Abstract

Gold nanoparticle mediated (GNOME) laser transfection/perforation fulfills the demands of a reliable transfection technique. It provides efficient delivery and has a negligible impact on cell viability. Furthermore, it reaches high-throughput applicability. However, currently only large gold particles (> 80 nm) allow successful GNOME laser perforation, probably due to insufficient sedimentation of smaller gold nanoparticles. The objective of this study is to determine whether this aspect can be addressed by a modification of silica particles with gold nanoparticles. Throughout the analysis, we show that after the attachment of gold nanoparticles to silica particles, comparable or better efficiencies to GNOME laser perforation are reached. In combination with 1 µm silica particles, we report laser perforation with gold nanoparticles with sizes down to 4 nm. Therefore, our investigations have great importance for the future research in and the fields of laser transfection combined with plasmonics.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A.  Whitehead, R.  Langer, D. G.  Anderson, “Knocking down barriers: advances in siRNA delivery,” Nat. Rev. Drug Discov. 8(2), 129–138 (2009).
    [CrossRef] [PubMed]
  2. A.  de Fougerolles, H.-P.  Vornlocher, J.  Maraganore, J.  Lieberman, “Interfering with disease: a progress report on siRNA-based therapeutics,” Nat. Rev. Drug Discov. 6(6), 443–453 (2007).
    [CrossRef] [PubMed]
  3. K.  Gao, L.  Huang, “Nonviral methods for siRNA delivery,” Mol. Pharm. 6(3), 651–658 (2009).
    [CrossRef] [PubMed]
  4. T. M.  Allen, P. R.  Cullis, “Liposomal drug delivery systems: from concept to clinical applications,” Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).
    [CrossRef] [PubMed]
  5. J.  Piñero, M.  López-Baena, T.  Ortiz, F.  Cortés, “Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells,” Apoptosis 2(3), 330–336 (1997).
    [CrossRef] [PubMed]
  6. J.  Panyam, V.  Labhasetwar, “Biodegradable nanoparticles for drug and gene delivery to cells and tissue,” Adv. Drug Deliv. Rev. 55(3), 329–347 (2003).
    [CrossRef] [PubMed]
  7. N. L.  Rosi, D. A.  Giljohann, C. S.  Thaxton, A. K.  Lytton-Jean, M. S.  Han, C. A.  Mirkin, “Oligonucleotide-modified gold nanoparticles for intracellular gene regulation,” Science 312(5776), 1027–1030 (2006).
    [CrossRef] [PubMed]
  8. I. I.  Slowing, J. L.  Vivero-Escoto, C.-W.  Wu, V. S.-Y.  Lin, “Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers,” Adv. Drug Deliv. Rev. 60(11), 1278–1288 (2008).
    [CrossRef] [PubMed]
  9. C.  Kneuer, M.  Sameti, U.  Bakowsky, T.  Schiestel, H.  Schirra, H.  Schmidt, C.-M.  Lehr, “A Nonviral DNA Delivery System Based on Surface Modified Silica-Nanoparticles Can Efficiently Transfect Cells in Vitro,” Bioconjug. Chem. 11(6), 926–932 (2000).
    [CrossRef] [PubMed]
  10. M.  Tsukakoshi, S.  Kurata, Y.  Nomiya, Y.  Ikawa, T.  Kasuya, “A novel method of DNA transfection by laser microbeam cell surgery,” Appl. Phys. B. 35(3), 135–140 (1984).
  11. U. K.  Tirlapur, K.  König, C.  Peuckert, R.  Krieg, K. J.  Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
    [CrossRef] [PubMed]
  12. D. J.  Stevenson, F. J.  Gunn-Moore, P.  Campbell, K.  Dholakia, “Single cell optical transfection,” J. R. Soc. Interface 7(47), 863–871 (2010).
    [CrossRef] [PubMed]
  13. A.  Vogel, J.  Noack, G.  Hüttman, G.  Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [CrossRef]
  14. J.  Baumgart, L.  Humbert, É.  Boulais, R.  Lachaine, J.-J.  Lebrun, M.  Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
    [CrossRef] [PubMed]
  15. D.  Heinemann, M.  Schomaker, S.  Kalies, M.  Schieck, R.  Carlson, H. M.  Escobar, T.  Ripken, H.  Meyer, A.  Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS ONE 8(3), e58604 (2013).
    [CrossRef] [PubMed]
  16. S.  Kalies, D.  Heinemann, M.  Schomaker, H. M.  Escobar, A.  Heisterkamp, T.  Ripken, H.  Meyer, “Plasmonic laser treatment for Morpholino oligomer delivery in antisense applications,” J. Biophoton. doi: . (2013)
    [CrossRef]
  17. S.  Kalies, T.  Birr, D.  Heinemann, M.  Schomaker, T.  Ripken, A.  Heisterkamp, H.  Meyer, “Enhancement of extracellular molecule uptake in plasmonic laser perforation,” J. Biophoton. doi: , (2013).
    [CrossRef]
  18. G.  Bisker, D.  Yelin, “Noble-metal nanoparticles and short pulses for nanomanipulations: theoretical analysis,” J. Opt. Soc. Am. B 29(6), 1383 (2012).
    [CrossRef]
  19. E.  Boulais, R.  Lachaine, M.  Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
    [CrossRef] [PubMed]
  20. C.  Yao, X.  Qu, Z.  Zhang, G.  Hüttmann, R.  Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
    [CrossRef] [PubMed]
  21. E. Y.  Lukianova-Hleb, X.  Ren, P. E.  Constantinou, B. P.  Danysh, D. L.  Shenefelt, D. D.  Carson, M. C.  Farach-Carson, V. A.  Kulchitsky, X.  Wu, D. S.  Wagner, D. O.  Lapotko, “Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems,” PLoS ONE 7(4), e34537 (2012).
    [CrossRef] [PubMed]
  22. N. R.  Jana, L.  Gearheart, C. J.  Murphy, “Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
    [CrossRef]
  23. S.  Westcott, S.  Oldenburg, T.  Lee, N.  Halas, “Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces,” Langmuir 14(19), 5396–5401 (1998).
    [CrossRef]
  24. S. L.  Voytik-Harbin, A. O.  Brightman, B.  Waisner, C. H.  Lamar, S. F.  Badylak, “Application and evaluation of the alamarBlue assay for cell growth and survival of fibroblasts,” In Vitro Cell. Dev. Biol. Anim. 34(3), 239–246 (1998).
    [CrossRef] [PubMed]
  25. P.  Laven, “MiePlot: a computer program for scattering of light from a sphere using Mie theory & the Debye series,” http://www.philiplaven.com/mieplot.htm
  26. A.  Vogel, V.  Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003), doi:.
    [CrossRef] [PubMed]
  27. C.  Liu, Z.  Li, Z.  Zhang, “Mechanisms of laser nanoparticle-based techniques for gene transfection-a calculation study,” J. Biol. Phys. 35(2), 175–183 (2009).
    [CrossRef] [PubMed]
  28. H.  Goldenberg, C. J.  Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952).
    [CrossRef]
  29. C. A.  Schneider, W. S.  Rasband, K. W.  Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
    [CrossRef] [PubMed]
  30. J.  Neumann, R.  Brinkmann, “Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses,” J. Biomed. Opt. 10(2), 024001 (2005).
    [CrossRef] [PubMed]
  31. V. P.  Zharov, R. R.  Letfullin, E. N.  Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
    [CrossRef]
  32. I. M. M.  Paino, V. S.  Marangoni, R. C.  de Oliveira, L. M. G.  Antunes, V.  Zucolotto, “Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells,” Toxicol. Lett. 215(2), 119–125 (2012).
    [CrossRef] [PubMed]
  33. M.  Tsoli, H.  Kuhn, W.  Brandau, H.  Esche, G.  Schmid, “Cellular uptake and toxicity of Au55 clusters,” Small 1(8-9), 841–844 (2005).
    [CrossRef] [PubMed]

