Abstract

A bone tissue phantom prototype allowing to test, in general, optical flowmeters at large interoptode spacings, such as laser-Doppler flowmetry or diffuse correlation spectroscopy, has been developed by 3D-stereolithography technique. It has been demonstrated that complex tissue vascular systems of any geometrical shape can be conceived. Absorption coefficient, reduced scattering coefficient and refractive index of the optical phantom have been measured to ensure that the optical parameters reasonably reproduce real human bone tissue in vivo. An experimental demonstration of a possible use of the optical phantom, utilizing a laser-Doppler flowmeter, is also presented.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Soelkner, G. Mitic, and R. Lohwasser, “Monte Carlo simulations and laser Doppler flow measurements with high penetration depth in biological tissuelike head phantoms,” Appl. Opt.36, 5647–5654 (1997).
    [CrossRef] [PubMed]
  2. R. Lohwasser and G. Soelkner, “Experimental and theoretical laser-Doppler frequency spectra of a tissuelike model of a human head with capillaries,” Appl. Opt.38, 2128–2137 (1999).
    [CrossRef]
  3. R. G. M. Kolkman, E. Hondebrink, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Pulsed-laser doppler flowmetry provides basis for deep perfusion probing,” Rev. Sci. Instrum.72, 4242–4244 (2001).
    [CrossRef]
  4. T. Binzoni, T. S. Leung, D. Boggett, and D. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol.48, 2527–2549 (2003).
    [CrossRef] [PubMed]
  5. T. Binzoni and D. Van De Ville, “Noninvasive probing of the neurovascular system in human bone/bone marrow using near-infrared light,” J. Innov. Opt. Health Sci.04, 183–189 (2011).
    [CrossRef]
  6. M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt.15, 057007 (2010).
    [CrossRef] [PubMed]
  7. G. Yu, T. Durduran, C. Zhou, R. Cheng, and A. G. Yodh, “Near-infrared diffuse correlation spectroscopy for assessment of tissue blood flow,” in Handbook of Biomedical Optics, D. A. Boas, C. Pitris, and N. Ramanujam, eds. (CRC: Boca Raton, 2011), pp. 195–216.
    [CrossRef]
  8. R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci.369, 4390–4406 (2011).
    [CrossRef] [PubMed]
  9. We consider here only non-invasive optical flowmeters working at large source/detector separation (i.e. ‘large interoptode spacing’; e.g. ≥ 1.5 cm), allowing measurements deep in the investigated tissues. Flowmeters at short interoptode spacing, working on extremely small volumes, are not considered here because they probably need another technical solution for the phantoms.
  10. T. Binzoni, D. Tchernin, J. Richiardi, D. Van De Ville, and J. N. Hyacinthe, “Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-Doppler flowmetry,” Physiol. Meas.33, 1181–1197 (2012).
    [CrossRef] [PubMed]
  11. J. Näslund, J. Pettersson, T. Lundeberg, D. Linnarsson, and L. G. Lindberg, “Non-invasive continuous estimation of blood flow changes in human patellar bone,” Med. Biol. Eng. Comput.44, 501–509 (2006).
    [CrossRef] [PubMed]
  12. T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas.34, 25–40 (2013).
    [CrossRef]
  13. F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from headlike tissue phantoms: influence of a non-scattering layer,” Opt. Express.14, 10181–10194 (2006).
    [CrossRef] [PubMed]
  14. M. Brookes and W. Revell, Blood Supply of Bone: Scientific Aspects (Springer, 1998).
    [CrossRef]
  15. L. Spinelli, A. Rizzolo, M. Vanoli, M. Grassi, P. Eccher Zerbini, R. Pimentel, and A. Torricelli, “Optical properties of pulp and skin in brazilian mangoes in the 540–900 nm spectral range: implication for non-destructive maturity assessment by time-resolved reflectance spectroscopy,” (International Conference of Agricultural Engineering, CIGR-AgEng2012, Valencia (Spain), 2012).
  16. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light propagation through biological tissue and other diffusive media: theory, solutions, and software ( SPIE,Washington2009).
  17. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt.36, 949–957 (1997).
    [CrossRef] [PubMed]
  18. A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt.9, 474–480 (2004).
    [CrossRef] [PubMed]
  19. Y. Xu, N. Iftimia, H. Jiang, L. Key, and M. Bolster, “Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography,” Opt. Express8, 447–451 (2001).
    [CrossRef] [PubMed]
  20. P. Farzam, P. Zirak, T. Binzoni, and T. Durduran, “Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy,” Physiol. Meas.34, 839–857 (2013).
    [CrossRef] [PubMed]
  21. M. A. Bartlett and H. Jiang, “Effect of refractive index on the measurement of optical properties in turbid media,” Appl. Opt.40, 1735–1741 (2001).
    [CrossRef]
  22. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16, 5907–5925 (2008).
    [CrossRef] [PubMed]
  23. F. C. Cheong, K. Xiao, and D. G. Grier, “Technical note: characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci.92, 95–99 (2009).
    [CrossRef]
  24. P. B. Canham and A. C. Burton, “Distribution of size and shape in populations of normal human red cells,” Circ. Res.22, 405–422 (1968).
    [CrossRef] [PubMed]
  25. M. D. Waterworth, B. J. Tarte, A. J. Joblin, T. van Doorn, and H. E. Niesler, “Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging,” Australas. Phys. Eng. Sci. Med.18, 39–44 (1995).
    [PubMed]
  26. R. Jensen, Handbook of Milk Composition, Food science and technology international series (Academic, 1995).
  27. H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” (2000).
  28. T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol.49, 5445–5458 (2004).
    [CrossRef]

