Abstract

A thermally enhanced method for improving photoacoustic imaging depth and signal-to-noise (SNR) ratio is presented in this paper. Experimental results showed that the maximum imaging depth increased by 20% through raising the temperature of absorbing biotissues (ex-vivo beef muscle) uniformly from 37 to 43°C, and the SNR was increased by 8%. The parameters making up the Gruneisen constant were investigated experimentally and theoretically. The studies showed that the Gruneisen constant of biotissues increases with temperature, and the results were found to be consistent with the photoacousitc radar theory.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Kovar, M. A. Simpson, A. Schutz-Geschwender, and D. M. Olive, “A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models,” Anal. Biochem.367(1), 1–12 (2007).
    [CrossRef] [PubMed]
  2. B. Lashkari and A. Mandelis, “Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity,” Rev. Sci. Instrum.82(9), 094903 (2011).
    [CrossRef] [PubMed]
  3. G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt. Lett.30(5), 507–509 (2005).
    [CrossRef] [PubMed]
  4. R. Alwi, S. Telenkov, A. Mandelis, T. Leshuk, F. Gu, S. Oladepo, and K. Michaelian, “Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics,” Biomed. Opt. Express3(10), 2500–2509 (2012).
    [CrossRef] [PubMed]
  5. G. Kelly, “Body temperature variability (part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging,” Altern. Med. Rev.11(4), 278–293 (2006).
    [PubMed]
  6. P. A. Mackowiak and G. Worden, “Carl Reinhold August Wunderlich and the evolution of clinical thermometry,” Clin. Infect. Dis.18(3), 458–467 (1994).
    [CrossRef] [PubMed]
  7. M. Sund-Levander, C. Forsberg, and L. K. Wahren, “Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review,” Scand. J. Caring Sci.16(2), 122–128 (2002).
    [CrossRef] [PubMed]
  8. H. I. Robins, W. H. Dennis, A. J. Neville, L. M. Shecterle, P. A. Martin, J. Grossman, T. E. Davis, S. R. Neville, W. K. Gillis, and B. F. Rusy, “A nontoxic system for 41.8 degrees C whole-body hyperthermia: results of a Phase I study using a radiant heat device,” Cancer Res.45(8), 3937–3944 (1985).
    [PubMed]
  9. L. F. Fajardo, “Pathological effects of hyperthermia in normal tissues,” Cancer Res.44(10Suppl), 4826s–4835s (1984).
    [PubMed]
  10. J. van der Zee, “Heating the patient: a promising approach?” Ann. Oncol.13(8), 1173–1184 (2002).
    [CrossRef] [PubMed]
  11. P. Sminia, J. van der Zee, J. Wondergem, and J. Haveman, “Effect of hyperthermia on the central nervous system: a review,” Int. J. Hyperthermia10(1), 1–30 (1994).
    [CrossRef] [PubMed]
  12. H. Siekmann, “Recommended maximum temperatures for touchable surfaces,” Appl. Ergon.21(1), 69–73 (1990).
    [CrossRef] [PubMed]
  13. I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
    [CrossRef]
  14. M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
    [CrossRef] [PubMed]
  15. W. Wang and A. Mandelis, “Thermally enhanced photoacoustic imaging of biotissues,” presented at ICPPP 17th, Suzhou, China, 20–24 Oct. (2013).
  16. Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am.116(6), 3523–3533 (2004).
    [CrossRef] [PubMed]
  17. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).
  18. S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt.11(4), 044006 (2006).
    [CrossRef] [PubMed]
  19. E. O. Brigham, The Fast Fourier Transform and its Applications (Prentice-Hall, 1988).
  20. R. A. Lawrie and D. Ledward, Lawrie’s Meat Science (Woodhead, 2006).
  21. A. M. Pearson and R. B. Young, Muscle and Meat Biochemistry (Academic, 1989).
  22. B. A. Fricke and B. R. Becker, “Evaluation of thermophysical property models for foods,” HVAC and R. Research.7(4), 311–330 (2001).
    [CrossRef]
  23. Y. Choi and M. R. Okos, “Effects of temperature and composition on the thermal properties of foods,” in Food Engineering and Process Applications: Transport Phenomena, M. Le Maguer and P. Jelen, ed. (Elsevier, 1986).
  24. V. A. Dubinskaya, L. S. Eng, L. B. Rebrow, and V. A. Bykov, “Comparative study of the state of water in various human tissues,” Bull. Exp. Biol. Med.144(3), 294–297 (2007).
    [CrossRef] [PubMed]
  25. J. A. Dean, ed., Lange’s Handbook of Chemistry (McGraw-Hill, 1973).
  26. N. S. Osborne, H. F. Stimson, and D. C. Ginnings, “Measurements of heat capacity and heat of vaporization of water in the range 0° to 100°C,” J. Res. Nat. Bur. Stand. (U.S.)23(2), 197–260 (1939).
  27. S. Temkin, Elements of Acoustics (Wiley, 1981).
  28. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]