2013 (2)

T. M.  Allen, P. R.  Cullis, “Liposomal drug delivery systems: from concept to clinical applications,” Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).
[CrossRef] [PubMed]

D.  Heinemann, M.  Schomaker, S.  Kalies, M.  Schieck, R.  Carlson, H. M.  Escobar, T.  Ripken, H.  Meyer, A.  Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS ONE 8(3), e58604 (2013).
[CrossRef] [PubMed]

2012 (6)

G.  Bisker, D.  Yelin, “Noble-metal nanoparticles and short pulses for nanomanipulations: theoretical analysis,” J. Opt. Soc. Am. B 29(6), 1383 (2012).
[CrossRef]

E.  Boulais, R.  Lachaine, M.  Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[CrossRef] [PubMed]

E. Y.  Lukianova-Hleb, X.  Ren, P. E.  Constantinou, B. P.  Danysh, D. L.  Shenefelt, D. D.  Carson, M. C.  Farach-Carson, V. A.  Kulchitsky, X.  Wu, D. S.  Wagner, D. O.  Lapotko, “Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems,” PLoS ONE 7(4), e34537 (2012).
[CrossRef] [PubMed]

J.  Baumgart, L.  Humbert, É.  Boulais, R.  Lachaine, J.-J.  Lebrun, M.  Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

C. A.  Schneider, W. S.  Rasband, K. W.  Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[CrossRef] [PubMed]

I. M. M.  Paino, V. S.  Marangoni, R. C.  de Oliveira, L. M. G.  Antunes, V.  Zucolotto, “Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells,” Toxicol. Lett. 215(2), 119–125 (2012).
[CrossRef] [PubMed]

2010 (1)

D. J.  Stevenson, F. J.  Gunn-Moore, P.  Campbell, K.  Dholakia, “Single cell optical transfection,” J. R. Soc. Interface 7(47), 863–871 (2010).
[CrossRef] [PubMed]

2009 (4)

C.  Yao, X.  Qu, Z.  Zhang, G.  Hüttmann, R.  Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
[CrossRef] [PubMed]

K. A.  Whitehead, R.  Langer, D. G.  Anderson, “Knocking down barriers: advances in siRNA delivery,” Nat. Rev. Drug Discov. 8(2), 129–138 (2009).
[CrossRef] [PubMed]

