Abstract

Speckle variance optical coherence angiography (OCA) was used to characterize the vascular tissue response from craniotomy, window implantation, and electrode insertion in mouse motor cortex. We observed initial vasodilation ~40% greater than original diameter 2-3 days post-surgery (dps). After 4 weeks, dilation subsided in large vessels (>50 µm diameter) but persisted in smaller vessels (25-50 µm diameter). Neovascularization began 8-12 dps and vessel migration continued throughout the study. Vasodilation and neovascularization were primarily associated with craniotomy and window implantation rather than electrode insertion. Initial evidence of capillary re-mapping in the region surrounding the implanted electrode was manifest in OCA image dissimilarity. Further investigation, including higher resolution imaging, is required to validate the finding. Spontaneous lesions also occurred in many electrode animals, though the inception point appeared random and not directly associated with electrode insertion. OCA allows high resolution, label-free in vivo visualization of neurovascular tissue, which may help determine any biological contribution to chronic electrode signal degradation. Vascular and flow-based biomarkers can aid development of novel neural prostheses.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35(1), 43–45 (2010).
    [CrossRef] [PubMed]
  2. H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express4(6), 803–821 (2013).
    [CrossRef] [PubMed]
  3. G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express3(10), 2669–2680 (2012).
    [CrossRef] [PubMed]
  4. J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express15(20), 12636–12653 (2007).
    [CrossRef] [PubMed]
  5. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express20(18), 20516–20534 (2012).
    [CrossRef] [PubMed]
  6. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007).
    [CrossRef] [PubMed]
  7. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express17(11), 8926–8940 (2009).
    [CrossRef] [PubMed]
  8. V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express20(3), 2220–2239 (2012).
    [CrossRef] [PubMed]
  9. V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express3(3), 612–629 (2012).
    [CrossRef] [PubMed]
  10. H. Radhakrishnan and V. J. Srinivasan, “Compartment-resolved imaging of cortical functional hyperemia with OCT angiography,” Biomed. Opt. Express4(8), 1255–1268 (2013).
    [CrossRef] [PubMed]
  11. J. Lee, J. Y. Jiang, W. Wu, F. Lesage, and D. A. Boas, “Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux,” Biomed. Opt. Express5(4), 1160–1172 (2014).
    [CrossRef] [PubMed]
  12. Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res.81(1), 73–80 (2011).
    [CrossRef] [PubMed]
  13. V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS ONE8(8), e71478 (2013).
    [CrossRef] [PubMed]
  14. L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature485(7398), 372–375 (2012).
    [CrossRef] [PubMed]
  15. S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, and M. J. Black, “Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia,” J. Neural Eng.5(4), 455–476 (2008).
    [CrossRef] [PubMed]
  16. S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, G. M. Friehs, and M. J. Black, “Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia,” IEEE Trans. Neural Syst. Rehabil. Eng.19(2), 193–203 (2011).
    [CrossRef] [PubMed]
  17. D. M. Durand, M. Ghovanloo, and E. Krames, “Time to address the problems at the neural interface,” J. Neural Eng.11(2), 020201 (2014).
    [CrossRef] [PubMed]
  18. J. W. Judy, “Neural interfaces for upper-limb prosthesis control: opportunities to improve long-term reliability,” IEEE Pulse3(2), 57–60 (2012).
    [CrossRef] [PubMed]
  19. V. S. Polikov, P. A. Tresco, and W. M. Reichert, “Response of brain tissue to chronically implanted neural electrodes,” J. Neurosci. Methods148(1), 1–18 (2005).
    [CrossRef] [PubMed]
  20. A. Prasad, Q.-S. Xue, V. Sankar, T. Nishida, G. Shaw, W. J. Streit, and J. C. Sanchez, “Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants,” J. Neural Eng.9(5), 056015 (2012).
    [CrossRef] [PubMed]
  21. T. D. Kozai, A. L. Vazquez, C. L. Weaver, S.-G. Kim, and X. T. Cui, “In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes,” J. Neural Eng.9(6), 066001 (2012).
    [CrossRef] [PubMed]
  22. P. Takmakov, K. Ruda, S. K. Phillips, I. S. Isayeva, V. Krauthamer, and C. G. Welle, “Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species,” J. Neural Eng.submitted.
  23. C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
    [CrossRef] [PubMed]
  24. T. Hayashi, K. Deguchi, S. Nagotani, H. Zhang, Y. Sehara, A. Tsuchiya, and K. Abe, “Cerebral ischemia and angiogenesis,” Curr. Neurovasc. Res.3(2), 119–129 (2006).
    [CrossRef] [PubMed]
  25. T. L. Roth, D. Nayak, T. Atanasijevic, A. P. Koretsky, L. L. Latour, and D. B. McGavern, “Transcranial amelioration of inflammation and cell death after brain injury,” Nature505(7482), 223–228 (2013).
    [CrossRef] [PubMed]
  26. A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
    [CrossRef] [PubMed]
  27. P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic imaging and manipulation of cells and vessels through a polished and reinforced thinned-skull,” Nat. Methods7, 981–984 (2010).
    [CrossRef] [PubMed]
  28. A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab.32(7), 1277–1309 (2012).
    [CrossRef] [PubMed]
  29. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
    [CrossRef] [PubMed]
  30. J. G. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” J. Opt. Soc. Am. A2(7), 1160–1169 (1985).
    [CrossRef] [PubMed]
  31. N. A. Lassen and M. S. Christensen, “Physiology of cerebral blood flow,” Br. J. Anaesth.48(8), 719–734 (1976).
    [CrossRef] [PubMed]
  32. A. A. Schendel, S. Thongpang, S. K. Brodnick, T. J. Richner, B. D. B. Lindevig, L. Krugner-Higby, and J. C. Williams, “A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices,” J. Neurosci. Methods218(1), 121–130 (2013).
    [CrossRef] [PubMed]

