Abstract

We introduce a new, non-invasive, diffuse optical technique, speckle contrast optical spectroscopy (SCOS), for probing deep tissue blood flow using the statistical properties of laser speckle contrast and the photon diffusion model for a point source. The feasibility of the method is tested using liquid phantoms which demonstrate that SCOS is capable of measuring the dynamic properties of turbid media non-invasively. We further present an in vivo measurement in a human forearm muscle using SCOS in two modalities: one with the dependence of the speckle contrast on the source-detector separation and another on the exposure time. In doing so, we also introduce crucial corrections to the speckle contrast that account for the variance of the shot and sensor dark noises.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met.32, 1259–1276 (2012).
    [CrossRef]
  2. M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O. Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Las. App.22, 105–126 (2007).
    [CrossRef]
  3. J. Briers, “Laser speckle contrast imaging for measuring blood flow,” Opt. Appl.37, 139–152 (2007).
  4. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlations,” Phys. Rev. Lett.75, 1855–1858 (1995).
    [CrossRef] [PubMed]
  5. D. Boas and A. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A14, 192–215 (1997).
    [CrossRef]
  6. T. Durduran, R. Choe, W. Baker, and A. G. Yodh, “Diffuse Optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
    [CrossRef]
  7. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15, 011109 (2010).
    [CrossRef] [PubMed]
  8. R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett.38, 1401–1403 (2013).
    [CrossRef] [PubMed]
  9. R. Bi, J. Dong, and K. Lee, “Multi-channel deep tissue flowmetry based on temporal diffuse speckle contrast analysis,” Opt. Express21, 22854–22861 (2013).
    [CrossRef] [PubMed]
  10. H. M. Varma, C. P. Valdes, A. K. Kristoffersen, J. P. Culver, and T. Durduran, “Speckle contrast optical tomography: A new method for deep tissue three-dimensional tomography of blood flow,” Biomed. Opt. Express5, 1275–1289 (2014).
    [CrossRef] [PubMed]
  11. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16, 1975–1989 (2008).
    [CrossRef] [PubMed]
  12. R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
    [CrossRef]
  13. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36, 4587–4599 (1997).
    [CrossRef] [PubMed]
  14. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, B. J. Tromberg, and M. S. McAdams, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A11, 2727–2741 (1994).
    [CrossRef]
  15. S. Yuan, “Sensitivity, noise and quantitative model of laser speckle contrast imaging,” Ph.D. thesis, Tufts University (2008).
  16. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol.46, 2053–2065 (2001).
    [CrossRef] [PubMed]
  17. D. A. Boas, “Diffuse Photon Probes of Structural and Dynamical Properties of Turbid Media: Theory and Biomedical Applications,” Ph.D. thesis, University of Pennsylvania (1996).
  18. Hamamatsu Japan, ORCA-R2 Technical Note (2008).
  19. G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt.10, 024027 (2005).
    [CrossRef] [PubMed]
  20. A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2, 1553–1563 (2011).
    [CrossRef] [PubMed]
  21. J. Dunn, K. Forrester, L. Martin, J. Tulip, and R. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Laser Surg. Med.43, 21–28 (2011).
    [CrossRef]
  22. H. He, Y. Tang, F. Zhou, J. Wang, Q. Luo, and P. Li, “Lateral laser speckle contrast analysis combined with line beam scanning illumination to improve the sampling depth of blood flow imaging,” Opt. Lett.37, 3774–3776 (2012).
    [CrossRef] [PubMed]
  23. J. McKinney, M. Webster, K. Webb, and A. Weiner, “Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source,” Opt. Lett.25, 4–6 (2000).
    [CrossRef]
  24. M. J. Draijer, E. Hondebrink, T. G. van Leeuwen, and W. Steenbergen, “Connecting laser Doppler perfusion imaging and laser speckle contrast analysis,” in “Biomedical Optics (BiOS) 2008,” (International Society for Optics and Photonics, 2008), p. 68630C.
  25. V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Laser Med. Sci.24, 269–283 (2009).
    [CrossRef]
  26. M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, and A. K. Dunn, “Frequency-domain wide-field laser Doppler in vivo imaging,” Opt. Lett.31, 2762–2764 (2006).
    [CrossRef] [PubMed]
  27. T. Binzoni, T. Leung, D. Boggett, and D. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol.48, 2527–2549 (2003).
    [CrossRef] [PubMed]
  28. G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Appl. Opt.46, 8506–8514 (2007).
    [CrossRef] [PubMed]
  29. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett.33, 2886–2888 (2008).
    [CrossRef] [PubMed]
  30. J. Ramirez-San-Juan, R. Ramos-Garcia, G. Martinez-Niconoff, and B. Choi, “Simple correction factor for laser speckle imaging of flow dynamics,” Opt. Lett.39, 678–681 (2014).
    [CrossRef] [PubMed]

