Abstract

In the present work, fiber-based frequency-modulated light scattering interferometry (FMLSI) is developed and employed for studies of optical properties and dynamics in liquid phantoms made from Intralipid®. The fiber-based FMLSI system retrieves the optical properties by examining the intensity fluctuations through the turbid medium in a heterodyne detection scheme using a continuous-wave frequency-modulated coherent light source. A time resolution of 21 ps is obtained, and the experimental results for the diluted Intralipid phantoms show good agreement with the predicted results based on published data. The present system shows great potential for assessment of optical properties as well as dynamic studies in liquid phantoms, dairy products, and human tissues.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Q. Shi and C. A. Anderson, “Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS),” J. Pharm. Sci.99(12), 4766–4783 (2010).
    [CrossRef] [PubMed]
  2. D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, A. Sparén, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges,” Opt. Express21(18), 20941–20953 (2013).
    [CrossRef] [PubMed]
  3. I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterisation,” J. Near Infrared Spectrosc.21(4), 259–268 (2013).
    [CrossRef]
  4. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt.6(2), 167–176 (2001).
    [CrossRef] [PubMed]
  5. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
    [CrossRef] [PubMed]
  6. T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt.17(9), 090901 (2012).
    [CrossRef] [PubMed]
  7. S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol.53(23), 6713–6727 (2008).
    [CrossRef] [PubMed]
  8. A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng.39(4), 1349–1357 (2011).
    [CrossRef] [PubMed]
  9. S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012).
    [CrossRef] [PubMed]
  10. J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics4(11-12), 773–787 (2011).
    [CrossRef] [PubMed]
  11. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol.58(11), R37–R61 (2013).
    [CrossRef] [PubMed]
  12. B. C. Wilson, E. M. Sevick, M. S. Patterson, and B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proceedings of the IEEE (1992).
    [CrossRef]
  13. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
    [CrossRef] [PubMed]
  14. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
    [CrossRef] [PubMed]
  15. L. Mei, S. Svanberg, and G. Somesfalean, “Combined optical porosimetry and gas absorption spectroscopy in gas-filled porous media using diode-laser-based frequency domain photon migration,” Opt. Express20(15), 16942–16954 (2012).
    [CrossRef]
  16. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt.32(30), 6032–6042 (1993).
    [CrossRef] [PubMed]
  17. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, Optimization of low coherence interferometry for quantitative analysis of tissue optical properties, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II (2002).
  18. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt.42(16), 3027–3037 (2003).
    [CrossRef] [PubMed]
  19. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci.40(2), 85–94 (2005).
    [CrossRef] [PubMed]
  20. V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
    [CrossRef] [PubMed]
  21. K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(6), 7664–7667 (1998).
    [CrossRef]
  22. A. Wax, C. H. Yang, R. R. Dasari, and M. S. Feld, “Path-length-resolved dynamic light scattering: Modeling the transition from single to diffusive scattering,” Appl. Opt.40(24), 4222–4227 (2001).
    [CrossRef] [PubMed]
  23. R. Carminati, R. Elaloufi, and J. J. Greffet, “Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light,” Phys. Rev. Lett.92(21), 213903 (2004).
    [CrossRef] [PubMed]
  24. G. Popescu and A. Dogariu, “Optical path-length spectroscopy of wave propagation in random media,” Opt. Lett.24(7), 442–444 (1999).
    [CrossRef] [PubMed]
  25. B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry,” Opt. Express15(15), 9157–9165 (2007).
    [CrossRef] [PubMed]
  26. D. A. Boas, K. K. Bizheva, and A. M. Siegel, “Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media,” Opt. Lett.23(5), 319–321 (1998).
    [CrossRef] [PubMed]
  27. Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997).
    [CrossRef] [PubMed]
  28. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004).
    [CrossRef] [PubMed]
  29. T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A28(10), 2108–2114 (2011).
    [CrossRef] [PubMed]
  30. T. B. Rice, E. Kwan, C. K. Hayakawa, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging,” Biomed. Opt. Express4(12), 2880–2892 (2013).
    [CrossRef] [PubMed]
  31. L. Mei, S. Svanberg, and G. Somesfalean, “Frequency-modulated light scattering in colloidal suspensions,” Appl. Phys. Lett.102(6), 061104 (2013).
    [CrossRef]
  32. C. Holt, T. G. Parker, and D. G. Dalgleish, “Measurement of particle sizes by elastic and quasi-elastic light scattering,” Biochim. Biophys. Acta400(2), 283–292 (1975).
    [CrossRef] [PubMed]
  33. R. Finsy, “Particle sizing by quasi-elastic light-scattering,” Adv. Colloid. Interfac.52, 79–143 (1994).
    [CrossRef]
  34. S. G. Anema and Y. M. Li, “Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size,” J. Dairy Res.70(1), 73–83 (2003).
    [CrossRef] [PubMed]
  35. R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, and S. M. Hussain, “Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique,” Toxicol. Sci.101(2), 239–253 (2008).
    [CrossRef] [PubMed]
  36. Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He-Ne laser spectrometer,” Appl. Phys. Lett.4, 176–178 (1964).
    [CrossRef]
  37. W. Vanmegen and P. N. Pusey, “Dynamic light-scattering study of the glass-transition in a colloidal suspension,” Phys. Rev. A43(10), 5429–5441 (1991).
  38. J. B. Salmon, L. Bécu, S. Manneville, and A. Colin, “Towards local rheology of emulsions under Couette flow using Dynamic Light Scattering,” Eur Phys J E Soft Matter10(3), 209–221 (2003).
    [CrossRef] [PubMed]
  39. M. Berka and J. A. Rice, “Absolute aggregation rate constants in aggregation of kaolinite measured by simultaneous static and dynamic light scattering,” Langmuir20(15), 6152–6157 (2004).
    [CrossRef] [PubMed]
  40. T. Matsunaga and M. Shibayama, “Gel point determination of gelatin hydrogels by dynamic light scattering and rheological measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(3), 030401 (2007).
    [CrossRef] [PubMed]
  41. M. Alexander and D. G. Dalgleish, “Dynamic light scattering techniques and their applications in food science,” Food Biophys.1(1), 2–13 (2006).
    [CrossRef]
  42. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
    [CrossRef] [PubMed]
  43. D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy–Dynamic light scattering in the multiple-scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990).
    [CrossRef]
  44. D. D. Nolte, Optical Interferometry for Biology and Medicine. (Springer, New York, 2011), p.354.
  45. H. P. Marshall and G. Koh, “FMCW radars for snow research,” Cold Reg. Sci. Technol.52(2), 118–131 (2008).
    [CrossRef]
  46. P. E. Pace, “FMCW Radar,” in Detecting and classifying low probability of intercept radar (Artech House, Boston, 2009), 857.
  47. W. Eickhoff and R. Ulrich, “Optical frequency-domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981).
    [CrossRef]
  48. K. Yuksel, M. Wuilpart, V. Moeyaert, and P. Megret, “Optical frequency domain reflectometry: a review,” ICTON: 2009 11th International Conference on Transparent Optical Networks, Vols 1 and 2, 723–727 (2009).
    [CrossRef]
  49. Z. G. Guan, P. Lundin, and S. Svanberg, “Assessment of photon migration in scattering media using heterodyning techniques with a frequency modulated diode laser,” Opt. Express17(18), 16291–16299 (2009).
    [CrossRef] [PubMed]
  50. L. Mei, H. Jayaweera, P. Lundin, S. Svanberg, and G. Somesfalean, “Gas spectroscopy and optical path-length assessment in scattering media using a frequency-modulated continuous-wave diode laser,” Opt. Lett.36(16), 3036–3038 (2011).
    [CrossRef] [PubMed]
  51. L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B109(3), 467–475 (2012).
    [CrossRef]
  52. J. M. Tualle, E. Tinet, and S. Avrillier, “A new and easy way to perform time-resolved measurements of the light scattered by a turbid medium,” Opt. Commun.189(4-6), 211–220 (2001).
    [CrossRef]
  53. J. M. Tualle, H. L. Nghiêm, M. Cheikh, D. Ettori, E. Tinet, and S. Avrillier, “Time-resolved diffusing wave spectroscopy beyond 300 transport mean free paths,” J. Opt. Soc. Am. A23(6), 1452–1457 (2006).
    [CrossRef] [PubMed]
  54. M. Cheikh, H. L. Nghiêm, D. Ettori, E. Tinet, S. Avrillier, and J. M. Tualle, “Time-resolved diffusing wave spectroscopy applied to dynamic heterogeneity imaging,” Opt. Lett.31(15), 2311–2313 (2006).
    [CrossRef] [PubMed]
  55. K. Zarychta, E. Tinet, L. Azizi, S. Avrillier, D. Ettori, and J. M. Tualle, “Time-resolved diffusing wave spectroscopy with a CCD camera,” Opt. Express18(16), 16289–16301 (2010).
    [CrossRef] [PubMed]
  56. J. Zheng, Optical Frequency-Modulated Continuous-Wave (FMCW) Interferometry (Springer, 2005).
  57. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
    [CrossRef] [PubMed]
  58. A. Giusto, R. Saija, M. A. Iatì, P. Denti, F. Borghese, and O. I. Sindoni, “Optical properties of high-density dispersions of particles: application to intralipid solutions,” Appl. Opt.42(21), 4375–4380 (2003).
    [CrossRef] [PubMed]
  59. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16(8), 5907–5925 (2008).
    [CrossRef] [PubMed]
  60. P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
    [CrossRef] [PubMed]
  61. P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt.51(30), 7176–7182 (2012).
    [CrossRef] [PubMed]
  62. A. A. Subash, Master's thesis, Lund University, 2012.
  63. G. M. Hale and M. R. Querry, “Optical-constants of water in 200-nm to 200-μm wavelength region,” Appl. Opt.12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  64. B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt.12(2), 024020 (2007).
    [CrossRef] [PubMed]
  65. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
    [CrossRef]

