. Palma, C. Riccetto, R. Fraga, R. Miaoka, and A. Prando, “Dynamic evaluation of pelvic floor reconstructive surgery using radiopadue meshes and three-dimensional helical ct,” International Braz. J. Urol36, 209–217 (2010).
[CrossRef]

Rizk, S.

E. K. Odermatt, L. Funk, R. Bargon, D. P. Martin, S. Rizk, and S. F. Williams, “Monomax suture: A new long-term absorbable monofilament suture made from poly-4-hydroxybutyrate,” International Journal of Polymer Science2012216137 (2012).
[CrossRef]

Roman, J. S.

R. L. Reis and J. S. Roman, Biodegradable Systems in Tissue Engineering and Regenerative Medicine (CRC Press, 2004).
[CrossRef]

Rosenthal, A.

D. Queiros, X. L. Dean-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J Biomed Opt18, 76014 (2013).
[CrossRef]

M. A. Araque Caballero, A. Rosenthal, J. Gateau, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic imaging using focused detector scanning,” Opt Lett37, 4080–4082 (2012).
[CrossRef] [PubMed]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Model-based optoacoustic inversion with arbitrary-shape detectors,” Med Phys38, 4285–4295 (2011).
[CrossRef] [PubMed]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans Ultrason Ferroelectr Freq Control58, 316–326 (2011).
[CrossRef] [PubMed]

Sandaite, I.

I. Sandaite, F. Claus, A. Mullen, D. De Ridder, and J. Depreset, “Experimental mri-contrast imaging of suture and mesh materials with fe3o4 -containing polivinylidenefluoride polymers designed for pelvic floor surgery,” Neurourology and Urodynamics30, 1114–1115 (2011).

Silver, D.

O. Gilleard, D. Silver, Z. Ahmad, and V. Devaraj, “The accuracy of ultrasound in evaluating closed flexor tendon ruptures,” Eur. J. Plast. Surg.33, 71–74 (2010).

Stoica, G.

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt Express14, 9317–9323 (2006).
[CrossRef] [PubMed]

M. L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt Lett31, 474–476 (2006).
[CrossRef] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt Lett30, 625–627 (2005).
[CrossRef] [PubMed]

Su, B.

K. Wang, B. Su, P. Brecht, A. Oraevsky, and M. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans Med Imaging30, 203–214 (2012).
[CrossRef]

Thomas, E.

K. A. Patel and E. Thomas, “Sutures, ligatures and staples,” Surgery23, 56–60 (2005).

Treeby, B. E.

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J Biomed Opt15, 021314 (2010).
[CrossRef] [PubMed]

Turnbull, D. H.

F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D. A. Christopher, and D. H. Turnbull, “Advances in ultrasound biomicroscopy,” Ultrasound Med Biol26, 1–27 (2000).
[CrossRef] [PubMed]

Turon, P.

J. Aguirre, A. Giannoula, T. Minagawa, L. Funk, P. Turon, and T. Durduran, “A low memory cost model based reconstruction algorithm exploting translational symmetry for photoacoustic microscopy,” Biomed Opt Express4, 2813 (2013).
[CrossRef]

Viator, J. A.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J Acoust Soc Am112, 1536–1544 (2002).
[CrossRef] [PubMed]

Wang, K.

K. Wang, B. Su, P. Brecht, A. Oraevsky, and M. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans Med Imaging30, 203–214 (2012).
[CrossRef]

Wang, L.

L. Wang, Biomedical Optics: Principles and Imaging (Wiley, Hoboken, New Jersey, 2007).

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science335, 1458–1462 (2012).
[CrossRef] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335, 1458–1462 (2012).
[CrossRef] [PubMed]

X. Cai, C. Kim, M. Pramanik, and L. V. Wang, “Photoacoustic tomography of foreign bodies in soft biological tissue,” Journal of Biomedical Optics16, 046017 (2011).
[CrossRef] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat Photonics3, 503–509 (2009).
[CrossRef]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat Protoc2, 797–804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt Express14, 9317–9323 (2006).
[CrossRef] [PubMed]

M. L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt Lett31, 474–476 (2006).
[CrossRef] [PubMed]

G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt Lett30, 507–509 (2005).
[CrossRef] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt Lett30, 625–627 (2005).
[CrossRef] [PubMed]

Wheatley, M. A.

D. M. El-Sherif and M. A. Wheatley, “Development of a novel method for synthesis of a polymeric ultrasound contrast agent,” J. Biomed. Mater. Res.66A, 347–355 (2003).
[CrossRef]

Williams, S. F.