K.  Gao, L.  Huang, “Nonviral methods for siRNA delivery,” Mol. Pharm. 6(3), 651–658 (2009).
[CrossRef] [PubMed]

C.  Liu, Z.  Li, Z.  Zhang, “Mechanisms of laser nanoparticle-based techniques for gene transfection-a calculation study,” J. Biol. Phys. 35(2), 175–183 (2009).
[CrossRef] [PubMed]

2008 (1)

I. I.  Slowing, J. L.  Vivero-Escoto, C.-W.  Wu, V. S.-Y.  Lin, “Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers,” Adv. Drug Deliv. Rev. 60(11), 1278–1288 (2008).
[CrossRef] [PubMed]

2007 (1)

A.  de Fougerolles, H.-P.  Vornlocher, J.  Maraganore, J.  Lieberman, “Interfering with disease: a progress report on siRNA-based therapeutics,” Nat. Rev. Drug Discov. 6(6), 443–453 (2007).
[CrossRef] [PubMed]

2006 (1)

N. L.  Rosi, D. A.  Giljohann, C. S.  Thaxton, A. K.  Lytton-Jean, M. S.  Han, C. A.  Mirkin, “Oligonucleotide-modified gold nanoparticles for intracellular gene regulation,” Science 312(5776), 1027–1030 (2006).
[CrossRef] [PubMed]

2005 (4)

A.  Vogel, J.  Noack, G.  Hüttman, G.  Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

M.  Tsoli, H.  Kuhn, W.  Brandau, H.  Esche, G.  Schmid, “Cellular uptake and toxicity of Au55 clusters,” Small 1(8-9), 841–844 (2005).
[CrossRef] [PubMed]

J.  Neumann, R.  Brinkmann, “Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses,” J. Biomed. Opt. 10(2), 024001 (2005).
[CrossRef] [PubMed]

V. P.  Zharov, R. R.  Letfullin, E. N.  Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
[CrossRef]

2003 (2)

A.  Vogel, V.  Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003), doi:.
[CrossRef] [PubMed]

J.  Panyam, V.  Labhasetwar, “Biodegradable nanoparticles for drug and gene delivery to cells and tissue,” Adv. Drug Deliv. Rev. 55(3), 329–347 (2003).
[CrossRef] [PubMed]

2001 (2)

U. K.  Tirlapur, K.  König, C.  Peuckert, R.  Krieg, K. J.  Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
[CrossRef] [PubMed]

N. R.  Jana, L.  Gearheart, C. J.  Murphy, “Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[CrossRef]

2000 (1)

C.  Kneuer, M.  Sameti, U.  Bakowsky, T.  Schiestel, H.  Schirra, H.  Schmidt, C.-M.  Lehr, “A Nonviral DNA Delivery System Based on Surface Modified Silica-Nanoparticles Can Efficiently Transfect Cells in Vitro,” Bioconjug. Chem. 11(6), 926–932 (2000).
[CrossRef] [PubMed]

1998 (2)

S.  Westcott, S.  Oldenburg, T.  Lee, N.  Halas, “Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces,” Langmuir 14(19), 5396–5401 (1998).
[CrossRef]

S. L.  Voytik-Harbin, A. O.  Brightman, B.  Waisner, C. H.  Lamar, S. F.  Badylak, “Application and evaluation of the alamarBlue assay for cell growth and survival of fibroblasts,” In Vitro Cell. Dev. Biol. Anim. 34(3), 239–246 (1998).
[CrossRef] [PubMed]

1997 (1)

J.  Piñero, M.  López-Baena, T.  Ortiz, F.  Cortés, “Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells,” Apoptosis 2(3), 330–336 (1997).
[CrossRef] [PubMed]

1984 (1)

M.  Tsukakoshi, S.  Kurata, Y.  Nomiya, Y.  Ikawa, T.  Kasuya, “A novel method of DNA transfection by laser microbeam cell surgery,” Appl. Phys. B. 35(3), 135–140 (1984).

1952 (1)

H.  Goldenberg, C. J.  Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952).
[CrossRef]

Allen, T. M.

T. M.  Allen, P. R.  Cullis, “Liposomal drug delivery systems: from concept to clinical applications,” Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).
[CrossRef] [PubMed]

Anderson, D. G.

K. A.  Whitehead, R.  Langer, D. G.  Anderson, “Knocking down barriers: advances in siRNA delivery,” Nat. Rev. Drug Discov. 8(2), 129–138 (2009).
[CrossRef] [PubMed]

Antunes, L. M. G.

I. M. M.  Paino, V. S.  Marangoni, R. C.  de Oliveira, L. M. G.  Antunes, V.  Zucolotto, “Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells,” Toxicol. Lett. 215(2), 119–125 (2012).
[CrossRef] [PubMed]

Badylak, S. F.

S. L.  Voytik-Harbin, A. O.  Brightman, B.  Waisner, C. H.  Lamar, S. F.  Badylak, “Application and evaluation of the alamarBlue assay for cell growth and survival of fibroblasts,” In Vitro Cell. Dev. Biol. Anim. 34(3), 239–246 (1998).
[CrossRef] [PubMed]

Bakowsky, U.