2014 (2)

2013 (5)

H. Radhakrishnan and V. J. Srinivasan, “Compartment-resolved imaging of cortical functional hyperemia with OCT angiography,” Biomed. Opt. Express4(8), 1255–1268 (2013).
[CrossRef] [PubMed]

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS ONE8(8), e71478 (2013).
[CrossRef] [PubMed]

H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express4(6), 803–821 (2013).
[CrossRef] [PubMed]

T. L. Roth, D. Nayak, T. Atanasijevic, A. P. Koretsky, L. L. Latour, and D. B. McGavern, “Transcranial amelioration of inflammation and cell death after brain injury,” Nature505(7482), 223–228 (2013).
[CrossRef] [PubMed]

A. A. Schendel, S. Thongpang, S. K. Brodnick, T. J. Richner, B. D. B. Lindevig, L. Krugner-Higby, and J. C. Williams, “A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices,” J. Neurosci. Methods218(1), 121–130 (2013).
[CrossRef] [PubMed]

2012 (9)

A. Prasad, Q.-S. Xue, V. Sankar, T. Nishida, G. Shaw, W. J. Streit, and J. C. Sanchez, “Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants,” J. Neural Eng.9(5), 056015 (2012).
[CrossRef] [PubMed]

T. D. Kozai, A. L. Vazquez, C. L. Weaver, S.-G. Kim, and X. T. Cui, “In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes,” J. Neural Eng.9(6), 066001 (2012).
[CrossRef] [PubMed]

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab.32(7), 1277–1309 (2012).
[CrossRef] [PubMed]

G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express3(10), 2669–2680 (2012).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express20(18), 20516–20534 (2012).
[CrossRef] [PubMed]

V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express20(3), 2220–2239 (2012).
[CrossRef] [PubMed]

V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express3(3), 612–629 (2012).
[CrossRef] [PubMed]

L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature485(7398), 372–375 (2012).
[CrossRef] [PubMed]

J. W. Judy, “Neural interfaces for upper-limb prosthesis control: opportunities to improve long-term reliability,” IEEE Pulse3(2), 57–60 (2012).
[CrossRef] [PubMed]

2011 (2)

S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, G. M. Friehs, and M. J. Black, “Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia,” IEEE Trans. Neural Syst. Rehabil. Eng.19(2), 193–203 (2011).
[CrossRef] [PubMed]

Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res.81(1), 73–80 (2011).
[CrossRef] [PubMed]

2010 (2)

V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35(1), 43–45 (2010).
[CrossRef] [PubMed]

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic imaging and manipulation of cells and vessels through a polished and reinforced thinned-skull,” Nat. Methods7, 981–984 (2010).
[CrossRef] [PubMed]

2009 (2)

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express17(11), 8926–8940 (2009).
[CrossRef] [PubMed]

2008 (2)

S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, and M. J. Black, “Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia,” J. Neural Eng.5(4), 455–476 (2008).
[CrossRef] [PubMed]

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

T. Hayashi, K. Deguchi, S. Nagotani, H. Zhang, Y. Sehara, A. Tsuchiya, and K. Abe, “Cerebral ischemia and angiogenesis,” Curr. Neurovasc. Res.3(2), 119–129 (2006).
[CrossRef] [PubMed]

2005 (1)

V. S. Polikov, P. A. Tresco, and W. M. Reichert, “Response of brain tissue to chronically implanted neural electrodes,” J. Neurosci. Methods148(1), 1–18 (2005).
[CrossRef] [PubMed]

1985 (1)

1976 (1)

N. A. Lassen and M. S. Christensen, “Physiology of cerebral blood flow,” Br. J. Anaesth.48(8), 719–734 (1976).
[CrossRef] [PubMed]

Abe, K.