2013 (5)

D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, A. Sparén, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges,” Opt. Express21(18), 20941–20953 (2013).
[CrossRef] [PubMed]

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterisation,” J. Near Infrared Spectrosc.21(4), 259–268 (2013).
[CrossRef]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol.58(11), R37–R61 (2013).
[CrossRef] [PubMed]

T. B. Rice, E. Kwan, C. K. Hayakawa, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging,” Biomed. Opt. Express4(12), 2880–2892 (2013).
[CrossRef] [PubMed]

L. Mei, S. Svanberg, and G. Somesfalean, “Frequency-modulated light scattering in colloidal suspensions,” Appl. Phys. Lett.102(6), 061104 (2013).
[CrossRef]

2012 (5)

L. Mei, S. Svanberg, and G. Somesfalean, “Combined optical porosimetry and gas absorption spectroscopy in gas-filled porous media using diode-laser-based frequency domain photon migration,” Opt. Express20(15), 16942–16954 (2012).
[CrossRef]

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt.17(9), 090901 (2012).
[CrossRef] [PubMed]

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012).
[CrossRef] [PubMed]

L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B109(3), 467–475 (2012).
[CrossRef]

P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt.51(30), 7176–7182 (2012).
[CrossRef] [PubMed]

2011 (6)