2012 (1)

2011 (1)

B. Lashkari and A. Mandelis, “Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity,” Rev. Sci. Instrum.82(9), 094903 (2011).
[CrossRef] [PubMed]

2009 (1)

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
[CrossRef] [PubMed]

2007 (2)

J. L. Kovar, M. A. Simpson, A. Schutz-Geschwender, and D. M. Olive, “A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models,” Anal. Biochem.367(1), 1–12 (2007).
[CrossRef] [PubMed]

V. A. Dubinskaya, L. S. Eng, L. B. Rebrow, and V. A. Bykov, “Comparative study of the state of water in various human tissues,” Bull. Exp. Biol. Med.144(3), 294–297 (2007).
[CrossRef] [PubMed]

2006 (2)

S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt.11(4), 044006 (2006).
[CrossRef] [PubMed]

G. Kelly, “Body temperature variability (part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging,” Altern. Med. Rev.11(4), 278–293 (2006).
[PubMed]

2005 (2)

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
[CrossRef]

G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt. Lett.30(5), 507–509 (2005).
[CrossRef] [PubMed]

2004 (1)

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am.116(6), 3523–3533 (2004).
[CrossRef] [PubMed]

2002 (2)

J. van der Zee, “Heating the patient: a promising approach?” Ann. Oncol.13(8), 1173–1184 (2002).
[CrossRef] [PubMed]

M. Sund-Levander, C. Forsberg, and L. K. Wahren, “Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review,” Scand. J. Caring Sci.16(2), 122–128 (2002).
[CrossRef] [PubMed]

2001 (1)

B. A. Fricke and B. R. Becker, “Evaluation of thermophysical property models for foods,” HVAC and R. Research.7(4), 311–330 (2001).
[CrossRef]

1994 (2)

P. A. Mackowiak and G. Worden, “Carl Reinhold August Wunderlich and the evolution of clinical thermometry,” Clin. Infect. Dis.18(3), 458–467 (1994).
[CrossRef] [PubMed]

P. Sminia, J. van der Zee, J. Wondergem, and J. Haveman, “Effect of hyperthermia on the central nervous system: a review,” Int. J. Hyperthermia10(1), 1–30 (1994).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

H. Siekmann, “Recommended maximum temperatures for touchable surfaces,” Appl. Ergon.21(1), 69–73 (1990).
[CrossRef] [PubMed]

1985 (1)

H. I. Robins, W. H. Dennis, A. J. Neville, L. M. Shecterle, P. A. Martin, J. Grossman, T. E. Davis, S. R. Neville, W. K. Gillis, and B. F. Rusy, “A nontoxic system for 41.8 degrees C whole-body hyperthermia: results of a Phase I study using a radiant heat device,” Cancer Res.45(8), 3937–3944 (1985).
[PubMed]

1984 (1)

L. F. Fajardo, “Pathological effects of hyperthermia in normal tissues,” Cancer Res.44(10Suppl), 4826s–4835s (1984).
[PubMed]

1939 (1)

N. S. Osborne, H. F. Stimson, and D. C. Ginnings, “Measurements of heat capacity and heat of vaporization of water in the range 0° to 100°C,” J. Res. Nat. Bur. Stand. (U.S.)23(2), 197–260 (1939).

Alwi, R.

Becker, B. R.

B. A. Fricke and B. R. Becker, “Evaluation of thermophysical property models for foods,” HVAC and R. Research.7(4), 311–330 (2001).
[CrossRef]

Bykov, V. A.

V. A. Dubinskaya, L. S. Eng, L. B. Rebrow, and V. A. Bykov, “Comparative study of the state of water in various human tissues,” Bull. Exp. Biol. Med.144(3), 294–297 (2007).
[CrossRef] [PubMed]

Davis, T. E.