2013

T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas.34, 25–40 (2013).
[CrossRef]

P. Farzam, P. Zirak, T. Binzoni, and T. Durduran, “Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy,” Physiol. Meas.34, 839–857 (2013).
[CrossRef] [PubMed]

2012

T. Binzoni, D. Tchernin, J. Richiardi, D. Van De Ville, and J. N. Hyacinthe, “Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-Doppler flowmetry,” Physiol. Meas.33, 1181–1197 (2012).
[CrossRef] [PubMed]

2011

T. Binzoni and D. Van De Ville, “Noninvasive probing of the neurovascular system in human bone/bone marrow using near-infrared light,” J. Innov. Opt. Health Sci.04, 183–189 (2011).
[CrossRef]

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci.369, 4390–4406 (2011).
[CrossRef] [PubMed]

2010

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt.15, 057007 (2010).
[CrossRef] [PubMed]

2009

F. C. Cheong, K. Xiao, and D. G. Grier, “Technical note: characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci.92, 95–99 (2009).
[CrossRef]

2008

2006

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from headlike tissue phantoms: influence of a non-scattering layer,” Opt. Express.14, 10181–10194 (2006).
[CrossRef] [PubMed]

J. Näslund, J. Pettersson, T. Lundeberg, D. Linnarsson, and L. G. Lindberg, “Non-invasive continuous estimation of blood flow changes in human patellar bone,” Med. Biol. Eng. Comput.44, 501–509 (2006).
[CrossRef] [PubMed]

2004

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt.9, 474–480 (2004).
[CrossRef] [PubMed]

T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol.49, 5445–5458 (2004).
[CrossRef]

2003

T. Binzoni, T. S. Leung, D. Boggett, and D. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol.48, 2527–2549 (2003).
[CrossRef] [PubMed]

2001

1999

1997

1995

M. D. Waterworth, B. J. Tarte, A. J. Joblin, T. van Doorn, and H. E. Niesler, “Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging,” Australas. Phys. Eng. Sci. Med.18, 39–44 (1995).
[PubMed]

1968

P. B. Canham and A. C. Burton, “Distribution of size and shape in populations of normal human red cells,” Circ. Res.22, 405–422 (1968).
[CrossRef] [PubMed]

Bartlett, M. A.

Bassi, A.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt.9, 474–480 (2004).
[CrossRef] [PubMed]

Belau, M.

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt.15, 057007 (2010).
[CrossRef] [PubMed]

Bigio, I. J.

Binzoni, T.