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

L. Mei, H. Jayaweera, P. Lundin, S. Svanberg, and G. Somesfalean, “Gas spectroscopy and optical path-length assessment in scattering media using a frequency-modulated continuous-wave diode laser,” Opt. Lett.36(16), 3036–3038 (2011).
[CrossRef] [PubMed]

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics4(11-12), 773–787 (2011).
[CrossRef] [PubMed]

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng.39(4), 1349–1357 (2011).
[CrossRef] [PubMed]

T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A28(10), 2108–2114 (2011).
[CrossRef] [PubMed]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
[CrossRef] [PubMed]

2010 (2)

Z. Q. Shi and C. A. Anderson, “Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS),” J. Pharm. Sci.99(12), 4766–4783 (2010).
[CrossRef] [PubMed]

K. Zarychta, E. Tinet, L. Azizi, S. Avrillier, D. Ettori, and J. M. Tualle, “Time-resolved diffusing wave spectroscopy with a CCD camera,” Opt. Express18(16), 16289–16301 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (5)

H. P. Marshall and G. Koh, “FMCW radars for snow research,” Cold Reg. Sci. Technol.52(2), 118–131 (2008).
[CrossRef]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16(8), 5907–5925 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol.53(23), 6713–6727 (2008).
[CrossRef] [PubMed]

R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, and S. M. Hussain, “Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique,” Toxicol. Sci.101(2), 239–253 (2008).
[CrossRef] [PubMed]

2007 (3)

B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry,” Opt. Express15(15), 9157–9165 (2007).
[CrossRef] [PubMed]

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt.12(2), 024020 (2007).
[CrossRef] [PubMed]

T. Matsunaga and M. Shibayama, “Gel point determination of gelatin hydrogels by dynamic light scattering and rheological measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(3), 030401 (2007).
[CrossRef] [PubMed]

2006 (4)

M. Alexander and D. G. Dalgleish, “Dynamic light scattering techniques and their applications in food science,” Food Biophys.1(1), 2–13 (2006).
[CrossRef]

J. M. Tualle, H. L. Nghiêm, M. Cheikh, D. Ettori, E. Tinet, and S. Avrillier, “Time-resolved diffusing wave spectroscopy beyond 300 transport mean free paths,” J. Opt. Soc. Am. A23(6), 1452–1457 (2006).
[CrossRef] [PubMed]

M. Cheikh, H. L. Nghiêm, D. Ettori, E. Tinet, S. Avrillier, and J. M. Tualle, “Time-resolved diffusing wave spectroscopy applied to dynamic heterogeneity imaging,” Opt. Lett.31(15), 2311–2313 (2006).
[CrossRef] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

2005 (1)

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci.40(2), 85–94 (2005).
[CrossRef] [PubMed]

2004 (3)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004).
[CrossRef] [PubMed]

R. Carminati, R. Elaloufi, and J. J. Greffet, “Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light,” Phys. Rev. Lett.92(21), 213903 (2004).
[CrossRef] [PubMed]

M. Berka and J. A. Rice, “Absolute aggregation rate constants in aggregation of kaolinite measured by simultaneous static and dynamic light scattering,” Langmuir20(15), 6152–6157 (2004).
[CrossRef] [PubMed]

2003 (4)

J. B. Salmon, L. Bécu, S. Manneville, and A. Colin, “Towards local rheology of emulsions under Couette flow using Dynamic Light Scattering,” Eur Phys J E Soft Matter10(3), 209–221 (2003).
[CrossRef] [PubMed]

A. Giusto, R. Saija, M. A. Iatì, P. Denti, F. Borghese, and O. I. Sindoni, “Optical properties of high-density dispersions of particles: application to intralipid solutions,” Appl. Opt.42(21), 4375–4380 (2003).
[CrossRef] [PubMed]

S. G. Anema and Y. M. Li, “Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size,” J. Dairy Res.70(1), 73–83 (2003).
[CrossRef] [PubMed]

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt.42(16), 3027–3037 (2003).
[CrossRef] [PubMed]

2001 (3)

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt.6(2), 167–176 (2001).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, R. R. Dasari, and M. S. Feld, “Path-length-resolved dynamic light scattering: Modeling the transition from single to diffusive scattering,” Appl. Opt.40(24), 4222–4227 (2001).
[CrossRef] [PubMed]

J. M. Tualle, E. Tinet, and S. Avrillier, “A new and easy way to perform time-resolved measurements of the light scattered by a turbid medium,” Opt. Commun.189(4-6), 211–220 (2001).
[CrossRef]

1999 (2)

G. Popescu and A. Dogariu, “Optical path-length spectroscopy of wave propagation in random media,” Opt. Lett.24(7), 442–444 (1999).
[CrossRef] [PubMed]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

1998 (2)

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(6), 7664–7667 (1998).
[CrossRef]

D. A. Boas, K. K. Bizheva, and A. M. Siegel, “Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media,” Opt. Lett.23(5), 319–321 (1998).
[CrossRef] [PubMed]

1997 (2)

Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

1994 (1)

R. Finsy, “Particle sizing by quasi-elastic light-scattering,” Adv. Colloid. Interfac.52, 79–143 (1994).
[CrossRef]

1993 (1)

1992 (1)

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

1991 (1)

W. Vanmegen and P. N. Pusey, “Dynamic light-scattering study of the glass-transition in a colloidal suspension,” Phys. Rev. A43(10), 5429–5441 (1991).