E. K. Odermatt, L. Funk, R. Bargon, D. P. Martin, S. Rizk, and S. F. Williams, “Monomax suture: A new long-term absorbable monofilament suture made from poly-4-hydroxybutyrate,” International Journal of Polymer Science2012216137 (2012).
[CrossRef]

Yodh, A.

T. Durduran, R. Choe, W. B. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Zhang, E. Z.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy,” Phys Med Biol54, 1035–1046 (2009).
[CrossRef] [PubMed]

Zhang, H. E.

M. L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt Lett31, 474–476 (2006).
[CrossRef] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat Protoc2, 797–804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt Express14, 9317–9323 (2006).
[CrossRef] [PubMed]

Biomed Opt Express (1)

J. Aguirre, A. Giannoula, T. Minagawa, L. Funk, P. Turon, and T. Durduran, “A low memory cost model based reconstruction algorithm exploting translational symmetry for photoacoustic microscopy,” Biomed Opt Express4, 2813 (2013).
[CrossRef]

Emer. Med.Clin. N.Am (1)

M. E. Moreira and V. J. Markovchik., “Wound management,” Emer. Med.Clin. N.Am25, 873–899 (2007).

Eur. J. Plast. Surg. (1)

O. Gilleard, D. Silver, Z. Ahmad, and V. Devaraj, “The accuracy of ultrasound in evaluating closed flexor tendon ruptures,” Eur. J. Plast. Surg.33, 71–74 (2010).

IEEE Trans Med Imaging (1)

K. Wang, B. Su, P. Brecht, A. Oraevsky, and M. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans Med Imaging30, 203–214 (2012).
[CrossRef]

IEEE Trans Ultrason Ferroelectr Freq Control (1)

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans Ultrason Ferroelectr Freq Control58, 316–326 (2011).
[CrossRef] [PubMed]

International Braz. J. Urol (1)

P. Palma, C. Riccetto, R. Fraga, R. Miaoka, and A. Prando, “Dynamic evaluation of pelvic floor reconstructive surgery using radiopadue meshes and three-dimensional helical ct,” International Braz. J. Urol36, 209–217 (2010).
[CrossRef]

International Journal of Polymer Science (1)

E. K. Odermatt, L. Funk, R. Bargon, D. P. Martin, S. Rizk, and S. F. Williams, “Monomax suture: A new long-term absorbable monofilament suture made from poly-4-hydroxybutyrate,” International Journal of Polymer Science2012216137 (2012).
[CrossRef]

J Acoust Soc Am (2)

C. G. Hoelen and F. F. de Mul, “A new theoretical approach to photoacoustic signal generation,” J Acoust Soc Am106, 11 (1999).

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J Acoust Soc Am112, 1536–1544 (2002).
[CrossRef] [PubMed]

J Biomed Opt (2)

D. Queiros, X. L. Dean-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J Biomed Opt18, 76014 (2013).
[CrossRef]

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J Biomed Opt15, 021314 (2010).
[CrossRef] [PubMed]

J. Biomed. Mater. Res. (1)

D. M. El-Sherif and M. A. Wheatley, “Development of a novel method for synthesis of a polymeric ultrasound contrast agent,” J. Biomed. Mater. Res.66A, 347–355 (2003).
[CrossRef]

Journal of Biomedical Optics (1)

X. Cai, C. Kim, M. Pramanik, and L. V. Wang, “Photoacoustic tomography of foreign bodies in soft biological tissue,” Journal of Biomedical Optics16, 046017 (2011).
[CrossRef] [PubMed]

Med Phys (2)

J. Gateau, M. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med Phys40, 013302 (2013).
[CrossRef] [PubMed]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Model-based optoacoustic inversion with arbitrary-shape detectors,” Med Phys38, 4285–4295 (2011).
[CrossRef] [PubMed]

Nat Methods (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat Methods7, 603–614 (2010).
[CrossRef] [PubMed]

Nat Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat Photonics3, 503–509 (2009).
[CrossRef]

Nat Protoc (2)

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat Protoc2, 797–804 (2007).
[CrossRef] [PubMed]

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat Protoc6, 1121–1129 (2011).
[CrossRef] [PubMed]

Neurourology and Urodynamics (1)

I. Sandaite, F. Claus, A. Mullen, D. De Ridder, and J. Depreset, “Experimental mri-contrast imaging of suture and mesh materials with fe3o4 -containing polivinylidenefluoride polymers designed for pelvic floor surgery,” Neurourology and Urodynamics30, 1114–1115 (2011).