2014 (2)

2013 (2)

2012 (2)

H. He, Y. Tang, F. Zhou, J. Wang, Q. Luo, and P. Li, “Lateral laser speckle contrast analysis combined with line beam scanning illumination to improve the sampling depth of blood flow imaging,” Opt. Lett.37, 3774–3776 (2012).
[CrossRef] [PubMed]

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met.32, 1259–1276 (2012).
[CrossRef]

2011 (2)

J. Dunn, K. Forrester, L. Martin, J. Tulip, and R. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Laser Surg. Med.43, 21–28 (2011).
[CrossRef]

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2, 1553–1563 (2011).
[CrossRef] [PubMed]

2010 (2)

T. Durduran, R. Choe, W. Baker, and A. G. Yodh, “Diffuse Optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15, 011109 (2010).
[CrossRef] [PubMed]

2009 (1)

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Laser Med. Sci.24, 269–283 (2009).
[CrossRef]

2008 (2)

2007 (3)

G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Appl. Opt.46, 8506–8514 (2007).
[CrossRef] [PubMed]

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O. Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Las. App.22, 105–126 (2007).
[CrossRef]

J. Briers, “Laser speckle contrast imaging for measuring blood flow,” Opt. Appl.37, 139–152 (2007).

2006 (1)

2005 (2)

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt.10, 024027 (2005).
[CrossRef] [PubMed]

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

2003 (1)

T. Binzoni, T. Leung, D. Boggett, and D. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol.48, 2527–2549 (2003).
[CrossRef] [PubMed]

2001 (1)

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol.46, 2053–2065 (2001).
[CrossRef] [PubMed]

2000 (1)

1997 (2)

1995 (1)

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlations,” Phys. Rev. Lett.75, 1855–1858 (1995).
[CrossRef] [PubMed]

1994 (1)

Atlan, M.

Baker, W.

T. Durduran, R. Choe, W. Baker, and A. G. Yodh, “Diffuse Optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Bandyopadhyay, R.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Bi, R.

Binzoni, T.

T. Binzoni, T. Leung, D. Boggett, and D. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol.48, 2527–2549 (2003).
[CrossRef] [PubMed]

Boas, D.

Boas, D. A.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met.32, 1259–1276 (2012).
[CrossRef]

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2, 1553–1563 (2011).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15, 011109 (2010).
[CrossRef] [PubMed]

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlations,” Phys. Rev. Lett.75, 1855–1858 (1995).
[CrossRef] [PubMed]

D. A. Boas, “Diffuse Photon Probes of Structural and Dynamical Properties of Turbid Media: Theory and Biomedical Applications,” Ph.D. thesis, University of Pennsylvania (1996).

Boggett, D.

T. Binzoni, T. Leung, D. Boggett, and D. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol.48, 2527–2549 (2003).
[CrossRef] [PubMed]

Bray, R.

J. Dunn, K. Forrester, L. Martin, J. Tulip, and R. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Laser Surg. Med.43, 21–28 (2011).
[CrossRef]

Briers, J.

J. Briers, “Laser speckle contrast imaging for measuring blood flow,” Opt. Appl.37, 139–152 (2007).

Campbell, L. E.

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlations,” Phys. Rev. Lett.75, 1855–1858 (1995).
[CrossRef] [PubMed]

Carp, S. A.

Chance, B.

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt.10, 024027 (2005).
[CrossRef] [PubMed]

Cheung, C.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol.46, 2053–2065 (2001).
[CrossRef] [PubMed]

Choe, R.

T. Durduran, R. Choe, W. Baker, and A. G. Yodh, “Diffuse Optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Choi, B.

Clancy, N. T.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O. Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Las. App.22, 105–126 (2007).
[CrossRef]

Contini, D.

Cuccia, D. J.

Culver, J. P.