C.  Kneuer, M.  Sameti, U.  Bakowsky, T.  Schiestel, H.  Schirra, H.  Schmidt, C.-M.  Lehr, “A Nonviral DNA Delivery System Based on Surface Modified Silica-Nanoparticles Can Efficiently Transfect Cells in Vitro,” Bioconjug. Chem. 11(6), 926–932 (2000).
[CrossRef] [PubMed]

Baumgart, J.

J.  Baumgart, L.  Humbert, É.  Boulais, R.  Lachaine, J.-J.  Lebrun, M.  Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

Birr, T.

S.  Kalies, T.  Birr, D.  Heinemann, M.  Schomaker, T.  Ripken, A.  Heisterkamp, H.  Meyer, “Enhancement of extracellular molecule uptake in plasmonic laser perforation,” J. Biophoton. doi: , (2013).
[CrossRef]

Bisker, G.

Boulais, E.

E.  Boulais, R.  Lachaine, M.  Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[CrossRef] [PubMed]

Boulais, É.

J.  Baumgart, L.  Humbert, É.  Boulais, R.  Lachaine, J.-J.  Lebrun, M.  Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

Brandau, W.

M.  Tsoli, H.  Kuhn, W.  Brandau, H.  Esche, G.  Schmid, “Cellular uptake and toxicity of Au55 clusters,” Small 1(8-9), 841–844 (2005).
[CrossRef] [PubMed]

Brightman, A. O.

S. L.  Voytik-Harbin, A. O.  Brightman, B.  Waisner, C. H.  Lamar, S. F.  Badylak, “Application and evaluation of the alamarBlue assay for cell growth and survival of fibroblasts,” In Vitro Cell. Dev. Biol. Anim. 34(3), 239–246 (1998).
[CrossRef] [PubMed]

Brinkmann, R.

J.  Neumann, R.  Brinkmann, “Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses,” J. Biomed. Opt. 10(2), 024001 (2005).
[CrossRef] [PubMed]

Campbell, P.

D. J.  Stevenson, F. J.  Gunn-Moore, P.  Campbell, K.  Dholakia, “Single cell optical transfection,” J. R. Soc. Interface 7(47), 863–871 (2010).
[CrossRef] [PubMed]

Carlson, R.

D.  Heinemann, M.  Schomaker, S.  Kalies, M.  Schieck, R.  Carlson, H. M.  Escobar, T.  Ripken, H.  Meyer, A.  Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS ONE 8(3), e58604 (2013).
[CrossRef] [PubMed]

Carson, D. D.

E. Y.  Lukianova-Hleb, X.  Ren, P. E.  Constantinou, B. P.  Danysh, D. L.  Shenefelt, D. D.  Carson, M. C.  Farach-Carson, V. A.  Kulchitsky, X.  Wu, D. S.  Wagner, D. O.  Lapotko, “Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems,” PLoS ONE 7(4), e34537 (2012).
[CrossRef] [PubMed]

Constantinou, P. E.

E. Y.  Lukianova-Hleb, X.  Ren, P. E.  Constantinou, B. P.  Danysh, D. L.  Shenefelt, D. D.  Carson, M. C.  Farach-Carson, V. A.  Kulchitsky, X.  Wu, D. S.  Wagner, D. O.  Lapotko, “Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems,” PLoS ONE 7(4), e34537 (2012).
[CrossRef] [PubMed]

Cortés, F.

J.  Piñero, M.  López-Baena, T.  Ortiz, F.  Cortés, “Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells,” Apoptosis 2(3), 330–336 (1997).
[CrossRef] [PubMed]

Cullis, P. R.

T. M.  Allen, P. R.  Cullis, “Liposomal drug delivery systems: from concept to clinical applications,” Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).
[CrossRef] [PubMed]

Danysh, B. P.

E. Y.  Lukianova-Hleb, X.  Ren, P. E.  Constantinou, B. P.  Danysh, D. L.  Shenefelt, D. D.  Carson, M. C.  Farach-Carson, V. A.  Kulchitsky, X.  Wu, D. S.  Wagner, D. O.  Lapotko, “Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems,” PLoS ONE 7(4), e34537 (2012).
[CrossRef] [PubMed]

de Fougerolles, A.

A.  de Fougerolles, H.-P.  Vornlocher, J.  Maraganore, J.  Lieberman, “Interfering with disease: a progress report on siRNA-based therapeutics,” Nat. Rev. Drug Discov. 6(6), 443–453 (2007).
[CrossRef] [PubMed]

de Oliveira, R. C.

I. M. M.  Paino, V. S.  Marangoni, R. C.  de Oliveira, L. M. G.  Antunes, V.  Zucolotto, “Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells,” Toxicol. Lett. 215(2), 119–125 (2012).
[CrossRef] [PubMed]

Dholakia, K.

D. J.  Stevenson, F. J.  Gunn-Moore, P.  Campbell, K.  Dholakia, “Single cell optical transfection,” J. R. Soc. Interface 7(47), 863–871 (2010).
[CrossRef] [PubMed]

Eliceiri, K. W.

C. A.  Schneider, W. S.  Rasband, K. W.  Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[CrossRef] [PubMed]

Esche, H.