T. Hayashi, K. Deguchi, S. Nagotani, H. Zhang, Y. Sehara, A. Tsuchiya, and K. Abe, “Cerebral ischemia and angiogenesis,” Curr. Neurovasc. Res.3(2), 119–129 (2006).
[CrossRef] [PubMed]

Akassoglou, K.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic imaging and manipulation of cells and vessels through a polished and reinforced thinned-skull,” Nat. Methods7, 981–984 (2010).
[CrossRef] [PubMed]

Alkayed, N. J.

Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res.81(1), 73–80 (2011).
[CrossRef] [PubMed]

An, L.

Atanasijevic, T.

T. L. Roth, D. Nayak, T. Atanasijevic, A. P. Koretsky, L. L. Latour, and D. B. McGavern, “Transcranial amelioration of inflammation and cell death after brain injury,” Nature505(7482), 223–228 (2013).
[CrossRef] [PubMed]

Ayata, C.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS ONE8(8), e71478 (2013).
[CrossRef] [PubMed]

Bacher, D.

L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature485(7398), 372–375 (2012).
[CrossRef] [PubMed]

Barry, S.

Black, M. J.

S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, G. M. Friehs, and M. J. Black, “Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia,” IEEE Trans. Neural Syst. Rehabil. Eng.19(2), 193–203 (2011).
[CrossRef] [PubMed]

S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, and M. J. Black, “Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia,” J. Neural Eng.5(4), 455–476 (2008).
[CrossRef] [PubMed]

Blasi, F.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS ONE8(8), e71478 (2013).
[CrossRef] [PubMed]

Blinder, P.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic imaging and manipulation of cells and vessels through a polished and reinforced thinned-skull,” Nat. Methods7, 981–984 (2010).
[CrossRef] [PubMed]

Boas, D. A.

Bonhoeffer, T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Braaf, B.

Brodnick, S. K.

A. A. Schendel, S. Thongpang, S. K. Brodnick, T. J. Richner, B. D. B. Lindevig, L. Krugner-Higby, and J. C. Williams, “A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices,” J. Neurosci. Methods218(1), 121–130 (2013).
[CrossRef] [PubMed]

Cable, A. E.

Can, A.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS ONE8(8), e71478 (2013).
[CrossRef] [PubMed]

Cash, S. S.

L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature485(7398), 372–375 (2012).
[CrossRef] [PubMed]

Chen, Z.

Chiu, S. J.

Chow, D. K.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Christensen, M. S.

N. A. Lassen and M. S. Christensen, “Physiology of cerebral blood flow,” Br. J. Anaesth.48(8), 719–734 (1976).
[CrossRef] [PubMed]

Chuckowree, J.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Climov, M.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS ONE8(8), e71478 (2013).
[CrossRef] [PubMed]

Cui, X. T.

T. D. Kozai, A. L. Vazquez, C. L. Weaver, S.-G. Kim, and X. T. Cui, “In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes,” J. Neural Eng.9(6), 066001 (2012).
[CrossRef] [PubMed]

Daneshmand, A.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS ONE8(8), e71478 (2013).
[CrossRef] [PubMed]

Daugman, J. G.

Davalos, D.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic imaging and manipulation of cells and vessels through a polished and reinforced thinned-skull,” Nat. Methods7, 981–984 (2010).
[CrossRef] [PubMed]

de Boer, J. F.

De Paola, V.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Deguchi, K.

T. Hayashi, K. Deguchi, S. Nagotani, H. Zhang, Y. Sehara, A. Tsuchiya, and K. Abe, “Cerebral ischemia and angiogenesis,” Curr. Neurovasc. Res.3(2), 119–129 (2006).
[CrossRef] [PubMed]

Donoghue, J. P.

L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature485(7398), 372–375 (2012).
[CrossRef] [PubMed]

S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, G. M. Friehs, and M. J. Black, “Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia,” IEEE Trans. Neural Syst. Rehabil. Eng.19(2), 193–203 (2011).
[CrossRef] [PubMed]

S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, and M. J. Black, “Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia,” J. Neural Eng.5(4), 455–476 (2008).
[CrossRef] [PubMed]

Drew, P. J.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab.32(7), 1277–1309 (2012).
[CrossRef] [PubMed]

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic imaging and manipulation of cells and vessels through a polished and reinforced thinned-skull,” Nat. Methods7, 981–984 (2010).
[CrossRef] [PubMed]

Driscoll, J. D.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab.32(7), 1277–1309 (2012).
[CrossRef] [PubMed]

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic imaging and manipulation of cells and vessels through a polished and reinforced thinned-skull,” Nat. Methods7, 981–984 (2010).
[CrossRef] [PubMed]

Durand, D. M.

D. M. Durand, M. Ghovanloo, and E. Krames, “Time to address the problems at the neural interface,” J. Neural Eng.11(2), 020201 (2014).
[CrossRef] [PubMed]

Ebner, F. F.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Eikermann-Haerter, K.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS ONE8(8), e71478 (2013).
[CrossRef] [PubMed]

Estrada, R.