P. Farzam, P. Zirak, T. Binzoni, and T. Durduran, “Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy,” Physiol. Meas.34, 839–857 (2013).
[CrossRef] [PubMed]

T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas.34, 25–40 (2013).
[CrossRef]

T. Binzoni, D. Tchernin, J. Richiardi, D. Van De Ville, and J. N. Hyacinthe, “Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-Doppler flowmetry,” Physiol. Meas.33, 1181–1197 (2012).
[CrossRef] [PubMed]

T. Binzoni and D. Van De Ville, “Noninvasive probing of the neurovascular system in human bone/bone marrow using near-infrared light,” J. Innov. Opt. Health Sci.04, 183–189 (2011).
[CrossRef]

T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol.49, 5445–5458 (2004).
[CrossRef]

T. Binzoni, T. S. Leung, D. Boggett, and D. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol.48, 2527–2549 (2003).
[CrossRef] [PubMed]

Boggett, D.

T. Binzoni, T. S. Leung, D. Boggett, and D. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol.48, 2527–2549 (2003).
[CrossRef] [PubMed]

Bolster, M.

Bolt, R. A.

R. G. M. Kolkman, E. Hondebrink, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Pulsed-laser doppler flowmetry provides basis for deep perfusion probing,” Rev. Sci. Instrum.72, 4242–4244 (2001).
[CrossRef]

Boyer, J.

Brookes, M.

M. Brookes and W. Revell, Blood Supply of Bone: Scientific Aspects (Springer, 1998).
[CrossRef]

Buckley, E. M.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci.369, 4390–4406 (2011).
[CrossRef] [PubMed]

Burton, A. C.

P. B. Canham and A. C. Burton, “Distribution of size and shape in populations of normal human red cells,” Circ. Res.22, 405–422 (1968).
[CrossRef] [PubMed]

Canham, P. B.

P. B. Canham and A. C. Burton, “Distribution of size and shape in populations of normal human red cells,” Circ. Res.22, 405–422 (1968).
[CrossRef] [PubMed]

Cheng, R.

G. Yu, T. Durduran, C. Zhou, R. Cheng, and A. G. Yodh, “Near-infrared diffuse correlation spectroscopy for assessment of tissue blood flow,” in Handbook of Biomedical Optics, D. A. Boas, C. Pitris, and N. Ramanujam, eds. (CRC: Boca Raton, 2011), pp. 195–216.
[CrossRef]

Cheong, F. C.

F. C. Cheong, K. Xiao, and D. G. Grier, “Technical note: characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci.92, 95–99 (2009).
[CrossRef]

Chikoidze, E.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt.9, 474–480 (2004).
[CrossRef] [PubMed]

Choe, R.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci.369, 4390–4406 (2011).
[CrossRef] [PubMed]

Contini, D.

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt.15, 057007 (2010).
[CrossRef] [PubMed]

Cubeddu, R.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt.9, 474–480 (2004).
[CrossRef] [PubMed]

de Mul, F. F. M.

R. G. M. Kolkman, E. Hondebrink, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Pulsed-laser doppler flowmetry provides basis for deep perfusion probing,” Rev. Sci. Instrum.72, 4242–4244 (2001).
[CrossRef]

Del Bianco, S.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light propagation through biological tissue and other diffusive media: theory, solutions, and software ( SPIE,Washington2009).

Delpy, D.

T. Binzoni, T. S. Leung, D. Boggett, and D. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol.48, 2527–2549 (2003).
[CrossRef] [PubMed]

Delpy, D. T.

T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol.49, 5445–5458 (2004).
[CrossRef]

Dietsche, G.

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from headlike tissue phantoms: influence of a non-scattering layer,” Opt. Express.14, 10181–10194 (2006).
[CrossRef] [PubMed]

Durduran, T.

P. Farzam, P. Zirak, T. Binzoni, and T. Durduran, “Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy,” Physiol. Meas.34, 839–857 (2013).
[CrossRef] [PubMed]

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci.369, 4390–4406 (2011).
[CrossRef] [PubMed]

G. Yu, T. Durduran, C. Zhou, R. Cheng, and A. G. Yodh, “Near-infrared diffuse correlation spectroscopy for assessment of tissue blood flow,” in Handbook of Biomedical Optics, D. A. Boas, C. Pitris, and N. Ramanujam, eds. (CRC: Boca Raton, 2011), pp. 195–216.
[CrossRef]

Eccher Zerbini, P.