M.  Tsoli, H.  Kuhn, W.  Brandau, H.  Esche, G.  Schmid, “Cellular uptake and toxicity of Au55 clusters,” Small 1(8-9), 841–844 (2005).
[CrossRef] [PubMed]

Escobar, H. M.

D.  Heinemann, M.  Schomaker, S.  Kalies, M.  Schieck, R.  Carlson, H. M.  Escobar, T.  Ripken, H.  Meyer, A.  Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS ONE 8(3), e58604 (2013).
[CrossRef] [PubMed]

S.  Kalies, D.  Heinemann, M.  Schomaker, H. M.  Escobar, A.  Heisterkamp, T.  Ripken, H.  Meyer, “Plasmonic laser treatment for Morpholino oligomer delivery in antisense applications,” J. Biophoton. doi: . (2013)
[CrossRef]

Farach-Carson, M. C.

E. Y.  Lukianova-Hleb, X.  Ren, P. E.  Constantinou, B. P.  Danysh, D. L.  Shenefelt, D. D.  Carson, M. C.  Farach-Carson, V. A.  Kulchitsky, X.  Wu, D. S.  Wagner, D. O.  Lapotko, “Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems,” PLoS ONE 7(4), e34537 (2012).
[CrossRef] [PubMed]

Galitovskaya, E. N.

V. P.  Zharov, R. R.  Letfullin, E. N.  Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
[CrossRef]

Gao, K.

K.  Gao, L.  Huang, “Nonviral methods for siRNA delivery,” Mol. Pharm. 6(3), 651–658 (2009).
[CrossRef] [PubMed]

Gearheart, L.

N. R.  Jana, L.  Gearheart, C. J.  Murphy, “Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[CrossRef]

Giljohann, D. A.

N. L.  Rosi, D. A.  Giljohann, C. S.  Thaxton, A. K.  Lytton-Jean, M. S.  Han, C. A.  Mirkin, “Oligonucleotide-modified gold nanoparticles for intracellular gene regulation,” Science 312(5776), 1027–1030 (2006).
[CrossRef] [PubMed]

Goldenberg, H.

H.  Goldenberg, C. J.  Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952).
[CrossRef]

Gunn-Moore, F. J.

D. J.  Stevenson, F. J.  Gunn-Moore, P.  Campbell, K.  Dholakia, “Single cell optical transfection,” J. R. Soc. Interface 7(47), 863–871 (2010).
[CrossRef] [PubMed]

Halas, N.

S.  Westcott, S.  Oldenburg, T.  Lee, N.  Halas, “Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces,” Langmuir 14(19), 5396–5401 (1998).
[CrossRef]

Halbhuber, K. J.

U. K.  Tirlapur, K.  König, C.  Peuckert, R.  Krieg, K. J.  Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
[CrossRef] [PubMed]

Han, M. S.

N. L.  Rosi, D. A.  Giljohann, C. S.  Thaxton, A. K.  Lytton-Jean, M. S.  Han, C. A.  Mirkin, “Oligonucleotide-modified gold nanoparticles for intracellular gene regulation,” Science 312(5776), 1027–1030 (2006).
[CrossRef] [PubMed]

Heinemann, D.

D.  Heinemann, M.  Schomaker, S.  Kalies, M.  Schieck, R.  Carlson, H. M.  Escobar, T.  Ripken, H.  Meyer, A.  Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS ONE 8(3), e58604 (2013).
[CrossRef] [PubMed]

S.  Kalies, D.  Heinemann, M.  Schomaker, H. M.  Escobar, A.  Heisterkamp, T.  Ripken, H.  Meyer, “Plasmonic laser treatment for Morpholino oligomer delivery in antisense applications,” J. Biophoton. doi: . (2013)
[CrossRef]

S.  Kalies, T.  Birr, D.  Heinemann, M.  Schomaker, T.  Ripken, A.  Heisterkamp, H.  Meyer, “Enhancement of extracellular molecule uptake in plasmonic laser perforation,” J. Biophoton. doi: , (2013).
[CrossRef]

Heisterkamp, A.

D.  Heinemann, M.  Schomaker, S.  Kalies, M.  Schieck, R.  Carlson, H. M.  Escobar, T.  Ripken, H.  Meyer, A.  Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS ONE 8(3), e58604 (2013).
[CrossRef] [PubMed]

S.  Kalies, T.  Birr, D.  Heinemann, M.  Schomaker, T.  Ripken, A.  Heisterkamp, H.  Meyer, “Enhancement of extracellular molecule uptake in plasmonic laser perforation,” J. Biophoton. doi: , (2013).
[CrossRef]

S.  Kalies, D.  Heinemann, M.  Schomaker, H. M.  Escobar, A.  Heisterkamp, T.  Ripken, H.  Meyer, “Plasmonic laser treatment for Morpholino oligomer delivery in antisense applications,” J. Biophoton. doi: . (2013)
[CrossRef]

Huang, L.

K.  Gao, L.  Huang, “Nonviral methods for siRNA delivery,” Mol. Pharm. 6(3), 651–658 (2009).
[CrossRef] [PubMed]

Humbert, L.

J.  Baumgart, L.  Humbert, É.  Boulais, R.  Lachaine, J.-J.  Lebrun, M.  Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

Hüttman, G.