Farsiu, S.

Ferguson, R. D.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Fingler, J.

Fraser, S. E.

Friedman, B.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Friehs, G. M.

S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, G. M. Friehs, and M. J. Black, “Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia,” IEEE Trans. Neural Syst. Rehabil. Eng.19(2), 193–203 (2011).
[CrossRef] [PubMed]

Ghovanloo, M.

D. M. Durand, M. Ghovanloo, and E. Krames, “Time to address the problems at the neural interface,” J. Neural Eng.11(2), 020201 (2014).
[CrossRef] [PubMed]

Grafe, M. R.

Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res.81(1), 73–80 (2011).
[CrossRef] [PubMed]

Gruber, A.

Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res.81(1), 73–80 (2011).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

Haddadin, S.

L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature485(7398), 372–375 (2012).
[CrossRef] [PubMed]

Hammer, D. X.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Hanson, S. R.

Hayashi, T.

T. Hayashi, K. Deguchi, S. Nagotani, H. Zhang, Y. Sehara, A. Tsuchiya, and K. Abe, “Cerebral ischemia and angiogenesis,” Curr. Neurovasc. Res.3(2), 119–129 (2006).
[CrossRef] [PubMed]

Hendargo, H. C.

Hochberg, L. R.

L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature485(7398), 372–375 (2012).
[CrossRef] [PubMed]

S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, G. M. Friehs, and M. J. Black, “Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia,” IEEE Trans. Neural Syst. Rehabil. Eng.19(2), 193–203 (2011).
[CrossRef] [PubMed]

S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, and M. J. Black, “Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia,” J. Neural Eng.5(4), 455–476 (2008).
[CrossRef] [PubMed]

Hofer, S. B.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Holtmaat, A.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Hübener, M.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Hurst, S.

Iftimia, N. V.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Isayeva, I. S.

P. Takmakov, K. Ruda, S. K. Phillips, I. S. Isayeva, V. Krauthamer, and C. G. Welle, “Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species,” J. Neural Eng.submitted.

Izatt, J. A.

Jacques, S. L.

Jarosiewicz, B.

L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature485(7398), 372–375 (2012).
[CrossRef] [PubMed]

Jia, Y.

Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res.81(1), 73–80 (2011).
[CrossRef] [PubMed]

Jiang, J. Y.

Judy, J. W.

J. W. Judy, “Neural interfaces for upper-limb prosthesis control: opportunities to improve long-term reliability,” IEEE Pulse3(2), 57–60 (2012).
[CrossRef] [PubMed]

Keck, T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Kim, S.-G.

T. D. Kozai, A. L. Vazquez, C. L. Weaver, S.-G. Kim, and X. T. Cui, “In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes,” J. Neural Eng.9(6), 066001 (2012).
[CrossRef] [PubMed]

Kim, S.-P.

S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, G. M. Friehs, and M. J. Black, “Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia,” IEEE Trans. Neural Syst. Rehabil. Eng.19(2), 193–203 (2011).
[CrossRef] [PubMed]

S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, and M. J. Black, “Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia,” J. Neural Eng.5(4), 455–476 (2008).
[CrossRef] [PubMed]

Kleinfeld, D.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab.32(7), 1277–1309 (2012).
[CrossRef] [PubMed]

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic imaging and manipulation of cells and vessels through a polished and reinforced thinned-skull,” Nat. Methods7, 981–984 (2010).
[CrossRef] [PubMed]

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Knott, G.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Knutsen, P. M.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic imaging and manipulation of cells and vessels through a polished and reinforced thinned-skull,” Nat. Methods7, 981–984 (2010).
[CrossRef] [PubMed]

Koretsky, A. P.

T. L. Roth, D. Nayak, T. Atanasijevic, A. P. Koretsky, L. L. Latour, and D. B. McGavern, “Transcranial amelioration of inflammation and cell death after brain injury,” Nature505(7482), 223–228 (2013).
[CrossRef] [PubMed]

Kozai, T. D.

T. D. Kozai, A. L. Vazquez, C. L. Weaver, S.-G. Kim, and X. T. Cui, “In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes,” J. Neural Eng.9(6), 066001 (2012).
[CrossRef] [PubMed]

Krames, E.

D. M. Durand, M. Ghovanloo, and E. Krames, “Time to address the problems at the neural interface,” J. Neural Eng.11(2), 020201 (2014).
[CrossRef] [PubMed]

Krauthamer, V.

P. Takmakov, K. Ruda, S. K. Phillips, I. S. Isayeva, V. Krauthamer, and C. G. Welle, “Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species,” J. Neural Eng.submitted.

Krugner-Higby, L.

A. A. Schendel, S. Thongpang, S. K. Brodnick, T. J. Richner, B. D. B. Lindevig, L. Krugner-Higby, and J. C. Williams, “A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices,” J. Neurosci. Methods218(1), 121–130 (2013).
[CrossRef] [PubMed]

Lassen, N. A.