L. Spinelli, A. Rizzolo, M. Vanoli, M. Grassi, P. Eccher Zerbini, R. Pimentel, and A. Torricelli, “Optical properties of pulp and skin in brazilian mangoes in the 540–900 nm spectral range: implication for non-destructive maturity assessment by time-resolved reflectance spectroscopy,” (International Conference of Agricultural Engineering, CIGR-AgEng2012, Valencia (Spain), 2012).

Farzam, P.

P. Farzam, P. Zirak, T. Binzoni, and T. Durduran, “Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy,” Physiol. Meas.34, 839–857 (2013).
[CrossRef] [PubMed]

Foschum, F.

Fuselier, T.

Giambattistelli, E.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt.9, 474–480 (2004).
[CrossRef] [PubMed]

Gisler, T.

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt.15, 057007 (2010).
[CrossRef] [PubMed]

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from headlike tissue phantoms: influence of a non-scattering layer,” Opt. Express.14, 10181–10194 (2006).
[CrossRef] [PubMed]

Grassi, M.

L. Spinelli, A. Rizzolo, M. Vanoli, M. Grassi, P. Eccher Zerbini, R. Pimentel, and A. Torricelli, “Optical properties of pulp and skin in brazilian mangoes in the 540–900 nm spectral range: implication for non-destructive maturity assessment by time-resolved reflectance spectroscopy,” (International Conference of Agricultural Engineering, CIGR-AgEng2012, Valencia (Spain), 2012).

Grier, D. G.

F. C. Cheong, K. Xiao, and D. G. Grier, “Technical note: characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci.92, 95–99 (2009).
[CrossRef]

Hering, G.

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt.15, 057007 (2010).
[CrossRef] [PubMed]

Hondebrink, E.

R. G. M. Kolkman, E. Hondebrink, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Pulsed-laser doppler flowmetry provides basis for deep perfusion probing,” Rev. Sci. Instrum.72, 4242–4244 (2001).
[CrossRef]

Hyacinthe, J. N.

T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas.34, 25–40 (2013).
[CrossRef]

T. Binzoni, D. Tchernin, J. Richiardi, D. Van De Ville, and J. N. Hyacinthe, “Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-Doppler flowmetry,” Physiol. Meas.33, 1181–1197 (2012).
[CrossRef] [PubMed]

Iftimia, N.

Ismaelli, A.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light propagation through biological tissue and other diffusive media: theory, solutions, and software ( SPIE,Washington2009).

Jaillon, F.

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from headlike tissue phantoms: influence of a non-scattering layer,” Opt. Express.14, 10181–10194 (2006).
[CrossRef] [PubMed]

Jensen, R.

R. Jensen, Handbook of Milk Composition, Food science and technology international series (Academic, 1995).

Jiang, H.

Joblin, A. J.

M. D. Waterworth, B. J. Tarte, A. J. Joblin, T. van Doorn, and H. E. Niesler, “Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging,” Australas. Phys. Eng. Sci. Med.18, 39–44 (1995).
[PubMed]

Johnson, T. M.

Key, L.

Kienle, A.

Kim, M. N.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci.369, 4390–4406 (2011).
[CrossRef] [PubMed]

Kolkman, R. G. M.

R. G. M. Kolkman, E. Hondebrink, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Pulsed-laser doppler flowmetry provides basis for deep perfusion probing,” Rev. Sci. Instrum.72, 4242–4244 (2001).
[CrossRef]

Leung, T. S.

T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol.49, 5445–5458 (2004).
[CrossRef]

T. Binzoni, T. S. Leung, D. Boggett, and D. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol.48, 2527–2549 (2003).
[CrossRef] [PubMed]

Li, H.

H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” (2000).

Li, J.

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from headlike tissue phantoms: influence of a non-scattering layer,” Opt. Express.14, 10181–10194 (2006).
[CrossRef] [PubMed]

Lin, L.

H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” (2000).

Lindberg, L. G.