H. M. Varma, C. P. Valdes, A. K. Kristoffersen, J. P. Culver, and T. Durduran, “Speckle contrast optical tomography: A new method for deep tissue three-dimensional tomography of blood flow,” Biomed. Opt. Express5, 1275–1289 (2014).
[CrossRef] [PubMed]

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol.46, 2053–2065 (2001).
[CrossRef] [PubMed]

Dale, A. M.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met.32, 1259–1276 (2012).
[CrossRef]

Delpy, D.

T. Binzoni, T. Leung, D. Boggett, and D. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol.48, 2527–2549 (2003).
[CrossRef] [PubMed]

Devor, A.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met.32, 1259–1276 (2012).
[CrossRef]

Dietsche, G.

Dixon, P.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Doherty, J. O.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O. Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Las. App.22, 105–126 (2007).
[CrossRef]

Dong, J.

Draijer, M. J.

M. J. Draijer, E. Hondebrink, T. G. van Leeuwen, and W. Steenbergen, “Connecting laser Doppler perfusion imaging and laser speckle contrast analysis,” in “Biomedical Optics (BiOS) 2008,” (International Society for Optics and Photonics, 2008), p. 68630C.

Duncan, D. D.

Dunn, A. K.

Dunn, J.

J. Dunn, K. Forrester, L. Martin, J. Tulip, and R. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Laser Surg. Med.43, 21–28 (2011).
[CrossRef]

Durduran, T.

H. M. Varma, C. P. Valdes, A. K. Kristoffersen, J. P. Culver, and T. Durduran, “Speckle contrast optical tomography: A new method for deep tissue three-dimensional tomography of blood flow,” Biomed. Opt. Express5, 1275–1289 (2014).
[CrossRef] [PubMed]

T. Durduran, R. Choe, W. Baker, and A. G. Yodh, “Diffuse Optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt.10, 024027 (2005).
[CrossRef] [PubMed]

Durian, D.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Durkin, A. J.

Enfield, J. G.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O. Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Las. App.22, 105–126 (2007).
[CrossRef]

Feng, T.-C.

Forget, B. C.

Forrester, K.

J. Dunn, K. Forrester, L. Martin, J. Tulip, and R. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Laser Surg. Med.43, 21–28 (2011).
[CrossRef]

Franceschini, M. A.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met.32, 1259–1276 (2012).
[CrossRef]

Gisler, T.

Gittings, A.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Gopal, A.

Greenberg, J. H.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol.46, 2053–2065 (2001).
[CrossRef] [PubMed]

Gross, M.

Haskell, R. C.

He, H.

Hondebrink, E.

M. J. Draijer, E. Hondebrink, T. G. van Leeuwen, and W. Steenbergen, “Connecting laser Doppler perfusion imaging and laser speckle contrast analysis,” in “Biomedical Optics (BiOS) 2008,” (International Society for Optics and Photonics, 2008), p. 68630C.

Jaillon, F.

Japan, Hamamatsu

Hamamatsu Japan, ORCA-R2 Technical Note (2008).

Kirkpatrick, S. J.

Kristoffersen, A. K.

Leahy, M. J.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O. Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Las. App.22, 105–126 (2007).
[CrossRef]

Lech, G.

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt.10, 024027 (2005).
[CrossRef] [PubMed]

Lee, K.

Leung, T.

T. Binzoni, T. Leung, D. Boggett, and D. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol.48, 2527–2549 (2003).
[CrossRef] [PubMed]

Li, J.

Li, P.

Luo, Q.

Martelli, F.

Martin, L.

J. Dunn, K. Forrester, L. Martin, J. Tulip, and R. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Laser Surg. Med.43, 21–28 (2011).
[CrossRef]

Martinez-Niconoff, G.

Mazhar, A.

McAdams, M. S.

McKinney, J.

McNamara, P.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O. Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Las. App.22, 105–126 (2007).
[CrossRef]

Mohler, E. R.

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt.10, 024027 (2005).
[CrossRef] [PubMed]

Nilsson, G. E.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O. Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Las. App.22, 105–126 (2007).
[CrossRef]

Ninck, M.

Nizar, K.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met.32, 1259–1276 (2012).
[CrossRef]

Ortolf, C.

Parthasarathy, A. B.

Rajan, V.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Laser Med. Sci.24, 269–283 (2009).
[CrossRef]

Ramirez-San-Juan, J.

Ramos-Garcia, R.

Rancillac, A.

Rice, T. B.