N. A. Lassen and M. S. Christensen, “Physiology of cerebral blood flow,” Br. J. Anaesth.48(8), 719–734 (1976).
[CrossRef] [PubMed]

Latour, L. L.

T. L. Roth, D. Nayak, T. Atanasijevic, A. P. Koretsky, L. L. Latour, and D. B. McGavern, “Transcranial amelioration of inflammation and cell death after brain injury,” Nature505(7482), 223–228 (2013).
[CrossRef] [PubMed]

Lee, J.

Lee, J. H.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS ONE8(8), e71478 (2013).
[CrossRef] [PubMed]

Lee, W. C.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Lesage, F.

Lin, A. J.

Lindevig, B. D. B.

A. A. Schendel, S. Thongpang, S. K. Brodnick, T. J. Richner, B. D. B. Lindevig, L. Krugner-Higby, and J. C. Williams, “A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices,” J. Neurosci. Methods218(1), 121–130 (2013).
[CrossRef] [PubMed]

Liu, G.

Liu, J.

L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature485(7398), 372–375 (2012).
[CrossRef] [PubMed]

Lo, E. H.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS ONE8(8), e71478 (2013).
[CrossRef] [PubMed]

V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express3(3), 612–629 (2012).
[CrossRef] [PubMed]

Lyden, P. D.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Ma, Z.

Mandeville, E. T.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS ONE8(8), e71478 (2013).
[CrossRef] [PubMed]

V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express3(3), 612–629 (2012).
[CrossRef] [PubMed]

Masse, N. Y.

L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature485(7398), 372–375 (2012).
[CrossRef] [PubMed]

McGavern, D. B.

T. L. Roth, D. Nayak, T. Atanasijevic, A. P. Koretsky, L. L. Latour, and D. B. McGavern, “Transcranial amelioration of inflammation and cell death after brain injury,” Nature505(7482), 223–228 (2013).
[CrossRef] [PubMed]

Mostany, R.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Mrsic-Flogel, T. D.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Nagotani, S.

T. Hayashi, K. Deguchi, S. Nagotani, H. Zhang, Y. Sehara, A. Tsuchiya, and K. Abe, “Cerebral ischemia and angiogenesis,” Curr. Neurovasc. Res.3(2), 119–129 (2006).
[CrossRef] [PubMed]

Nayak, D.

T. L. Roth, D. Nayak, T. Atanasijevic, A. P. Koretsky, L. L. Latour, and D. B. McGavern, “Transcranial amelioration of inflammation and cell death after brain injury,” Nature505(7482), 223–228 (2013).
[CrossRef] [PubMed]

Nedivi, E.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Nishida, T.

A. Prasad, Q.-S. Xue, V. Sankar, T. Nishida, G. Shaw, W. J. Streit, and J. C. Sanchez, “Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants,” J. Neural Eng.9(5), 056015 (2012).
[CrossRef] [PubMed]

Nishimura, N.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab.32(7), 1277–1309 (2012).
[CrossRef] [PubMed]

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Phillips, S. K.

P. Takmakov, K. Ruda, S. K. Phillips, I. S. Isayeva, V. Krauthamer, and C. G. Welle, “Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species,” J. Neural Eng.submitted.

Polikov, V. S.

V. S. Polikov, P. A. Tresco, and W. M. Reichert, “Response of brain tissue to chronically implanted neural electrodes,” J. Neurosci. Methods148(1), 1–18 (2005).
[CrossRef] [PubMed]

Portera-Cailliau, C.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Prasad, A.

A. Prasad, Q.-S. Xue, V. Sankar, T. Nishida, G. Shaw, W. J. Streit, and J. C. Sanchez, “Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants,” J. Neural Eng.9(5), 056015 (2012).
[CrossRef] [PubMed]

Radhakrishnan, H.

Reichert, W. M.

V. S. Polikov, P. A. Tresco, and W. M. Reichert, “Response of brain tissue to chronically implanted neural electrodes,” J. Neurosci. Methods148(1), 1–18 (2005).
[CrossRef] [PubMed]

Richner, T. J.

A. A. Schendel, S. Thongpang, S. K. Brodnick, T. J. Richner, B. D. B. Lindevig, L. Krugner-Higby, and J. C. Williams, “A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices,” J. Neurosci. Methods218(1), 121–130 (2013).
[CrossRef] [PubMed]

Roth, T. L.

T. L. Roth, D. Nayak, T. Atanasijevic, A. P. Koretsky, L. L. Latour, and D. B. McGavern, “Transcranial amelioration of inflammation and cell death after brain injury,” Nature505(7482), 223–228 (2013).
[CrossRef] [PubMed]

Ruda, K.