J. Näslund, J. Pettersson, T. Lundeberg, D. Linnarsson, and L. G. Lindberg, “Non-invasive continuous estimation of blood flow changes in human patellar bone,” Med. Biol. Eng. Comput.44, 501–509 (2006).
[CrossRef] [PubMed]

Linnarsson, D.

J. Näslund, J. Pettersson, T. Lundeberg, D. Linnarsson, and L. G. Lindberg, “Non-invasive continuous estimation of blood flow changes in human patellar bone,” Med. Biol. Eng. Comput.44, 501–509 (2006).
[CrossRef] [PubMed]

Lohwasser, R.

Lundeberg, T.

J. Näslund, J. Pettersson, T. Lundeberg, D. Linnarsson, and L. G. Lindberg, “Non-invasive continuous estimation of blood flow changes in human patellar bone,” Med. Biol. Eng. Comput.44, 501–509 (2006).
[CrossRef] [PubMed]

Maret, G.

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from headlike tissue phantoms: influence of a non-scattering layer,” Opt. Express.14, 10181–10194 (2006).
[CrossRef] [PubMed]

Martelli, F.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light propagation through biological tissue and other diffusive media: theory, solutions, and software ( SPIE,Washington2009).

Mesquita, R. C.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci.369, 4390–4406 (2011).
[CrossRef] [PubMed]

Michels, R.

Mitic, G.

Mourant, J. R.

Näslund, J.

J. Näslund, J. Pettersson, T. Lundeberg, D. Linnarsson, and L. G. Lindberg, “Non-invasive continuous estimation of blood flow changes in human patellar bone,” Med. Biol. Eng. Comput.44, 501–509 (2006).
[CrossRef] [PubMed]

Niesler, H. E.

M. D. Waterworth, B. J. Tarte, A. J. Joblin, T. van Doorn, and H. E. Niesler, “Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging,” Australas. Phys. Eng. Sci. Med.18, 39–44 (1995).
[PubMed]

Ninck, M.

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt.15, 057007 (2010).
[CrossRef] [PubMed]

Pettersson, J.

J. Näslund, J. Pettersson, T. Lundeberg, D. Linnarsson, and L. G. Lindberg, “Non-invasive continuous estimation of blood flow changes in human patellar bone,” Med. Biol. Eng. Comput.44, 501–509 (2006).
[CrossRef] [PubMed]

Pifferi, A.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt.9, 474–480 (2004).
[CrossRef] [PubMed]

Pimentel, R.

L. Spinelli, A. Rizzolo, M. Vanoli, M. Grassi, P. Eccher Zerbini, R. Pimentel, and A. Torricelli, “Optical properties of pulp and skin in brazilian mangoes in the 540–900 nm spectral range: implication for non-destructive maturity assessment by time-resolved reflectance spectroscopy,” (International Conference of Agricultural Engineering, CIGR-AgEng2012, Valencia (Spain), 2012).

Revell, W.

M. Brookes and W. Revell, Blood Supply of Bone: Scientific Aspects (Springer, 1998).
[CrossRef]

Richiardi, J.

T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas.34, 25–40 (2013).
[CrossRef]

T. Binzoni, D. Tchernin, J. Richiardi, D. Van De Ville, and J. N. Hyacinthe, “Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-Doppler flowmetry,” Physiol. Meas.33, 1181–1197 (2012).
[CrossRef] [PubMed]

Rizzolo, A.

L. Spinelli, A. Rizzolo, M. Vanoli, M. Grassi, P. Eccher Zerbini, R. Pimentel, and A. Torricelli, “Optical properties of pulp and skin in brazilian mangoes in the 540–900 nm spectral range: implication for non-destructive maturity assessment by time-resolved reflectance spectroscopy,” (International Conference of Agricultural Engineering, CIGR-AgEng2012, Valencia (Spain), 2012).

Seghier, M. L.

T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol.49, 5445–5458 (2004).
[CrossRef]

Skipetrov, S. E.

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from headlike tissue phantoms: influence of a non-scattering layer,” Opt. Express.14, 10181–10194 (2006).
[CrossRef] [PubMed]

Soelkner, G.

Spinelli, L.