A.  Vogel, J.  Noack, G.  Hüttman, G.  Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Hüttmann, G.

C.  Yao, X.  Qu, Z.  Zhang, G.  Hüttmann, R.  Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
[CrossRef] [PubMed]

Ikawa, Y.

M.  Tsukakoshi, S.  Kurata, Y.  Nomiya, Y.  Ikawa, T.  Kasuya, “A novel method of DNA transfection by laser microbeam cell surgery,” Appl. Phys. B. 35(3), 135–140 (1984).

Jana, N. R.

N. R.  Jana, L.  Gearheart, C. J.  Murphy, “Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[CrossRef]

Kalies, S.

D.  Heinemann, M.  Schomaker, S.  Kalies, M.  Schieck, R.  Carlson, H. M.  Escobar, T.  Ripken, H.  Meyer, A.  Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS ONE 8(3), e58604 (2013).
[CrossRef] [PubMed]

S.  Kalies, D.  Heinemann, M.  Schomaker, H. M.  Escobar, A.  Heisterkamp, T.  Ripken, H.  Meyer, “Plasmonic laser treatment for Morpholino oligomer delivery in antisense applications,” J. Biophoton. doi: . (2013)
[CrossRef]

S.  Kalies, T.  Birr, D.  Heinemann, M.  Schomaker, T.  Ripken, A.  Heisterkamp, H.  Meyer, “Enhancement of extracellular molecule uptake in plasmonic laser perforation,” J. Biophoton. doi: , (2013).
[CrossRef]

Kasuya, T.

M.  Tsukakoshi, S.  Kurata, Y.  Nomiya, Y.  Ikawa, T.  Kasuya, “A novel method of DNA transfection by laser microbeam cell surgery,” Appl. Phys. B. 35(3), 135–140 (1984).

Kneuer, C.

C.  Kneuer, M.  Sameti, U.  Bakowsky, T.  Schiestel, H.  Schirra, H.  Schmidt, C.-M.  Lehr, “A Nonviral DNA Delivery System Based on Surface Modified Silica-Nanoparticles Can Efficiently Transfect Cells in Vitro,” Bioconjug. Chem. 11(6), 926–932 (2000).
[CrossRef] [PubMed]

König, K.

U. K.  Tirlapur, K.  König, C.  Peuckert, R.  Krieg, K. J.  Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
[CrossRef] [PubMed]

Krieg, R.

U. K.  Tirlapur, K.  König, C.  Peuckert, R.  Krieg, K. J.  Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
[CrossRef] [PubMed]

Kuhn, H.

M.  Tsoli, H.  Kuhn, W.  Brandau, H.  Esche, G.  Schmid, “Cellular uptake and toxicity of Au55 clusters,” Small 1(8-9), 841–844 (2005).
[CrossRef] [PubMed]

Kulchitsky, V. A.

E. Y.  Lukianova-Hleb, X.  Ren, P. E.  Constantinou, B. P.  Danysh, D. L.  Shenefelt, D. D.  Carson, M. C.  Farach-Carson, V. A.  Kulchitsky, X.  Wu, D. S.  Wagner, D. O.  Lapotko, “Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems,” PLoS ONE 7(4), e34537 (2012).
[CrossRef] [PubMed]

Kurata, S.

M.  Tsukakoshi, S.  Kurata, Y.  Nomiya, Y.  Ikawa, T.  Kasuya, “A novel method of DNA transfection by laser microbeam cell surgery,” Appl. Phys. B. 35(3), 135–140 (1984).

Labhasetwar, V.

J.  Panyam, V.  Labhasetwar, “Biodegradable nanoparticles for drug and gene delivery to cells and tissue,” Adv. Drug Deliv. Rev. 55(3), 329–347 (2003).
[CrossRef] [PubMed]

Lachaine, R.

J.  Baumgart, L.  Humbert, É.  Boulais, R.  Lachaine, J.-J.  Lebrun, M.  Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

E.  Boulais, R.  Lachaine, M.  Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[CrossRef] [PubMed]

Lamar, C. H.

S. L.  Voytik-Harbin, A. O.  Brightman, B.  Waisner, C. H.  Lamar, S. F.  Badylak, “Application and evaluation of the alamarBlue assay for cell growth and survival of fibroblasts,” In Vitro Cell. Dev. Biol. Anim. 34(3), 239–246 (1998).
[CrossRef] [PubMed]

Langer, R.

K. A.  Whitehead, R.  Langer, D. G.  Anderson, “Knocking down barriers: advances in siRNA delivery,” Nat. Rev. Drug Discov. 8(2), 129–138 (2009).
[CrossRef] [PubMed]

Lapotko, D. O.

E. Y.  Lukianova-Hleb, X.  Ren, P. E.  Constantinou, B. P.  Danysh, D. L.  Shenefelt, D. D.  Carson, M. C.  Farach-Carson, V. A.  Kulchitsky, X.  Wu, D. S.  Wagner, D. O.  Lapotko, “Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems,” PLoS ONE 7(4), e34537 (2012).
[CrossRef] [PubMed]

Lebrun, J.-J.

J.  Baumgart, L.  Humbert, É.  Boulais, R.  Lachaine, J.-J.  Lebrun, M.  Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

Lee, T.