P. Takmakov, K. Ruda, S. K. Phillips, I. S. Isayeva, V. Krauthamer, and C. G. Welle, “Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species,” J. Neural Eng.submitted.

Sakadžic, S.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS ONE8(8), e71478 (2013).
[CrossRef] [PubMed]

Sanchez, J. C.

A. Prasad, Q.-S. Xue, V. Sankar, T. Nishida, G. Shaw, W. J. Streit, and J. C. Sanchez, “Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants,” J. Neural Eng.9(5), 056015 (2012).
[CrossRef] [PubMed]

Sankar, V.

A. Prasad, Q.-S. Xue, V. Sankar, T. Nishida, G. Shaw, W. J. Streit, and J. C. Sanchez, “Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants,” J. Neural Eng.9(5), 056015 (2012).
[CrossRef] [PubMed]

Schaffer, C. B.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab.32(7), 1277–1309 (2012).
[CrossRef] [PubMed]

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Schendel, A. A.

A. A. Schendel, S. Thongpang, S. K. Brodnick, T. J. Richner, B. D. B. Lindevig, L. Krugner-Higby, and J. C. Williams, “A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices,” J. Neurosci. Methods218(1), 121–130 (2013).
[CrossRef] [PubMed]

Schroeder, L. F.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Schwartz, D.

Sehara, Y.

T. Hayashi, K. Deguchi, S. Nagotani, H. Zhang, Y. Sehara, A. Tsuchiya, and K. Abe, “Cerebral ischemia and angiogenesis,” Curr. Neurovasc. Res.3(2), 119–129 (2006).
[CrossRef] [PubMed]

Shaw, G.

A. Prasad, Q.-S. Xue, V. Sankar, T. Nishida, G. Shaw, W. J. Streit, and J. C. Sanchez, “Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants,” J. Neural Eng.9(5), 056015 (2012).
[CrossRef] [PubMed]

Shih, A. Y.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab.32(7), 1277–1309 (2012).
[CrossRef] [PubMed]

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic imaging and manipulation of cells and vessels through a polished and reinforced thinned-skull,” Nat. Methods7, 981–984 (2010).
[CrossRef] [PubMed]

Simeral, J. D.

L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature485(7398), 372–375 (2012).
[CrossRef] [PubMed]

S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, G. M. Friehs, and M. J. Black, “Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia,” IEEE Trans. Neural Syst. Rehabil. Eng.19(2), 193–203 (2011).
[CrossRef] [PubMed]

S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, and M. J. Black, “Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia,” J. Neural Eng.5(4), 455–476 (2008).
[CrossRef] [PubMed]

Srinivasan, V. J.

Streit, W. J.

A. Prasad, Q.-S. Xue, V. Sankar, T. Nishida, G. Shaw, W. J. Streit, and J. C. Sanchez, “Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants,” J. Neural Eng.9(5), 056015 (2012).
[CrossRef] [PubMed]

Svoboda, K.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Takmakov, P.

P. Takmakov, K. Ruda, S. K. Phillips, I. S. Isayeva, V. Krauthamer, and C. G. Welle, “Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species,” J. Neural Eng.submitted.

Thongpang, S.

A. A. Schendel, S. Thongpang, S. K. Brodnick, T. J. Richner, B. D. B. Lindevig, L. Krugner-Higby, and J. C. Williams, “A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices,” J. Neurosci. Methods218(1), 121–130 (2013).
[CrossRef] [PubMed]

Tomasi, C.

Trachtenberg, J. T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Tresco, P. A.

V. S. Polikov, P. A. Tresco, and W. M. Reichert, “Response of brain tissue to chronically implanted neural electrodes,” J. Neurosci. Methods148(1), 1–18 (2005).
[CrossRef] [PubMed]

Tromberg, B. J.

Tsai, P. S.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic imaging and manipulation of cells and vessels through a polished and reinforced thinned-skull,” Nat. Methods7, 981–984 (2010).
[CrossRef] [PubMed]

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Tsuchiya, A.

T. Hayashi, K. Deguchi, S. Nagotani, H. Zhang, Y. Sehara, A. Tsuchiya, and K. Abe, “Cerebral ischemia and angiogenesis,” Curr. Neurovasc. Res.3(2), 119–129 (2006).
[CrossRef] [PubMed]

Ustun, T. E.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

van der Smagt, P.

L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature485(7398), 372–375 (2012).
[CrossRef] [PubMed]

Vazquez, A. L.

T. D. Kozai, A. L. Vazquez, C. L. Weaver, S.-G. Kim, and X. T. Cui, “In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes,” J. Neural Eng.9(6), 066001 (2012).
[CrossRef] [PubMed]

Vermeer, K. A.

Vienola, K. V.

Vogel, J.

L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature485(7398), 372–375 (2012).
[CrossRef] [PubMed]

Wang, R. K.

Weaver, C. L.