Opt Express (1)

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt Express14, 9317–9323 (2006).
[CrossRef] [PubMed]

Opt Lett (4)

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt Lett30, 625–627 (2005).
[CrossRef] [PubMed]

M. L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt Lett31, 474–476 (2006).
[CrossRef] [PubMed]

M. A. Araque Caballero, A. Rosenthal, J. Gateau, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic imaging using focused detector scanning,” Opt Lett37, 4080–4082 (2012).
[CrossRef] [PubMed]

G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt Lett30, 507–509 (2005).
[CrossRef] [PubMed]

Phys Med Biol (1)

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy,” Phys Med Biol54, 1035–1046 (2009).
[CrossRef] [PubMed]

Physics in Medicine and Biology (1)

X. L. Dean-Ben, D. Razansky, and V. Ntziachristos, “The effects of acoustic attenuation in optoacoustic signals,” Physics in Medicine and Biology56, 6129 (2011).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Science (2)

L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science335, 1458–1462 (2012).
[CrossRef] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335, 1458–1462 (2012).
[CrossRef] [PubMed]

Surgery (1)

K. A. Patel and E. Thomas, “Sutures, ligatures and staples,” Surgery23, 56–60 (2005).

Ultrasound Med Biol (1)

F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D. A. Christopher, and D. H. Turnbull, “Advances in ultrasound biomicroscopy,” Ultrasound Med Biol26, 1–27 (2000).
[CrossRef] [PubMed]

Other (2)

R. L. Reis and J. S. Roman, Biodegradable Systems in Tissue Engineering and Regenerative Medicine (CRC Press, 2004).
[CrossRef]

L. Wang, Biomedical Optics: Principles and Imaging (Wiley, Hoboken, New Jersey, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic representation of the acquisition of one B-scan.

Fig. 2
Fig. 2

Picture of the PAM scanning head. The trace of the laser is shown in red.

Fig. 3
Fig. 3

(a) A suture and the holder before placement in the PAM system and (b) the phantom and the suture before adding Lipofundina solution.

Fig. 4
Fig. 4

(a) Numerically simulated photoacoustic signal generated by a solid cylinder. The diameter of the cylinder was estimated from the peak-to-peak equivalent distance (Δt·vs) from the peaks pointed with the red arrows. (b) Plot of the diameter measured from the simulated photoacoustics signals (Dm) vs the simulated diameter of the sutures (Ds). After doing a linear regression, the goodness of the fit was 0,99.

Fig. 5
Fig. 5

An optical microscope image of a non-degraded suture corresponding to the Group 1 (a) and an optical microscope image of a degraded suture corresponding to the Group 2 (b). The dashed lines represent the profiles for which the full-width-half-maximum is calculated (c and d).

Fig. 6
Fig. 6

(a) A raw 2D image corresponding to one B-scan of a suture immersed in a turbid medium. The dashed line corresponds to the A-line from which the diameter is measured. (b) A-line corresponding to the dashed line. The peaks from which the peak-to-peak to distance is measured are pointed by the red arrows.

Fig. 7
Fig. 7

Estimated diameters of all the sutures corresponding to the phantom experiment. The triangles represent the measures obtained from the optical microscope (OM) whereas the circles correspond to the photoacoustic microscope (PAM) measures. The non-degraded sutures are represented in Group 1 whereas the degraded are in Group 2. The suture is assumed to be cylindrical and then, the diameters measured in the axial cross-section (with PAM) or the lateral view (with OM) are equivalent.

Fig. 8
Fig. 8

(a) Two raw 2D images showing the photoacoustic signal (a.u.) from the suture at two depths; 3.3 mm below the surface and 8.4 mm below the surface; (b)–(c) plots of the A-line of the planes without suture and (d)–(e) plots of the A-line of the planes with the signal of the suture. Quadriphasic signals that are due to the presence of a suture are distinguishable from the background noise and artifacts.

Fig. 9
Fig. 9

Estimation of the diameter of the suture at different depths from the PAM images.

Fig. 10
Fig. 10

2D raw photoacoustic image corresponding to one B-Scan for one euthanized mouse.

Fig. 11
Fig. 11

Estimated diameters of the all the sutures corresponding to the ex vivo mice experiments. The circles show the measures obtained from the photoacoustic microscope (PAM) whereas the triangles correspond to the optical microscope (OM) measures.

Tables (1)

Tables Icon

Table 1 Mean values and the standard deviation of the measured diameters of the sutures of each group obtained with each technique.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C = avg ( D real ) avg ( D PAM ) .

Metrics