Saisan, P. A.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met.32, 1259–1276 (2012).
[CrossRef]

Sakadžic, S.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met.32, 1259–1276 (2012).
[CrossRef]

Srinivasan, V. J.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met.32, 1259–1276 (2012).
[CrossRef]

Steenbergen, W.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Laser Med. Sci.24, 269–283 (2009).
[CrossRef]

M. J. Draijer, E. Hondebrink, T. G. van Leeuwen, and W. Steenbergen, “Connecting laser Doppler perfusion imaging and laser speckle contrast analysis,” in “Biomedical Optics (BiOS) 2008,” (International Society for Optics and Photonics, 2008), p. 68630C.

Suh, S.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Svaasand, L. O.

Takahashi, K.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol.46, 2053–2065 (2001).
[CrossRef] [PubMed]

Tang, Y.

Tian, P.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met.32, 1259–1276 (2012).
[CrossRef]

Tom, W. J.

Tromberg, B. J.

Tsay, T.-T.

Tulip, J.

J. Dunn, K. Forrester, L. Martin, J. Tulip, and R. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Laser Surg. Med.43, 21–28 (2011).
[CrossRef]

Valdes, C. P.

van Leeuwen, T. G.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Laser Med. Sci.24, 269–283 (2009).
[CrossRef]

M. J. Draijer, E. Hondebrink, T. G. van Leeuwen, and W. Steenbergen, “Connecting laser Doppler perfusion imaging and laser speckle contrast analysis,” in “Biomedical Optics (BiOS) 2008,” (International Society for Optics and Photonics, 2008), p. 68630C.

Varghese, B.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Laser Med. Sci.24, 269–283 (2009).
[CrossRef]

Varma, H. M.

Vinogradov, S. A.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met.32, 1259–1276 (2012).
[CrossRef]

Vitalis, T.

Wang, J.

Webb, K.

Webster, M.

Weiner, A.

Wells-Gray, E. M.

Yaseen, M. A.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met.32, 1259–1276 (2012).
[CrossRef]

Yodh, A.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol.46, 2053–2065 (2001).
[CrossRef] [PubMed]

D. Boas and A. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A14, 192–215 (1997).
[CrossRef]

Yodh, A. G.

T. Durduran, R. Choe, W. Baker, and A. G. Yodh, “Diffuse Optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt.10, 024027 (2005).
[CrossRef] [PubMed]

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlations,” Phys. Rev. Lett.75, 1855–1858 (1995).
[CrossRef] [PubMed]

Yu, G.

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt.10, 024027 (2005).
[CrossRef] [PubMed]

Yuan, S.

S. Yuan, “Sensitivity, noise and quantitative model of laser speckle contrast imaging,” Ph.D. thesis, Tufts University (2008).

Zaccanti, G.

Zhang, X.

Zhou, C.

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt.10, 024027 (2005).
[CrossRef] [PubMed]

Zhou, F.

Appl. Opt. (2)

Biomed. Opt. Express (2)

J. Biomed. Opt. (2)

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt.10, 024027 (2005).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15, 011109 (2010).
[CrossRef] [PubMed]

J. Cerebr. Blood F. Met. (1)

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met.32, 1259–1276 (2012).
[CrossRef]

J. Opt. Soc. Am. A (2)

Laser Med. Sci. (1)

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Laser Med. Sci.24, 269–283 (2009).
[CrossRef]

Laser Surg. Med. (1)

J. Dunn, K. Forrester, L. Martin, J. Tulip, and R. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Laser Surg. Med.43, 21–28 (2011).
[CrossRef]

Med. Las. App. (1)

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O. Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Las. App.22, 105–126 (2007).
[CrossRef]

Opt. Appl. (1)

J. Briers, “Laser speckle contrast imaging for measuring blood flow,” Opt. Appl.37, 139–152 (2007).

Opt. Express (2)

Opt. Lett. (6)

Phys. Med. Biol. (2)

T. Binzoni, T. Leung, D. Boggett, and D. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol.48, 2527–2549 (2003).
[CrossRef] [PubMed]

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol.46, 2053–2065 (2001).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlations,” Phys. Rev. Lett.75, 1855–1858 (1995).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. Baker, and A. G. Yodh, “Diffuse Optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Other (4)

S. Yuan, “Sensitivity, noise and quantitative model of laser speckle contrast imaging,” Ph.D. thesis, Tufts University (2008).

D. A. Boas, “Diffuse Photon Probes of Structural and Dynamical Properties of Turbid Media: Theory and Biomedical Applications,” Ph.D. thesis, University of Pennsylvania (1996).

Hamamatsu Japan, ORCA-R2 Technical Note (2008).