1990 (1)

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy–Dynamic light scattering in the multiple-scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990).
[CrossRef]

1988 (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

1981 (1)

W. Eickhoff and R. Ulrich, “Optical frequency-domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981).
[CrossRef]

1975 (1)

C. Holt, T. G. Parker, and D. G. Dalgleish, “Measurement of particle sizes by elastic and quasi-elastic light scattering,” Biochim. Biophys. Acta400(2), 283–292 (1975).
[CrossRef] [PubMed]

1973 (1)

1964 (1)

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He-Ne laser spectrometer,” Appl. Phys. Lett.4, 176–178 (1964).
[CrossRef]

Aalders, M. C.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Alexander, M.

M. Alexander and D. G. Dalgleish, “Dynamic light scattering techniques and their applications in food science,” Food Biophys.1(1), 2–13 (2006).
[CrossRef]

Altmeyer, P.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci.40(2), 85–94 (2005).
[CrossRef] [PubMed]

Anderson, C. A.

Z. Q. Shi and C. A. Anderson, “Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS),” J. Pharm. Sci.99(12), 4766–4783 (2010).
[CrossRef] [PubMed]

Anderson, E. R.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Andersson-Engels, S.

D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, A. Sparén, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges,” Opt. Express21(18), 20941–20953 (2013).
[CrossRef] [PubMed]

L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B109(3), 467–475 (2012).
[CrossRef]

Anema, S. G.

S. G. Anema and Y. M. Li, “Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size,” J. Dairy Res.70(1), 73–83 (2003).
[CrossRef] [PubMed]

Arridge, S. R.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Avrillier, S.

Azizi, L.

Backman, V.

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
[CrossRef] [PubMed]

Baek, H. M.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol.53(23), 6713–6727 (2008).
[CrossRef] [PubMed]

Bargigia, I.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterisation,” J. Near Infrared Spectrosc.21(4), 259–268 (2013).
[CrossRef]

Bécu, L.

J. B. Salmon, L. Bécu, S. Manneville, and A. Colin, “Towards local rheology of emulsions under Couette flow using Dynamic Light Scattering,” Eur Phys J E Soft Matter10(3), 209–221 (2003).
[CrossRef] [PubMed]

Berka, M.

M. Berka and J. A. Rice, “Absolute aggregation rate constants in aggregation of kaolinite measured by simultaneous static and dynamic light scattering,” Langmuir20(15), 6152–6157 (2004).
[CrossRef] [PubMed]

Bérubé-Lauzière, Y.

Birgul, O.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol.53(23), 6713–6727 (2008).
[CrossRef] [PubMed]

Bizheva, K. K.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(6), 7664–7667 (1998).
[CrossRef]

D. A. Boas, K. K. Bizheva, and A. M. Siegel, “Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media,” Opt. Lett.23(5), 319–321 (1998).
[CrossRef] [PubMed]

Boas, D. A.

D. A. Boas, K. K. Bizheva, and A. M. Siegel, “Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media,” Opt. Lett.23(5), 319–321 (1998).
[CrossRef] [PubMed]

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(6), 7664–7667 (1998).
[CrossRef]

Bonner, R. F.

Borghese, F.

Braydich-Stolle, L.

R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, and S. M. Hussain, “Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique,” Toxicol. Sci.101(2), 239–253 (2008).
[CrossRef] [PubMed]

Butler, J.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Cahn, M.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Carminati, R.

R. Carminati, R. Elaloufi, and J. J. Greffet, “Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light,” Phys. Rev. Lett.92(21), 213903 (2004).
[CrossRef] [PubMed]

Cerussi, A. E.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol.53(23), 6713–6727 (2008).
[CrossRef] [PubMed]

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Chance, B.

B. C. Wilson, E. M. Sevick, M. S. Patterson, and B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proceedings of the IEEE (1992).
[CrossRef]

Chappell, P. H.

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt.17(9), 090901 (2012).
[CrossRef] [PubMed]

Cheikh, M.

Chen, Z. P.

Choi, B.

Chung, S. H.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol.53(23), 6713–6727 (2008).
[CrossRef] [PubMed]

Colin, A.

J. B. Salmon, L. Bécu, S. Manneville, and A. Colin, “Towards local rheology of emulsions under Couette flow using Dynamic Light Scattering,” Eur Phys J E Soft Matter10(3), 209–221 (2003).
[CrossRef] [PubMed]

Cope, M.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Coquoz, O.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Cross, F. W.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Cuccia, D. J.

Cummins, H. Z.

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He-Ne laser spectrometer,” Appl. Phys. Lett.4, 176–178 (1964).
[CrossRef]

D’Andrea, C.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterisation,” J. Near Infrared Spectrosc.21(4), 259–268 (2013).
[CrossRef]

Dalgleish, D. G.

M. Alexander and D. G. Dalgleish, “Dynamic light scattering techniques and their applications in food science,” Food Biophys.1(1), 2–13 (2006).
[CrossRef]

C. Holt, T. G. Parker, and D. G. Dalgleish, “Measurement of particle sizes by elastic and quasi-elastic light scattering,” Biochim. Biophys. Acta400(2), 283–292 (1975).
[CrossRef] [PubMed]

Dasari, R. R.

Delpy, D. T.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Denti, P.

Di Ninni, P.

Dogariu, A.

Doornbos, R. M. P.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Durkin, A. J.

Eickhoff, W.

W. Eickhoff and R. Ulrich, “Optical frequency-domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981).
[CrossRef]

Elaloufi, R.

R. Carminati, R. Elaloufi, and J. J. Greffet, “Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light,” Phys. Rev. Lett.92(21), 213903 (2004).
[CrossRef] [PubMed]

Esenaliev, R. O.

Ettori, D.

Fantini, S.

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012).
[CrossRef] [PubMed]

Farina, A.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterisation,” J. Near Infrared Spectrosc.21(4), 259–268 (2013).
[CrossRef]

Feld, M. S.