H. I. Robins, W. H. Dennis, A. J. Neville, L. M. Shecterle, P. A. Martin, J. Grossman, T. E. Davis, S. R. Neville, W. K. Gillis, and B. F. Rusy, “A nontoxic system for 41.8 degrees C whole-body hyperthermia: results of a Phase I study using a radiant heat device,” Cancer Res.45(8), 3937–3944 (1985).
[PubMed]

Dennis, W. H.

H. I. Robins, W. H. Dennis, A. J. Neville, L. M. Shecterle, P. A. Martin, J. Grossman, T. E. Davis, S. R. Neville, W. K. Gillis, and B. F. Rusy, “A nontoxic system for 41.8 degrees C whole-body hyperthermia: results of a Phase I study using a radiant heat device,” Cancer Res.45(8), 3937–3944 (1985).
[PubMed]

Dubinskaya, V. A.

V. A. Dubinskaya, L. S. Eng, L. B. Rebrow, and V. A. Bykov, “Comparative study of the state of water in various human tissues,” Bull. Exp. Biol. Med.144(3), 294–297 (2007).
[CrossRef] [PubMed]

Eng, L. S.

V. A. Dubinskaya, L. S. Eng, L. B. Rebrow, and V. A. Bykov, “Comparative study of the state of water in various human tissues,” Bull. Exp. Biol. Med.144(3), 294–297 (2007).
[CrossRef] [PubMed]

Esenaliev, R. O.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
[CrossRef]

Fajardo, L. F.

L. F. Fajardo, “Pathological effects of hyperthermia in normal tissues,” Cancer Res.44(10Suppl), 4826s–4835s (1984).
[PubMed]

Fan, Y.

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am.116(6), 3523–3533 (2004).
[CrossRef] [PubMed]

Forsberg, C.

M. Sund-Levander, C. Forsberg, and L. K. Wahren, “Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review,” Scand. J. Caring Sci.16(2), 122–128 (2002).
[CrossRef] [PubMed]

Fricke, B. A.

B. A. Fricke and B. R. Becker, “Evaluation of thermophysical property models for foods,” HVAC and R. Research.7(4), 311–330 (2001).
[CrossRef]

Gillis, W. K.

H. I. Robins, W. H. Dennis, A. J. Neville, L. M. Shecterle, P. A. Martin, J. Grossman, T. E. Davis, S. R. Neville, W. K. Gillis, and B. F. Rusy, “A nontoxic system for 41.8 degrees C whole-body hyperthermia: results of a Phase I study using a radiant heat device,” Cancer Res.45(8), 3937–3944 (1985).
[PubMed]

Ginnings, D. C.

N. S. Osborne, H. F. Stimson, and D. C. Ginnings, “Measurements of heat capacity and heat of vaporization of water in the range 0° to 100°C,” J. Res. Nat. Bur. Stand. (U.S.)23(2), 197–260 (1939).

Grossman, J.

H. I. Robins, W. H. Dennis, A. J. Neville, L. M. Shecterle, P. A. Martin, J. Grossman, T. E. Davis, S. R. Neville, W. K. Gillis, and B. F. Rusy, “A nontoxic system for 41.8 degrees C whole-body hyperthermia: results of a Phase I study using a radiant heat device,” Cancer Res.45(8), 3937–3944 (1985).
[PubMed]

Gu, F.

Haveman, J.

P. Sminia, J. van der Zee, J. Wondergem, and J. Haveman, “Effect of hyperthermia on the central nervous system: a review,” Int. J. Hyperthermia10(1), 1–30 (1994).
[CrossRef] [PubMed]

Kelly, G.

G. Kelly, “Body temperature variability (part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging,” Altern. Med. Rev.11(4), 278–293 (2006).
[PubMed]

Kovar, J. L.

J. L. Kovar, M. A. Simpson, A. Schutz-Geschwender, and D. M. Olive, “A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models,” Anal. Biochem.367(1), 1–12 (2007).
[CrossRef] [PubMed]

Ku, G.

Larin, K. V.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
[CrossRef]

Larina, I. V.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
[CrossRef]

Lashkari, B.

B. Lashkari and A. Mandelis, “Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity,” Rev. Sci. Instrum.82(9), 094903 (2011).
[CrossRef] [PubMed]

Leshuk, T.