S.  Westcott, S.  Oldenburg, T.  Lee, N.  Halas, “Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces,” Langmuir 14(19), 5396–5401 (1998).
[CrossRef]

Lehr, C.-M.

C.  Kneuer, M.  Sameti, U.  Bakowsky, T.  Schiestel, H.  Schirra, H.  Schmidt, C.-M.  Lehr, “A Nonviral DNA Delivery System Based on Surface Modified Silica-Nanoparticles Can Efficiently Transfect Cells in Vitro,” Bioconjug. Chem. 11(6), 926–932 (2000).
[CrossRef] [PubMed]

Letfullin, R. R.

V. P.  Zharov, R. R.  Letfullin, E. N.  Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
[CrossRef]

Li, Z.

C.  Liu, Z.  Li, Z.  Zhang, “Mechanisms of laser nanoparticle-based techniques for gene transfection-a calculation study,” J. Biol. Phys. 35(2), 175–183 (2009).
[CrossRef] [PubMed]

Lieberman, J.

A.  de Fougerolles, H.-P.  Vornlocher, J.  Maraganore, J.  Lieberman, “Interfering with disease: a progress report on siRNA-based therapeutics,” Nat. Rev. Drug Discov. 6(6), 443–453 (2007).
[CrossRef] [PubMed]

Lin, V. S.-Y.

I. I.  Slowing, J. L.  Vivero-Escoto, C.-W.  Wu, V. S.-Y.  Lin, “Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers,” Adv. Drug Deliv. Rev. 60(11), 1278–1288 (2008).
[CrossRef] [PubMed]

Liu, C.

C.  Liu, Z.  Li, Z.  Zhang, “Mechanisms of laser nanoparticle-based techniques for gene transfection-a calculation study,” J. Biol. Phys. 35(2), 175–183 (2009).
[CrossRef] [PubMed]

López-Baena, M.

J.  Piñero, M.  López-Baena, T.  Ortiz, F.  Cortés, “Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells,” Apoptosis 2(3), 330–336 (1997).
[CrossRef] [PubMed]

Lukianova-Hleb, E. Y.

E. Y.  Lukianova-Hleb, X.  Ren, P. E.  Constantinou, B. P.  Danysh, D. L.  Shenefelt, D. D.  Carson, M. C.  Farach-Carson, V. A.  Kulchitsky, X.  Wu, D. S.  Wagner, D. O.  Lapotko, “Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems,” PLoS ONE 7(4), e34537 (2012).
[CrossRef] [PubMed]

Lytton-Jean, A. K.

N. L.  Rosi, D. A.  Giljohann, C. S.  Thaxton, A. K.  Lytton-Jean, M. S.  Han, C. A.  Mirkin, “Oligonucleotide-modified gold nanoparticles for intracellular gene regulation,” Science 312(5776), 1027–1030 (2006).
[CrossRef] [PubMed]

Maraganore, J.

A.  de Fougerolles, H.-P.  Vornlocher, J.  Maraganore, J.  Lieberman, “Interfering with disease: a progress report on siRNA-based therapeutics,” Nat. Rev. Drug Discov. 6(6), 443–453 (2007).
[CrossRef] [PubMed]

Marangoni, V. S.

I. M. M.  Paino, V. S.  Marangoni, R. C.  de Oliveira, L. M. G.  Antunes, V.  Zucolotto, “Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells,” Toxicol. Lett. 215(2), 119–125 (2012).
[CrossRef] [PubMed]

Meunier, M.

E.  Boulais, R.  Lachaine, M.  Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[CrossRef] [PubMed]

J.  Baumgart, L.  Humbert, É.  Boulais, R.  Lachaine, J.-J.  Lebrun, M.  Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

Meyer, H.

D.  Heinemann, M.  Schomaker, S.  Kalies, M.  Schieck, R.  Carlson, H. M.  Escobar, T.  Ripken, H.  Meyer, A.  Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS ONE 8(3), e58604 (2013).
[CrossRef] [PubMed]

S.  Kalies, D.  Heinemann, M.  Schomaker, H. M.  Escobar, A.  Heisterkamp, T.  Ripken, H.  Meyer, “Plasmonic laser treatment for Morpholino oligomer delivery in antisense applications,” J. Biophoton. doi: . (2013)
[CrossRef]

S.  Kalies, T.  Birr, D.  Heinemann, M.  Schomaker, T.  Ripken, A.  Heisterkamp, H.  Meyer, “Enhancement of extracellular molecule uptake in plasmonic laser perforation,” J. Biophoton. doi: , (2013).
[CrossRef]

Mirkin, C. A.

N. L.  Rosi, D. A.  Giljohann, C. S.  Thaxton, A. K.  Lytton-Jean, M. S.  Han, C. A.  Mirkin, “Oligonucleotide-modified gold nanoparticles for intracellular gene regulation,” Science 312(5776), 1027–1030 (2006).
[CrossRef] [PubMed]

Murphy, C. J.

N. R.  Jana, L.  Gearheart, C. J.  Murphy, “Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[CrossRef]

Neumann, J.

J.  Neumann, R.  Brinkmann, “Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses,” J. Biomed. Opt. 10(2), 024001 (2005).
[CrossRef] [PubMed]

Noack, J.