Finsy, R.

R. Finsy, “Particle sizing by quasi-elastic light-scattering,” Adv. Colloid. Interfac.52, 79–143 (1994).
[CrossRef]

Fishkin, J. B.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Foschum, F.

Gambichler, T.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci.40(2), 85–94 (2005).
[CrossRef] [PubMed]

Giusto, A.

Green, K. N.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng.39(4), 1349–1357 (2011).
[CrossRef] [PubMed]

Greffet, J. J.

R. Carminati, R. Elaloufi, and J. J. Greffet, “Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light,” Phys. Rev. Lett.92(21), 213903 (2004).
[CrossRef] [PubMed]

Gross, J. D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Guan, Z. G.

Gulsen, G.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol.53(23), 6713–6727 (2008).
[CrossRef] [PubMed]

Hale, G. M.

Hayakawa, C. K.

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy–Dynamic light scattering in the multiple-scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Hoffmann, K.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci.40(2), 85–94 (2005).
[CrossRef] [PubMed]

Holt, C.

C. Holt, T. G. Parker, and D. G. Dalgleish, “Measurement of particle sizes by elastic and quasi-elastic light scattering,” Biochim. Biophys. Acta400(2), 283–292 (1975).
[CrossRef] [PubMed]

Hsiang, D.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol.53(23), 6713–6727 (2008).
[CrossRef] [PubMed]

Hussain, S. M.

R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, and S. M. Hussain, “Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique,” Toxicol. Sci.101(2), 239–253 (2008).
[CrossRef] [PubMed]

Iatì, M. A.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol.58(11), R37–R61 (2013).
[CrossRef] [PubMed]

Jayaweera, H.

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

Johansson, J.

Johansson, S.

Kang, N. M.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004).
[CrossRef] [PubMed]

Karlsson, M.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterisation,” J. Near Infrared Spectrosc.21(4), 259–268 (2013).
[CrossRef]

Kholodnykh, A. I.

Khoptyar, D.

Kienle, A.

Kim, J. G.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng.39(4), 1349–1357 (2011).
[CrossRef] [PubMed]

Klifa, C.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol.53(23), 6713–6727 (2008).
[CrossRef] [PubMed]

Knüttel, A.

Koh, G.

H. P. Marshall and G. Koh, “FMCW radars for snow research,” Cold Reg. Sci. Technol.52(2), 118–131 (2008).
[CrossRef]

Koike, M. A.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng.39(4), 1349–1357 (2011).
[CrossRef] [PubMed]

Konecky, S. D.

Kwan, E.

LaFerla, F. M.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng.39(4), 1349–1357 (2011).
[CrossRef] [PubMed]

Lang, R.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Larin, K. V.

Li, Y. M.

S. G. Anema and Y. M. Li, “Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size,” J. Dairy Res.70(1), 73–83 (2003).
[CrossRef] [PubMed]

Lin, A. J.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng.39(4), 1349–1357 (2011).
[CrossRef] [PubMed]

Lister, T.

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt.17(9), 090901 (2012).
[CrossRef] [PubMed]

Lundin, P.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterisation,” J. Near Infrared Spectrosc.21(4), 259–268 (2013).
[CrossRef]

L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B109(3), 467–475 (2012).
[CrossRef]

L. Mei, H. Jayaweera, P. Lundin, S. Svanberg, and G. Somesfalean, “Gas spectroscopy and optical path-length assessment in scattering media using a frequency-modulated continuous-wave diode laser,” Opt. Lett.36(16), 3036–3038 (2011).
[CrossRef] [PubMed]

Z. G. Guan, P. Lundin, and S. Svanberg, “Assessment of photon migration in scattering media using heterodyning techniques with a frequency modulated diode laser,” Opt. Express17(18), 16291–16299 (2009).
[CrossRef] [PubMed]

Malekafzali, A.

Manneville, S.

J. B. Salmon, L. Bécu, S. Manneville, and A. Colin, “Towards local rheology of emulsions under Couette flow using Dynamic Light Scattering,” Eur Phys J E Soft Matter10(3), 209–221 (2003).
[CrossRef] [PubMed]

Marshall, H. P.

H. P. Marshall and G. Koh, “FMCW radars for snow research,” Cold Reg. Sci. Technol.52(2), 118–131 (2008).
[CrossRef]

Martelli, F.

P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt.51(30), 7176–7182 (2012).
[CrossRef] [PubMed]

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

Matsunaga, T.

T. Matsunaga and M. Shibayama, “Gel point determination of gelatin hydrogels by dynamic light scattering and rheological measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(3), 030401 (2007).
[CrossRef] [PubMed]

Mazhar, A.

T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A28(10), 2108–2114 (2011).
[CrossRef] [PubMed]

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng.39(4), 1349–1357 (2011).
[CrossRef] [PubMed]

Mei, L.

L. Mei, S. Svanberg, and G. Somesfalean, “Frequency-modulated light scattering in colloidal suspensions,” Appl. Phys. Lett.102(6), 061104 (2013).
[CrossRef]

L. Mei, S. Svanberg, and G. Somesfalean, “Combined optical porosimetry and gas absorption spectroscopy in gas-filled porous media using diode-laser-based frequency domain photon migration,” Opt. Express20(15), 16942–16954 (2012).
[CrossRef]

L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B109(3), 467–475 (2012).
[CrossRef]

L. Mei, H. Jayaweera, P. Lundin, S. Svanberg, and G. Somesfalean, “Gas spectroscopy and optical path-length assessment in scattering media using a frequency-modulated continuous-wave diode laser,” Opt. Lett.36(16), 3036–3038 (2011).
[CrossRef] [PubMed]

Mercatelli, L.