T. D. Kozai, A. L. Vazquez, C. L. Weaver, S.-G. Kim, and X. T. Cui, “In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes,” J. Neural Eng.9(6), 066001 (2012).
[CrossRef] [PubMed]

Welle, C. G.

P. Takmakov, K. Ruda, S. K. Phillips, I. S. Isayeva, V. Krauthamer, and C. G. Welle, “Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species,” J. Neural Eng.submitted.

Wilbrecht, L.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Williams, J. C.

A. A. Schendel, S. Thongpang, S. K. Brodnick, T. J. Richner, B. D. B. Lindevig, L. Krugner-Higby, and J. C. Williams, “A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices,” J. Neurosci. Methods218(1), 121–130 (2013).
[CrossRef] [PubMed]

Wu, W.

Xue, Q.-S.

A. Prasad, Q.-S. Xue, V. Sankar, T. Nishida, G. Shaw, W. J. Streit, and J. C. Sanchez, “Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants,” J. Neural Eng.9(5), 056015 (2012).
[CrossRef] [PubMed]

Yang, C.

Yaseen, M. A.

Yu, E.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS ONE8(8), e71478 (2013).
[CrossRef] [PubMed]

Zhang, H.

T. Hayashi, K. Deguchi, S. Nagotani, H. Zhang, Y. Sehara, A. Tsuchiya, and K. Abe, “Cerebral ischemia and angiogenesis,” Curr. Neurovasc. Res.3(2), 119–129 (2006).
[CrossRef] [PubMed]

Biomed. Opt. Express (5)

Br. J. Anaesth. (1)

N. A. Lassen and M. S. Christensen, “Physiology of cerebral blood flow,” Br. J. Anaesth.48(8), 719–734 (1976).
[CrossRef] [PubMed]

Curr. Neurovasc. Res. (1)

T. Hayashi, K. Deguchi, S. Nagotani, H. Zhang, Y. Sehara, A. Tsuchiya, and K. Abe, “Cerebral ischemia and angiogenesis,” Curr. Neurovasc. Res.3(2), 119–129 (2006).
[CrossRef] [PubMed]

IEEE Pulse (1)

J. W. Judy, “Neural interfaces for upper-limb prosthesis control: opportunities to improve long-term reliability,” IEEE Pulse3(2), 57–60 (2012).
[CrossRef] [PubMed]

IEEE Trans. Neural Syst. Rehabil. Eng. (1)

S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, G. M. Friehs, and M. J. Black, “Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia,” IEEE Trans. Neural Syst. Rehabil. Eng.19(2), 193–203 (2011).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab.32(7), 1277–1309 (2012).
[CrossRef] [PubMed]

J. Neural Eng. (4)

S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, and M. J. Black, “Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia,” J. Neural Eng.5(4), 455–476 (2008).
[CrossRef] [PubMed]

D. M. Durand, M. Ghovanloo, and E. Krames, “Time to address the problems at the neural interface,” J. Neural Eng.11(2), 020201 (2014).
[CrossRef] [PubMed]

A. Prasad, Q.-S. Xue, V. Sankar, T. Nishida, G. Shaw, W. J. Streit, and J. C. Sanchez, “Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants,” J. Neural Eng.9(5), 056015 (2012).
[CrossRef] [PubMed]

T. D. Kozai, A. L. Vazquez, C. L. Weaver, S.-G. Kim, and X. T. Cui, “In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes,” J. Neural Eng.9(6), 066001 (2012).
[CrossRef] [PubMed]

J. Neurosci. Methods (2)

V. S. Polikov, P. A. Tresco, and W. M. Reichert, “Response of brain tissue to chronically implanted neural electrodes,” J. Neurosci. Methods148(1), 1–18 (2005).
[CrossRef] [PubMed]

A. A. Schendel, S. Thongpang, S. K. Brodnick, T. J. Richner, B. D. B. Lindevig, L. Krugner-Higby, and J. C. Williams, “A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices,” J. Neurosci. Methods218(1), 121–130 (2013).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Microvasc. Res. (1)

Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res.81(1), 73–80 (2011).
[CrossRef] [PubMed]

Nat. Methods (1)

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic imaging and manipulation of cells and vessels through a polished and reinforced thinned-skull,” Nat. Methods7, 981–984 (2010).
[CrossRef] [PubMed]

Nat. Protoc. (1)

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Nature (2)

T. L. Roth, D. Nayak, T. Atanasijevic, A. P. Koretsky, L. L. Latour, and D. B. McGavern, “Transcranial amelioration of inflammation and cell death after brain injury,” Nature505(7482), 223–228 (2013).
[CrossRef] [PubMed]

L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature485(7398), 372–375 (2012).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

PLoS Biol. (1)

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

PLoS ONE (1)

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS ONE8(8), e71478 (2013).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Other (1)

P. Takmakov, K. Ruda, S. K. Phillips, I. S. Isayeva, V. Krauthamer, and C. G. Welle, “Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species,” J. Neural Eng.submitted.