M. J. Draijer, E. Hondebrink, T. G. van Leeuwen, and W. Steenbergen, “Connecting laser Doppler perfusion imaging and laser speckle contrast analysis,” in “Biomedical Optics (BiOS) 2008,” (International Society for Optics and Photonics, 2008), p. 68630C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Normalized field auto-correlation function for three different source-detector separations is calculated using Eq. (3) in panel (a). The dependence of the speckle contrast derived from Eq. (1) on (b) source-detector separation and (c) exposure time for a point source are also shown. The combined result can be viewed (d) as a surface plot of the speckle contrast dependence on both distance and exposure time. Here μ′s = 10 cm−1, μa = 0. 1 cm−1, DB = 1 × 10−8 cm2/s.

Fig. 2
Fig. 2

SCOS experimental set up. (a) Transmission geometry: The laser is raster scanned illuminating the sample on one plane of a 1.5cm thick, parallel plane while the camera collects the transmitted speckles on the other plane. (b) Re-emission geometry: The laser is coupled to a multi-mode optical fiber and illuminates the phantom on the same plane as the camera.

Fig. 3
Fig. 3

The photograph of the setup for the in vivo experiment. The inset figure depicts the approximate location of the source and the field-of-view.

Fig. 4
Fig. 4

(a) The normalized speckle contrast for the Lipofundin phantom with (circles) and without (squares) shot noise correction [10]. (b) A comparison of experimental data to a fit for DB = 1.68 ×10−8 cm2/s obtained using SCOS for 1% Lipofundin phantom [10] along with the κ computed using the DB = 1.95 × 10−8 cm2/s from the DCS measurement. (c) Data and fit for DB = 5.31 × 10−10 cm2/s from a 50% glycerol-50% Lipofundin (20%) phantom, along with the κ computed using the DB = 6.93 × 10−10 cm2/s from the DCS measurement.

Fig. 5
Fig. 5

The normalized speckle contrast versus the exposure time at 1.5 cm from the source where DB = 1.64 × 10−8 cm2/s was obtained.

Fig. 6
Fig. 6

The in vivo data. (a) The decay of the intensity over source-detector separation (S-D separation) in electrons for the in vivo experiment. The inset shows the logarithm of the intensity. (b) Representation of the variance of the dark subtracted intensity (σ2(Ic)), the variance of the shot noise ( σ s 2), the shot variance corrected variance ( σ ( I c ) 2 σ s 2), the dark variance ( σ d 2) and the dark and shot variance corrected variance ( σ ( I c ) 2 σ s 2 σ d 2) used in the calculation of the corrected speckle contrast from in vivo experiment. All quantities are shown as a function of the measured intensity (in electrons, bottom axis) and the corresponding source-detector separation (top axis).

Fig. 7
Fig. 7

(a) The speckle contrast versus the source-detector separation with and without the two different corrections in the in vivo experiment. (b) The standard deviation of the speckle contrast measurement for different number of averaged images in the in vivo experiment.

Fig. 8
Fig. 8

(a) Speckle contrast over distance for all the exposure times available in the SCOS measurement on a forearm muscle. (b) Surface plot of the data plotted in (a).

Fig. 9
Fig. 9

(a) Speckle contrast over distance in a forearm muscle where αDB = (4.14 ± 0.38) × 10−9 cm2/s was obtained with an exposure time of 1 ms. (b) Speckle contrast versus exposure times at 0.73 cm from the source for the same experiment with αDB = (2.44 ± 0.68) × 10−9 cm2/s.

Fig. 10
Fig. 10

αDB versus time using multi-distance SCOS as shown in Fig. 9(a) before, during and after arterial cuff-occlusion. The cuff was rapidly occluded at ∼ 5 minute to 180 mmHg and kept there for three minutes.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

κ 2 = 2 β T 0 T g 1 ( r , τ ) 2 ( 1 τ T ) d τ ,
[ D ( r ) v μ a ( r ) α 3 v μ s k o 2 Δ r 2 ( τ ) ] G 1 ( r , τ ) = v S 0 ( r r 0 ) ,
G 1 ( [ r , z ] , [ r 0 = 0 , z 0 = 1 / μ s ] , τ ) = v 4 π D m = ( exp [ K r + , m ] r + , m exp [ K r , m ] r , m ) ,
κ c = ( σ ( I c ) 2 σ s 2 σ d 2 ) μ ( I c ) 2 .

Metrics