Merritt, S. I.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol.53(23), 6713–6727 (2008).
[CrossRef] [PubMed]

Michels, R.

Milner, T. E.

Mosk, A. P.

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

Motamedi, M.

Moussa, G.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci.40(2), 85–94 (2005).
[CrossRef] [PubMed]

Murdock, R. C.

R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, and S. M. Hussain, “Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique,” Toxicol. Sci.101(2), 239–253 (2008).
[CrossRef] [PubMed]

Mutyal, N. N.

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
[CrossRef] [PubMed]

Nelson, J. S.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004).
[CrossRef] [PubMed]

Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997).
[CrossRef] [PubMed]

Nevin, A.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterisation,” J. Near Infrared Spectrosc.21(4), 259–268 (2013).
[CrossRef]

Nghiêm, H. L.

Ninni, P. D.

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

Parker, T. G.

C. Holt, T. G. Parker, and D. G. Dalgleish, “Measurement of particle sizes by elastic and quasi-elastic light scattering,” Biochim. Biophys. Acta400(2), 283–292 (1975).
[CrossRef] [PubMed]

Patterson, M. S.

B. C. Wilson, E. M. Sevick, M. S. Patterson, and B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proceedings of the IEEE (1992).
[CrossRef]

Petrova, I. Y.

Pham, D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Pham, T.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Pifferi, A.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterisation,” J. Near Infrared Spectrosc.21(4), 259–268 (2013).
[CrossRef]

Pine, D. J.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy–Dynamic light scattering in the multiple-scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Popescu, G.

Pusey, P. N.

W. Vanmegen and P. N. Pusey, “Dynamic light-scattering study of the glass-transition in a colloidal suspension,” Phys. Rev. A43(10), 5429–5441 (1991).

Querry, M. R.

Radosevich, A. J.

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
[CrossRef] [PubMed]

Rajan, V.

B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry,” Opt. Express15(15), 9157–9165 (2007).
[CrossRef] [PubMed]

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt.12(2), 024020 (2007).
[CrossRef] [PubMed]

Rice, J. A.

M. Berka and J. A. Rice, “Absolute aggregation rate constants in aggregation of kaolinite measured by simultaneous static and dynamic light scattering,” Langmuir20(15), 6152–6157 (2004).
[CrossRef] [PubMed]

Rice, T. B.

Rogers, J. D.

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
[CrossRef] [PubMed]

Saija, R.

Saleem, M.

Salmon, J. B.

J. B. Salmon, L. Bécu, S. Manneville, and A. Colin, “Towards local rheology of emulsions under Couette flow using Dynamic Light Scattering,” Eur Phys J E Soft Matter10(3), 209–221 (2003).
[CrossRef] [PubMed]

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

Sand, D.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci.40(2), 85–94 (2005).
[CrossRef] [PubMed]

Sand, M.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci.40(2), 85–94 (2005).
[CrossRef] [PubMed]

Sandell, J. L.

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics4(11-12), 773–787 (2011).
[CrossRef] [PubMed]

Sani, E.

Sassaroli, A.

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012).
[CrossRef] [PubMed]

Schlager, J. J.

R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, and S. M. Hussain, “Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique,” Toxicol. Sci.101(2), 239–253 (2008).
[CrossRef] [PubMed]

Schmitt, J. M.

Schrand, A. M.

R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, and S. M. Hussain, “Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique,” Toxicol. Sci.101(2), 239–253 (2008).
[CrossRef] [PubMed]

Sevick, E. M.

B. C. Wilson, E. M. Sevick, M. S. Patterson, and B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proceedings of the IEEE (1992).
[CrossRef]

Shi, Z. Q.

Z. Q. Shi and C. A. Anderson, “Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS),” J. Pharm. Sci.99(12), 4766–4783 (2010).
[CrossRef] [PubMed]

Shibayama, M.

T. Matsunaga and M. Shibayama, “Gel point determination of gelatin hydrogels by dynamic light scattering and rheological measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(3), 030401 (2007).
[CrossRef] [PubMed]

Siegel, A. M.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(6), 7664–7667 (1998).
[CrossRef]

D. A. Boas, K. K. Bizheva, and A. M. Siegel, “Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media,” Opt. Lett.23(5), 319–321 (1998).
[CrossRef] [PubMed]

Sindoni, O. I.

Somesfalean, G.

L. Mei, S. Svanberg, and G. Somesfalean, “Frequency-modulated light scattering in colloidal suspensions,” Appl. Phys. Lett.102(6), 061104 (2013).
[CrossRef]

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterisation,” J. Near Infrared Spectrosc.21(4), 259–268 (2013).
[CrossRef]

L. Mei, S. Svanberg, and G. Somesfalean, “Combined optical porosimetry and gas absorption spectroscopy in gas-filled porous media using diode-laser-based frequency domain photon migration,” Opt. Express20(15), 16942–16954 (2012).
[CrossRef]

L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B109(3), 467–475 (2012).
[CrossRef]

L. Mei, H. Jayaweera, P. Lundin, S. Svanberg, and G. Somesfalean, “Gas spectroscopy and optical path-length assessment in scattering media using a frequency-modulated continuous-wave diode laser,” Opt. Lett.36(16), 3036–3038 (2011).
[CrossRef] [PubMed]

Sparén, A.

Srinivas, S.

Steenbergen, W.

B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry,” Opt. Express15(15), 9157–9165 (2007).
[CrossRef] [PubMed]

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt.12(2), 024020 (2007).
[CrossRef] [PubMed]

Sterenborg, H. J. C. M.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Subash, A. A.