Mackowiak, P. A.

P. A. Mackowiak and G. Worden, “Carl Reinhold August Wunderlich and the evolution of clinical thermometry,” Clin. Infect. Dis.18(3), 458–467 (1994).
[CrossRef] [PubMed]

Mandelis, A.

R. Alwi, S. Telenkov, A. Mandelis, T. Leshuk, F. Gu, S. Oladepo, and K. Michaelian, “Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics,” Biomed. Opt. Express3(10), 2500–2509 (2012).
[CrossRef] [PubMed]

B. Lashkari and A. Mandelis, “Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity,” Rev. Sci. Instrum.82(9), 094903 (2011).
[CrossRef] [PubMed]

S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt.11(4), 044006 (2006).
[CrossRef] [PubMed]

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am.116(6), 3523–3533 (2004).
[CrossRef] [PubMed]

Martin, P. A.

H. I. Robins, W. H. Dennis, A. J. Neville, L. M. Shecterle, P. A. Martin, J. Grossman, T. E. Davis, S. R. Neville, W. K. Gillis, and B. F. Rusy, “A nontoxic system for 41.8 degrees C whole-body hyperthermia: results of a Phase I study using a radiant heat device,” Cancer Res.45(8), 3937–3944 (1985).
[PubMed]

Michaelian, K.

Moes, C. J. M.

Neville, A. J.

H. I. Robins, W. H. Dennis, A. J. Neville, L. M. Shecterle, P. A. Martin, J. Grossman, T. E. Davis, S. R. Neville, W. K. Gillis, and B. F. Rusy, “A nontoxic system for 41.8 degrees C whole-body hyperthermia: results of a Phase I study using a radiant heat device,” Cancer Res.45(8), 3937–3944 (1985).
[PubMed]

Neville, S. R.

H. I. Robins, W. H. Dennis, A. J. Neville, L. M. Shecterle, P. A. Martin, J. Grossman, T. E. Davis, S. R. Neville, W. K. Gillis, and B. F. Rusy, “A nontoxic system for 41.8 degrees C whole-body hyperthermia: results of a Phase I study using a radiant heat device,” Cancer Res.45(8), 3937–3944 (1985).
[PubMed]

Oladepo, S.

Olive, D. M.

J. L. Kovar, M. A. Simpson, A. Schutz-Geschwender, and D. M. Olive, “A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models,” Anal. Biochem.367(1), 1–12 (2007).
[CrossRef] [PubMed]

Osborne, N. S.

N. S. Osborne, H. F. Stimson, and D. C. Ginnings, “Measurements of heat capacity and heat of vaporization of water in the range 0° to 100°C,” J. Res. Nat. Bur. Stand. (U.S.)23(2), 197–260 (1939).

Prahl, S. A.

Pramanik, M.

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
[CrossRef] [PubMed]

Rebrow, L. B.

V. A. Dubinskaya, L. S. Eng, L. B. Rebrow, and V. A. Bykov, “Comparative study of the state of water in various human tissues,” Bull. Exp. Biol. Med.144(3), 294–297 (2007).
[CrossRef] [PubMed]

Robins, H. I.

H. I. Robins, W. H. Dennis, A. J. Neville, L. M. Shecterle, P. A. Martin, J. Grossman, T. E. Davis, S. R. Neville, W. K. Gillis, and B. F. Rusy, “A nontoxic system for 41.8 degrees C whole-body hyperthermia: results of a Phase I study using a radiant heat device,” Cancer Res.45(8), 3937–3944 (1985).
[PubMed]

Rusy, B. F.

H. I. Robins, W. H. Dennis, A. J. Neville, L. M. Shecterle, P. A. Martin, J. Grossman, T. E. Davis, S. R. Neville, W. K. Gillis, and B. F. Rusy, “A nontoxic system for 41.8 degrees C whole-body hyperthermia: results of a Phase I study using a radiant heat device,” Cancer Res.45(8), 3937–3944 (1985).
[PubMed]

Schutz-Geschwender, A.

J. L. Kovar, M. A. Simpson, A. Schutz-Geschwender, and D. M. Olive, “A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models,” Anal. Biochem.367(1), 1–12 (2007).
[CrossRef] [PubMed]

Shecterle, L. M.