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt.15, 057007 (2010).
[CrossRef] [PubMed]

L. Spinelli, A. Rizzolo, M. Vanoli, M. Grassi, P. Eccher Zerbini, R. Pimentel, and A. Torricelli, “Optical properties of pulp and skin in brazilian mangoes in the 540–900 nm spectral range: implication for non-destructive maturity assessment by time-resolved reflectance spectroscopy,” (International Conference of Agricultural Engineering, CIGR-AgEng2012, Valencia (Spain), 2012).

Steenbergen, W.

R. G. M. Kolkman, E. Hondebrink, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Pulsed-laser doppler flowmetry provides basis for deep perfusion probing,” Rev. Sci. Instrum.72, 4242–4244 (2001).
[CrossRef]

Sunar, U.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci.369, 4390–4406 (2011).
[CrossRef] [PubMed]

Taroni, P.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt.9, 474–480 (2004).
[CrossRef] [PubMed]

Tarte, B. J.

M. D. Waterworth, B. J. Tarte, A. J. Joblin, T. van Doorn, and H. E. Niesler, “Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging,” Australas. Phys. Eng. Sci. Med.18, 39–44 (1995).
[PubMed]

Tchernin, D.

T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas.34, 25–40 (2013).
[CrossRef]

T. Binzoni, D. Tchernin, J. Richiardi, D. Van De Ville, and J. N. Hyacinthe, “Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-Doppler flowmetry,” Physiol. Meas.33, 1181–1197 (2012).
[CrossRef] [PubMed]

Torricelli, A.

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt.15, 057007 (2010).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt.9, 474–480 (2004).
[CrossRef] [PubMed]

L. Spinelli, A. Rizzolo, M. Vanoli, M. Grassi, P. Eccher Zerbini, R. Pimentel, and A. Torricelli, “Optical properties of pulp and skin in brazilian mangoes in the 540–900 nm spectral range: implication for non-destructive maturity assessment by time-resolved reflectance spectroscopy,” (International Conference of Agricultural Engineering, CIGR-AgEng2012, Valencia (Spain), 2012).

Van De Ville, D.

T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas.34, 25–40 (2013).
[CrossRef]

T. Binzoni, D. Tchernin, J. Richiardi, D. Van De Ville, and J. N. Hyacinthe, “Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-Doppler flowmetry,” Physiol. Meas.33, 1181–1197 (2012).
[CrossRef] [PubMed]

T. Binzoni and D. Van De Ville, “Noninvasive probing of the neurovascular system in human bone/bone marrow using near-infrared light,” J. Innov. Opt. Health Sci.04, 183–189 (2011).
[CrossRef]

van Doorn, T.

M. D. Waterworth, B. J. Tarte, A. J. Joblin, T. van Doorn, and H. E. Niesler, “Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging,” Australas. Phys. Eng. Sci. Med.18, 39–44 (1995).
[PubMed]

Vanoli, M.

L. Spinelli, A. Rizzolo, M. Vanoli, M. Grassi, P. Eccher Zerbini, R. Pimentel, and A. Torricelli, “Optical properties of pulp and skin in brazilian mangoes in the 540–900 nm spectral range: implication for non-destructive maturity assessment by time-resolved reflectance spectroscopy,” (International Conference of Agricultural Engineering, CIGR-AgEng2012, Valencia (Spain), 2012).

Waterworth, M. D.

M. D. Waterworth, B. J. Tarte, A. J. Joblin, T. van Doorn, and H. E. Niesler, “Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging,” Australas. Phys. Eng. Sci. Med.18, 39–44 (1995).
[PubMed]

Xiao, K.

F. C. Cheong, K. Xiao, and D. G. Grier, “Technical note: characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci.92, 95–99 (2009).
[CrossRef]

Xie, S.

H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” (2000).

Xu, Y.