Svanberg, S.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterisation,” J. Near Infrared Spectrosc.21(4), 259–268 (2013).
[CrossRef]

L. Mei, S. Svanberg, and G. Somesfalean, “Frequency-modulated light scattering in colloidal suspensions,” Appl. Phys. Lett.102(6), 061104 (2013).
[CrossRef]

L. Mei, S. Svanberg, and G. Somesfalean, “Combined optical porosimetry and gas absorption spectroscopy in gas-filled porous media using diode-laser-based frequency domain photon migration,” Opt. Express20(15), 16942–16954 (2012).
[CrossRef]

L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B109(3), 467–475 (2012).
[CrossRef]

L. Mei, H. Jayaweera, P. Lundin, S. Svanberg, and G. Somesfalean, “Gas spectroscopy and optical path-length assessment in scattering media using a frequency-modulated continuous-wave diode laser,” Opt. Lett.36(16), 3036–3038 (2011).
[CrossRef] [PubMed]

Z. G. Guan, P. Lundin, and S. Svanberg, “Assessment of photon migration in scattering media using heterodyning techniques with a frequency modulated diode laser,” Opt. Express17(18), 16291–16299 (2009).
[CrossRef] [PubMed]

Thennadil, S. N.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt.6(2), 167–176 (2001).
[CrossRef] [PubMed]

Tinet, E.

Tromberg, B. J.

T. B. Rice, E. Kwan, C. K. Hayakawa, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging,” Biomed. Opt. Express4(12), 2880–2892 (2013).
[CrossRef] [PubMed]

T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A28(10), 2108–2114 (2011).
[CrossRef] [PubMed]

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng.39(4), 1349–1357 (2011).
[CrossRef] [PubMed]

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol.53(23), 6713–6727 (2008).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Troy, T. L.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt.6(2), 167–176 (2001).
[CrossRef] [PubMed]

Tualle, J. M.

Turzhitsky, V.

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
[CrossRef] [PubMed]

Ulrich, R.

W. Eickhoff and R. Ulrich, “Optical frequency-domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981).
[CrossRef]

van Gemert, M. J. C.

van Leeuwen, T. G.

B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry,” Opt. Express15(15), 9157–9165 (2007).
[CrossRef] [PubMed]

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt.12(2), 024020 (2007).
[CrossRef] [PubMed]

Vanmegen, W.

W. Vanmegen and P. N. Pusey, “Dynamic light-scattering study of the glass-transition in a colloidal suspension,” Phys. Rev. A43(10), 5429–5441 (1991).

Varghese, B.

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt.12(2), 024020 (2007).
[CrossRef] [PubMed]

B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry,” Opt. Express15(15), 9157–9165 (2007).
[CrossRef] [PubMed]

Vellekoop, I. M.

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

Venugopalan, V.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Wang, X. J.

Wax, A.

Weitz, D. A.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy–Dynamic light scattering in the multiple-scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Wilson, B. C.

B. C. Wilson, E. M. Sevick, M. S. Patterson, and B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proceedings of the IEEE (1992).
[CrossRef]

Wright, P. A.

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt.17(9), 090901 (2012).
[CrossRef] [PubMed]

Yang, C. H.

Yaroslavsky, A. N.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

Yeh, Y.

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He-Ne laser spectrometer,” Appl. Phys. Lett.4, 176–178 (1964).
[CrossRef]

Zaccanti, G.

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

Zarychta, K.

Zhu, J. X.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy–Dynamic light scattering in the multiple-scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990).
[CrossRef]

Zhu, T. C.

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics4(11-12), 773–787 (2011).
[CrossRef] [PubMed]

Adv. Colloid. Interfac. (1)

R. Finsy, “Particle sizing by quasi-elastic light-scattering,” Adv. Colloid. Interfac.52, 79–143 (1994).
[CrossRef]

Ann. Biomed. Eng. (2)

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng.39(4), 1349–1357 (2011).
[CrossRef] [PubMed]

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012).
[CrossRef] [PubMed]

Appl. Opt. (6)

Appl. Phys. B (1)

L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B109(3), 467–475 (2012).
[CrossRef]

Appl. Phys. Lett. (3)

W. Eickhoff and R. Ulrich, “Optical frequency-domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981).
[CrossRef]

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He-Ne laser spectrometer,” Appl. Phys. Lett.4, 176–178 (1964).
[CrossRef]

L. Mei, S. Svanberg, and G. Somesfalean, “Frequency-modulated light scattering in colloidal suspensions,” Appl. Phys. Lett.102(6), 061104 (2013).
[CrossRef]

Biochim. Biophys. Acta (1)

C. Holt, T. G. Parker, and D. G. Dalgleish, “Measurement of particle sizes by elastic and quasi-elastic light scattering,” Biochim. Biophys. Acta400(2), 283–292 (1975).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Cold Reg. Sci. Technol. (1)

H. P. Marshall and G. Koh, “FMCW radars for snow research,” Cold Reg. Sci. Technol.52(2), 118–131 (2008).
[CrossRef]

Eur Phys J E Soft Matter (1)

J. B. Salmon, L. Bécu, S. Manneville, and A. Colin, “Towards local rheology of emulsions under Couette flow using Dynamic Light Scattering,” Eur Phys J E Soft Matter10(3), 209–221 (2003).
[CrossRef] [PubMed]

Food Biophys. (1)

M. Alexander and D. G. Dalgleish, “Dynamic light scattering techniques and their applications in food science,” Food Biophys.1(1), 2–13 (2006).
[CrossRef]

J. Biomed. Opt. (5)

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt.12(2), 024020 (2007).
[CrossRef] [PubMed]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
[CrossRef] [PubMed]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt.6(2), 167–176 (2001).
[CrossRef] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt.17(9), 090901 (2012).
[CrossRef] [PubMed]