H. I. Robins, W. H. Dennis, A. J. Neville, L. M. Shecterle, P. A. Martin, J. Grossman, T. E. Davis, S. R. Neville, W. K. Gillis, and B. F. Rusy, “A nontoxic system for 41.8 degrees C whole-body hyperthermia: results of a Phase I study using a radiant heat device,” Cancer Res.45(8), 3937–3944 (1985).
[PubMed]

Siekmann, H.

H. Siekmann, “Recommended maximum temperatures for touchable surfaces,” Appl. Ergon.21(1), 69–73 (1990).
[CrossRef] [PubMed]

Simpson, M. A.

J. L. Kovar, M. A. Simpson, A. Schutz-Geschwender, and D. M. Olive, “A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models,” Anal. Biochem.367(1), 1–12 (2007).
[CrossRef] [PubMed]

Sminia, P.

P. Sminia, J. van der Zee, J. Wondergem, and J. Haveman, “Effect of hyperthermia on the central nervous system: a review,” Int. J. Hyperthermia10(1), 1–30 (1994).
[CrossRef] [PubMed]

Spirou, G.

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am.116(6), 3523–3533 (2004).
[CrossRef] [PubMed]

Stimson, H. F.

N. S. Osborne, H. F. Stimson, and D. C. Ginnings, “Measurements of heat capacity and heat of vaporization of water in the range 0° to 100°C,” J. Res. Nat. Bur. Stand. (U.S.)23(2), 197–260 (1939).

Sund-Levander, M.

M. Sund-Levander, C. Forsberg, and L. K. Wahren, “Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review,” Scand. J. Caring Sci.16(2), 122–128 (2002).
[CrossRef] [PubMed]

Telenkov, S.

Telenkov, S. A.

S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt.11(4), 044006 (2006).
[CrossRef] [PubMed]

van der Zee, J.

J. van der Zee, “Heating the patient: a promising approach?” Ann. Oncol.13(8), 1173–1184 (2002).
[CrossRef] [PubMed]

P. Sminia, J. van der Zee, J. Wondergem, and J. Haveman, “Effect of hyperthermia on the central nervous system: a review,” Int. J. Hyperthermia10(1), 1–30 (1994).
[CrossRef] [PubMed]

van Gemert, M. J.

van Marie, J.

van Staveren, H. J.

Vitkin, I. A.

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am.116(6), 3523–3533 (2004).
[CrossRef] [PubMed]

Wahren, L. K.

M. Sund-Levander, C. Forsberg, and L. K. Wahren, “Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review,” Scand. J. Caring Sci.16(2), 122–128 (2002).
[CrossRef] [PubMed]

Wang, L. V.

Wondergem, J.

P. Sminia, J. van der Zee, J. Wondergem, and J. Haveman, “Effect of hyperthermia on the central nervous system: a review,” Int. J. Hyperthermia10(1), 1–30 (1994).
[CrossRef] [PubMed]

Worden, G.

P. A. Mackowiak and G. Worden, “Carl Reinhold August Wunderlich and the evolution of clinical thermometry,” Clin. Infect. Dis.18(3), 458–467 (1994).
[CrossRef] [PubMed]

Altern. Med. Rev. (1)

G. Kelly, “Body temperature variability (part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging,” Altern. Med. Rev.11(4), 278–293 (2006).
[PubMed]

Anal. Biochem. (1)

J. L. Kovar, M. A. Simpson, A. Schutz-Geschwender, and D. M. Olive, “A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models,” Anal. Biochem.367(1), 1–12 (2007).
[CrossRef] [PubMed]

Ann. Oncol. (1)

J. van der Zee, “Heating the patient: a promising approach?” Ann. Oncol.13(8), 1173–1184 (2002).
[CrossRef] [PubMed]

Appl. Ergon. (1)

H. Siekmann, “Recommended maximum temperatures for touchable surfaces,” Appl. Ergon.21(1), 69–73 (1990).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Bull. Exp. Biol. Med. (1)

V. A. Dubinskaya, L. S. Eng, L. B. Rebrow, and V. A. Bykov, “Comparative study of the state of water in various human tissues,” Bull. Exp. Biol. Med.144(3), 294–297 (2007).
[CrossRef] [PubMed]

Cancer Res. (2)