Yodh, A. G.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci.369, 4390–4406 (2011).
[CrossRef] [PubMed]

G. Yu, T. Durduran, C. Zhou, R. Cheng, and A. G. Yodh, “Near-infrared diffuse correlation spectroscopy for assessment of tissue blood flow,” in Handbook of Biomedical Optics, D. A. Boas, C. Pitris, and N. Ramanujam, eds. (CRC: Boca Raton, 2011), pp. 195–216.
[CrossRef]

Yu, G.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci.369, 4390–4406 (2011).
[CrossRef] [PubMed]

G. Yu, T. Durduran, C. Zhou, R. Cheng, and A. G. Yodh, “Near-infrared diffuse correlation spectroscopy for assessment of tissue blood flow,” in Handbook of Biomedical Optics, D. A. Boas, C. Pitris, and N. Ramanujam, eds. (CRC: Boca Raton, 2011), pp. 195–216.
[CrossRef]

Zaccanti, G.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light propagation through biological tissue and other diffusive media: theory, solutions, and software ( SPIE,Washington2009).

Zhou, C.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci.369, 4390–4406 (2011).
[CrossRef] [PubMed]

G. Yu, T. Durduran, C. Zhou, R. Cheng, and A. G. Yodh, “Near-infrared diffuse correlation spectroscopy for assessment of tissue blood flow,” in Handbook of Biomedical Optics, D. A. Boas, C. Pitris, and N. Ramanujam, eds. (CRC: Boca Raton, 2011), pp. 195–216.
[CrossRef]

Zirak, P.

P. Farzam, P. Zirak, T. Binzoni, and T. Durduran, “Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy,” Physiol. Meas.34, 839–857 (2013).
[CrossRef] [PubMed]

Appl. Opt.

Australas. Phys. Eng. Sci. Med.

M. D. Waterworth, B. J. Tarte, A. J. Joblin, T. van Doorn, and H. E. Niesler, “Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging,” Australas. Phys. Eng. Sci. Med.18, 39–44 (1995).
[PubMed]

Circ. Res.

P. B. Canham and A. C. Burton, “Distribution of size and shape in populations of normal human red cells,” Circ. Res.22, 405–422 (1968).
[CrossRef] [PubMed]

J. Biomed. Opt.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt.9, 474–480 (2004).
[CrossRef] [PubMed]

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt.15, 057007 (2010).
[CrossRef] [PubMed]

J. Dairy Sci.

F. C. Cheong, K. Xiao, and D. G. Grier, “Technical note: characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci.92, 95–99 (2009).
[CrossRef]

J. Innov. Opt. Health Sci.

T. Binzoni and D. Van De Ville, “Noninvasive probing of the neurovascular system in human bone/bone marrow using near-infrared light,” J. Innov. Opt. Health Sci.04, 183–189 (2011).
[CrossRef]

Med. Biol. Eng. Comput.

J. Näslund, J. Pettersson, T. Lundeberg, D. Linnarsson, and L. G. Lindberg, “Non-invasive continuous estimation of blood flow changes in human patellar bone,” Med. Biol. Eng. Comput.44, 501–509 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Express.

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from headlike tissue phantoms: influence of a non-scattering layer,” Opt. Express.14, 10181–10194 (2006).
[CrossRef] [PubMed]

Philos. Trans. A Math. Phys. Eng. Sci.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci.369, 4390–4406 (2011).
[CrossRef] [PubMed]

Phys. Med. Biol.

T. Binzoni, T. S. Leung, D. Boggett, and D. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol.48, 2527–2549 (2003).
[CrossRef] [PubMed]

T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol.49, 5445–5458 (2004).
[CrossRef]

Physiol. Meas.

T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas.34, 25–40 (2013).
[CrossRef]

T. Binzoni, D. Tchernin, J. Richiardi, D. Van De Ville, and J. N. Hyacinthe, “Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-Doppler flowmetry,” Physiol. Meas.33, 1181–1197 (2012).
[CrossRef] [PubMed]

P. Farzam, P. Zirak, T. Binzoni, and T. Durduran, “Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy,” Physiol. Meas.34, 839–857 (2013).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

R. G. M. Kolkman, E. Hondebrink, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Pulsed-laser doppler flowmetry provides basis for deep perfusion probing,” Rev. Sci. Instrum.72, 4242–4244 (2001).
[CrossRef]

Other

We consider here only non-invasive optical flowmeters working at large source/detector separation (i.e. ‘large interoptode spacing’; e.g. ≥ 1.5 cm), allowing measurements deep in the investigated tissues. Flowmeters at short interoptode spacing, working on extremely small volumes, are not considered here because they probably need another technical solution for the phantoms.