J. Biophotonics (1)

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics4(11-12), 773–787 (2011).
[CrossRef] [PubMed]

J. Dairy Res. (1)

S. G. Anema and Y. M. Li, “Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size,” J. Dairy Res.70(1), 73–83 (2003).
[CrossRef] [PubMed]

J. Dermatol. Sci. (1)

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci.40(2), 85–94 (2005).
[CrossRef] [PubMed]

J. Near Infrared Spectrosc. (1)

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterisation,” J. Near Infrared Spectrosc.21(4), 259–268 (2013).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Pharm. Sci. (1)

Z. Q. Shi and C. A. Anderson, “Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS),” J. Pharm. Sci.99(12), 4766–4783 (2010).
[CrossRef] [PubMed]

J. Phys. (Paris) (1)

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy–Dynamic light scattering in the multiple-scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990).
[CrossRef]

Langmuir (1)

M. Berka and J. A. Rice, “Absolute aggregation rate constants in aggregation of kaolinite measured by simultaneous static and dynamic light scattering,” Langmuir20(15), 6152–6157 (2004).
[CrossRef] [PubMed]

Microvasc. Res. (1)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004).
[CrossRef] [PubMed]

Opt. Commun. (2)

J. M. Tualle, E. Tinet, and S. Avrillier, “A new and easy way to perform time-resolved measurements of the light scattered by a turbid medium,” Opt. Commun.189(4-6), 211–220 (2001).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Phys. Med. Biol. (5)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol.58(11), R37–R61 (2013).
[CrossRef] [PubMed]

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol.53(23), 6713–6727 (2008).
[CrossRef] [PubMed]

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Phys. Rev. A (1)

W. Vanmegen and P. N. Pusey, “Dynamic light-scattering study of the glass-transition in a colloidal suspension,” Phys. Rev. A43(10), 5429–5441 (1991).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

T. Matsunaga and M. Shibayama, “Gel point determination of gelatin hydrogels by dynamic light scattering and rheological measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(3), 030401 (2007).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(6), 7664–7667 (1998).
[CrossRef]

Phys. Rev. Lett. (2)

R. Carminati, R. Elaloufi, and J. J. Greffet, “Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light,” Phys. Rev. Lett.92(21), 213903 (2004).
[CrossRef] [PubMed]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Toxicol. Sci. (1)

R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, and S. M. Hussain, “Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique,” Toxicol. Sci.101(2), 239–253 (2008).
[CrossRef] [PubMed]

Other (7)

B. C. Wilson, E. M. Sevick, M. S. Patterson, and B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proceedings of the IEEE (1992).
[CrossRef]

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, Optimization of low coherence interferometry for quantitative analysis of tissue optical properties, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II (2002).

D. D. Nolte, Optical Interferometry for Biology and Medicine. (Springer, New York, 2011), p.354.

P. E. Pace, “FMCW Radar,” in Detecting and classifying low probability of intercept radar (Artech House, Boston, 2009), 857.

K. Yuksel, M. Wuilpart, V. Moeyaert, and P. Megret, “Optical frequency domain reflectometry: a review,” ICTON: 2009 11th International Conference on Transparent Optical Networks, Vols 1 and 2, 723–727 (2009).
[CrossRef]

A. A. Subash, Master's thesis, Lund University, 2012.

J. Zheng, Optical Frequency-Modulated Continuous-Wave (FMCW) Interferometry (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of (a) DLS, (b) DWS, (c) LCI and (d) FMLSI techniques. M and PD correspond to mirror (or beam splitter) and photo diode, respectively.

Fig. 2
Fig. 2

Schematic of the fiber based FMLSI system, (a) reflectance measurement for a static medium, and (b) dynamic turbid medium measured in an infinite geometry.

Fig. 3
Fig. 3

Power spectra (plotted in logarithmic scale) of a 12-mm polystyrene foam measured in transmission geometry.

Fig. 4
Fig. 4

Power spectra (plotted in logarithmic scale) for samples with different Intralipid concentrations (volumes).

Fig. 5
Fig. 5

(a) Reduced scattering coefficients, (b) absorption coefficients and Brownian diffusion constants for liquid phantoms with different Intralipid concentrations when employing a Hamming window function. The corresponding estimated values given in Section 3.3.2 are 0.043 cm−1 ( μ a ) and 3.6 × 10−12 m2/s ( D B ), respectively.

Fig. 6
Fig. 6

(a) Power spectra for 60-ml 20% Intralipid sample (plotted in logarithmic scale) with different window functions. The rectangular window function works better for the low-frequency region, while the Hamming window function has better performance for the high-frequency region; (b) Brownian diffusion constants obtained for different window functions, the corresponding mean values and standard variations are 4.4 ± 0.3 × 10−12 m2/s (rectangular), 2.7 ± 0.1 × 10−12 m2/s (exponential) 1.9 ± 0.2 × 10−12 m2/s (Hamming).

Tables (1)

Tables Icon

Table 1 Fitting errors of optical properties and Brownian diffusion constant when employing an exponential window function.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S= f 0 / ( π f 2 +π f 0 2 ) .
P(f)= S[t,f(t+ t 0 )β] ρ(t)dt.
ρ(r,t)= c' 4π ( 1 4πDc't ) 3/2 exp( μ a c't r 2 4Dc't ).
P I (f)= | F[ I( T s ,t)w( T s ,t) ] | 2 .
P I (f)= A 1 P(f')R(f'f) df'.
μ s '(ϕ)= μ s '(0.2g/ml) ϕ 0.2g/ml

Metrics