H. I. Robins, W. H. Dennis, A. J. Neville, L. M. Shecterle, P. A. Martin, J. Grossman, T. E. Davis, S. R. Neville, W. K. Gillis, and B. F. Rusy, “A nontoxic system for 41.8 degrees C whole-body hyperthermia: results of a Phase I study using a radiant heat device,” Cancer Res.45(8), 3937–3944 (1985).
[PubMed]

L. F. Fajardo, “Pathological effects of hyperthermia in normal tissues,” Cancer Res.44(10Suppl), 4826s–4835s (1984).
[PubMed]

Clin. Infect. Dis. (1)

P. A. Mackowiak and G. Worden, “Carl Reinhold August Wunderlich and the evolution of clinical thermometry,” Clin. Infect. Dis.18(3), 458–467 (1994).
[CrossRef] [PubMed]

HVAC and R. Research. (1)

B. A. Fricke and B. R. Becker, “Evaluation of thermophysical property models for foods,” HVAC and R. Research.7(4), 311–330 (2001).
[CrossRef]

Int. J. Hyperthermia (1)

P. Sminia, J. van der Zee, J. Wondergem, and J. Haveman, “Effect of hyperthermia on the central nervous system: a review,” Int. J. Hyperthermia10(1), 1–30 (1994).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (1)

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am.116(6), 3523–3533 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
[CrossRef] [PubMed]

S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt.11(4), 044006 (2006).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (1)

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
[CrossRef]

J. Res. Nat. Bur. Stand. (U.S.) (1)

N. S. Osborne, H. F. Stimson, and D. C. Ginnings, “Measurements of heat capacity and heat of vaporization of water in the range 0° to 100°C,” J. Res. Nat. Bur. Stand. (U.S.)23(2), 197–260 (1939).

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

B. Lashkari and A. Mandelis, “Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity,” Rev. Sci. Instrum.82(9), 094903 (2011).
[CrossRef] [PubMed]

Scand. J. Caring Sci. (1)

M. Sund-Levander, C. Forsberg, and L. K. Wahren, “Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review,” Scand. J. Caring Sci.16(2), 122–128 (2002).
[CrossRef] [PubMed]

Other (8)

E. O. Brigham, The Fast Fourier Transform and its Applications (Prentice-Hall, 1988).

R. A. Lawrie and D. Ledward, Lawrie’s Meat Science (Woodhead, 2006).

A. M. Pearson and R. B. Young, Muscle and Meat Biochemistry (Academic, 1989).

W. Wang and A. Mandelis, “Thermally enhanced photoacoustic imaging of biotissues,” presented at ICPPP 17th, Suzhou, China, 20–24 Oct. (2013).

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).

S. Temkin, Elements of Acoustics (Wiley, 1981).

Y. Choi and M. R. Okos, “Effects of temperature and composition on the thermal properties of foods,” in Food Engineering and Process Applications: Transport Phenomena, M. Le Maguer and P. Jelen, ed. (Elsevier, 1986).

J. A. Dean, ed., Lange’s Handbook of Chemistry (McGraw-Hill, 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Estimated Thermal Expansion Coefficient of Beef Muscle as a Function of Temperature. (b) Estimated Specific Heat Capacity of Beef Muscle as a Function of Temperature.

Fig. 2
Fig. 2

(a) Gruneisen Parameter of Water Dependence on Temperature. (b) Experimental setup.

Fig. 3
Fig. 3

(a) Speed of Sound of Beef Muscle Dependence on Temperature. (b) Estimated Gruneisen Parameter of Beef Muscle Dependence on Temperature. (c) PA Signal dependence on Temperature (Measured on ink solution, attenuation coefficient μeff = 3.1 cm−1). (d) PA Signal dependence on Temperature (Measured on ex-vivo beef muscle, averaged attenuation coefficient μeff = 5.9 cm−1).

Fig. 4
Fig. 4

(a) Experimental setup for PA radar imaging depth dependence on temperature. (b) PA radar signal dependence on temperature (measured on ex-vivo beef muscles).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

| p ˜ (ω) | μ a β c a 2 e μ ef z C p μ a 2 c a 2 + ω 2 E 0 = μ a Γ e μ ef z μ a 2 c a 2 + ω 2 E 0
θ= tan 1 ( ωcos( ωz c a )+ μ a c a sin( ωz c a ) ωsin( ωz c a ) μ a c a cos( ωz c a ) )
R(t)= 1 2π + s(ω)· r * (ω) e iωt dω
C p = C p i w i
ρ= ρ i w i

Metrics