G. Yu, T. Durduran, C. Zhou, R. Cheng, and A. G. Yodh, “Near-infrared diffuse correlation spectroscopy for assessment of tissue blood flow,” in Handbook of Biomedical Optics, D. A. Boas, C. Pitris, and N. Ramanujam, eds. (CRC: Boca Raton, 2011), pp. 195–216.
[CrossRef]

M. Brookes and W. Revell, Blood Supply of Bone: Scientific Aspects (Springer, 1998).
[CrossRef]

L. Spinelli, A. Rizzolo, M. Vanoli, M. Grassi, P. Eccher Zerbini, R. Pimentel, and A. Torricelli, “Optical properties of pulp and skin in brazilian mangoes in the 540–900 nm spectral range: implication for non-destructive maturity assessment by time-resolved reflectance spectroscopy,” (International Conference of Agricultural Engineering, CIGR-AgEng2012, Valencia (Spain), 2012).

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light propagation through biological tissue and other diffusive media: theory, solutions, and software ( SPIE,Washington2009).

R. Jensen, Handbook of Milk Composition, Food science and technology international series (Academic, 1995).

H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Transparent view of the OP. The red region highlight the bottom part of the phantom. The real colour of the OP is white and the geometrical appearance is similar to the inset appearing at the bottom-right of the figure. Tubing for the circulation of liquids simulating the ‘tissue blood flow’ are connected to the ‘inlets’ and ‘outlets’.

Fig. 2
Fig. 2

Intuitive schematic drawing representing the different layers forming the phantom (for clarity the number of canals and dimensions do not correspond to the reality). Each layer is alternatively rotated by 90 degree compared to the following layer. Black, red and blue colors distinguish the 3 canals. Thin lines represent the connections allowing to form a unique long canal for each color (in the real phantom they move in the 3rd dimension to prevent intersections between canals). The connections between layers are not represented (see Fig. 1 for a complete view).

Fig. 3
Fig. 3

Schematic drawing representing the time-resolved reflectance spectroscopy setup.

Fig. 4
Fig. 4

Schematic drawing representing the two instruments used to measure the refractive index (n) of the different materials. The parameter ng is the known refractive index of the glass cube (represented in cyan). The parameters θ and θB are the measured angles. a) The Pulfrich refractometer; b) The Brewster-angle refractometer.

Fig. 5
Fig. 5

Schematic drawing representing the experimental setup for testing the OP with an LDF.

Fig. 6
Fig. 6

Absorption coefficient (μa) as a function of the wavelength (λ) of the material utilized to build the optical phantom (OP). Vertical bars are standard deviations. The continuous lines are cubic spline interpolations of the data. Data were estimated by using 3 different refractive indexes (n) values (see text). For clarity, single experimental points obtained with n = 1.44 and n = 1.54 are not shown.

Fig. 7
Fig. 7

Reduced scattering coefficient (μ′s) as a function of the wavelength (λ) of the material utilized to build the optical phantom (OP). Vertical bars are standard deviations. The continuous lines were obtained with the model represented by Eq. (6). Data were estimated by using 3 different refractive indexes (n) values (see text). For clarity, single experimental points obtained with n = 1.44 and n = 1.54 are not shown.

Fig. 8
Fig. 8

Refractive index (n) as a function of wavelength (λ) of different milk dilutions in bi-distilled water.

Fig. 9
Fig. 9

Measurements of and Φ assessed by LDF. Different colors represent different f values. Vertical bars are standard deviations computed on 5 samples.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f = m [ ( d / 2 ) 2 π ] [ ( 2 m + 1 ) d ] N [ ( 2 m + 1 ) d ] 2 [ 2 d ] N 100 = 1 8 m π 2 m + 1 100 19.00 % .
n ¯ ω ( 0 ) / i 0 2 ,
Φ ω ( 1 ) / i 0 2 ,
n = n g 2 sin 2 ( θ )
n = tan ( θ B )
μ s = a ( λ λ 0 ) b ,

Metrics