Supplementary Material (5)

» Media 1: MOV (33373 KB)     
» Media 2: MOV (2202 KB)     
» Media 3: MOV (766 KB)     
» Media 4: MOV (2769 KB)     
» Media 5: MOV (2089 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) SD-OCT setup for mouse cortical angiography and (b) photograph showing window preparation (black arrowhead) with implanted electrode (white arrow).

Fig. 2
Fig. 2

Representative depth planes from OCA volumes for electrode animal W41 (day 19). (a,c) Focus depth 1. (b,d) Focus depth 2 (250 µm below focus depth 1). (a,b) Average projection for superficial plane spanning 0-100 µm below window. (c,d) Maximum projection for deep plane spanning 300-400 µm below window. Accompanying video (Media 1) has side-by-side fly-through from 0 to 800 µm for both focus conditions. Each frame of the video is a running average projection of 8 depth slices (32 µm). Scale bar = 200 µm.

Fig. 3
Fig. 3

Illustrated methodology to quantify cortical vascular dynamics, including vasodilation (a-d), vessel growth (e-g), and capillary remapping (h-l). (a) OCA image plane 100-200 µm for control animal W44 indicating 10 profile locations. (b,c) Line and rectangle ROIs for location 6. (d) Single (dashed line) and 30-line average (solid line) profiles across location 6. Symbols indicate FWHM values. OCA image plane 0-100 µm for control animal W38 for 1 (e), 8 (f) and 27 (g) dps. Thresholded ROI is overlaid on each image. (h) OCA image plane 300-400 µm for electrode animal W51 on 1 dps. ROI is indicated as well as electrode location (arrow). Similarity processing: (i) ROI (day 26), (j) Gabor filtered image, (k) local thresholded image, and (l) XNOR image between day 26 and day 34. Scale bar = 200 µm.

Fig. 4
Fig. 4

Example of vasodilation in electrode animal W43. Shown is the 100-200 µm plane on (a) 1, (b) 3, and (c) 56 dps. Arrow indicates large vessel with massive dilation on day 3 that subsides by day 56. Arrowhead indicates medium vessel with dilation on day 3 that persists on day 56. Accompanying video (Media 2) shows registered stack to visualize vasodilation over the entire time course up to 98 dps. Scale bar = 200 µm.

Fig. 5
Fig. 5

Normalized vessel diameter in (a) large and (b) medium vessels measured with OCA. Control and electrode animals are indicated by filled and open symbols and the average and standard deviation of all data is indicated by lines. Each data point represents an average of five profiles for that animal and day.

Fig. 6
Fig. 6

Representative vessel coverage in control animal W38. (a) Fractional area (%) covered by vessels in first depth plane (0-100 µm) in a 500 × 500 µm region delineated by the box in (b) for 133 dps. Accompanying video (Media 3) shows the time-lapsed registered stack. Scale bar = 200 µm.

Fig. 7
Fig. 7

Fractional area (%) covered by vessel in first depth plane (0-100 µm) for control (closed symbols) and electrode (open symbols) animals in a 500 × 500 µm region. For visual clarity, the curves are aligned to the second minimum, which is set to day 0 (i.e., after vessel dilation and before new vessel growth).

Fig. 8
Fig. 8

Capillary remodeling measured by OCA image similarity. (a) Similarity measured between the last week and all preceding weeks (excluding first two weeks). (b) Average similarity as a function of time separation between OCA images. Linear regression (solid line), 95% confidence limits (dashed line and shaded area), and correlation coefficient are shown for both groups. Accompanying video is the time-lapsed registered stack of the raw, Gabor filtered, and thresholded ROI from electrode animal W51 up to 44 dps (Media 4).

Fig. 9
Fig. 9

Cross-sectional reflectance (a) and angiography (b) images of a lesion in animal W49. En face angiography images from the 300-400 µm depth plane are shown in (c) and (d) for day 1, before formation, and day 50. Line in (d) indicates location of B-scan in (a) and (b). Electrode is denoted by arrow and lesion margin with dashed line. Accompanying video (Media 5) shows the growth in 0-200 µm and 300-400 µm depth planes. Scale bars = 100 µm.

Fig. 10
Fig. 10

En face angiography images 300-400 µm below cortical surface for electrode animals W41, W43, W44, W50, and W51. W41 showed no growth. In the others, the growth is indicated by an arrow. Upper row shows vasculature on day 1 before new growth and lower row show vasculature after lesion formation (dps indicated). Each image is 2 × 2 mm. Scale bar = 200 µm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g( x,y )= k max θ ( f( x,y )h( x , y ,θ,λ ), where
h( x , y ,θ,λ )=exp( x ' 2 +y ' 2 2 σ 2 )cos( 2πx' λ ),
x =xcosθ+ysinθ, and
y =xsinθ+ycosθ;

Metrics