A.  Vogel, J.  Noack, G.  Hüttman, G.  Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Nomiya, Y.

M.  Tsukakoshi, S.  Kurata, Y.  Nomiya, Y.  Ikawa, T.  Kasuya, “A novel method of DNA transfection by laser microbeam cell surgery,” Appl. Phys. B. 35(3), 135–140 (1984).

Oldenburg, S.

S.  Westcott, S.  Oldenburg, T.  Lee, N.  Halas, “Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces,” Langmuir 14(19), 5396–5401 (1998).
[CrossRef]

Ortiz, T.

J.  Piñero, M.  López-Baena, T.  Ortiz, F.  Cortés, “Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells,” Apoptosis 2(3), 330–336 (1997).
[CrossRef] [PubMed]

Paino, I. M. M.

I. M. M.  Paino, V. S.  Marangoni, R. C.  de Oliveira, L. M. G.  Antunes, V.  Zucolotto, “Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells,” Toxicol. Lett. 215(2), 119–125 (2012).
[CrossRef] [PubMed]

Paltauf, G.

A.  Vogel, J.  Noack, G.  Hüttman, G.  Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Panyam, J.

J.  Panyam, V.  Labhasetwar, “Biodegradable nanoparticles for drug and gene delivery to cells and tissue,” Adv. Drug Deliv. Rev. 55(3), 329–347 (2003).
[CrossRef] [PubMed]

Peuckert, C.

U. K.  Tirlapur, K.  König, C.  Peuckert, R.  Krieg, K. J.  Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
[CrossRef] [PubMed]

Piñero, J.

J.  Piñero, M.  López-Baena, T.  Ortiz, F.  Cortés, “Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells,” Apoptosis 2(3), 330–336 (1997).
[CrossRef] [PubMed]

Qu, X.

C.  Yao, X.  Qu, Z.  Zhang, G.  Hüttmann, R.  Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
[CrossRef] [PubMed]

Rahmanzadeh, R.

C.  Yao, X.  Qu, Z.  Zhang, G.  Hüttmann, R.  Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
[CrossRef] [PubMed]

Rasband, W. S.

C. A.  Schneider, W. S.  Rasband, K. W.  Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[CrossRef] [PubMed]

Ren, X.

E. Y.  Lukianova-Hleb, X.  Ren, P. E.  Constantinou, B. P.  Danysh, D. L.  Shenefelt, D. D.  Carson, M. C.  Farach-Carson, V. A.  Kulchitsky, X.  Wu, D. S.  Wagner, D. O.  Lapotko, “Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems,” PLoS ONE 7(4), e34537 (2012).
[CrossRef] [PubMed]

Ripken, T.

D.  Heinemann, M.  Schomaker, S.  Kalies, M.  Schieck, R.  Carlson, H. M.  Escobar, T.  Ripken, H.  Meyer, A.  Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS ONE 8(3), e58604 (2013).
[CrossRef] [PubMed]

S.  Kalies, T.  Birr, D.  Heinemann, M.  Schomaker, T.  Ripken, A.  Heisterkamp, H.  Meyer, “Enhancement of extracellular molecule uptake in plasmonic laser perforation,” J. Biophoton. doi: , (2013).
[CrossRef]

S.  Kalies, D.  Heinemann, M.  Schomaker, H. M.  Escobar, A.  Heisterkamp, T.  Ripken, H.  Meyer, “Plasmonic laser treatment for Morpholino oligomer delivery in antisense applications,” J. Biophoton. doi: . (2013)
[CrossRef]

Rosi, N. L.

N. L.  Rosi, D. A.  Giljohann, C. S.  Thaxton, A. K.  Lytton-Jean, M. S.  Han, C. A.  Mirkin, “Oligonucleotide-modified gold nanoparticles for intracellular gene regulation,” Science 312(5776), 1027–1030 (2006).
[CrossRef] [PubMed]

Sameti, M.

C.  Kneuer, M.  Sameti, U.  Bakowsky, T.  Schiestel, H.  Schirra, H.  Schmidt, C.-M.  Lehr, “A Nonviral DNA Delivery System Based on Surface Modified Silica-Nanoparticles Can Efficiently Transfect Cells in Vitro,” Bioconjug. Chem. 11(6), 926–932 (2000).
[CrossRef] [PubMed]

Schieck, M.

D.  Heinemann, M.  Schomaker, S.  Kalies, M.  Schieck, R.  Carlson, H. M.  Escobar, T.  Ripken, H.  Meyer, A.  Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS ONE 8(3), e58604 (2013).
[CrossRef] [PubMed]

Schiestel, T.

C.  Kneuer, M.  Sameti, U.  Bakowsky, T.  Schiestel, H.  Schirra, H.  Schmidt, C.-M.  Lehr, “A Nonviral DNA Delivery System Based on Surface Modified Silica-Nanoparticles Can Efficiently Transfect Cells in Vitro,” Bioconjug. Chem. 11(6), 926–932 (2000).
[CrossRef] [PubMed]

Schirra, H.

C.  Kneuer, M.  Sameti, U.  Bakowsky, T.  Schiestel, H.  Schirra, H.  Schmidt, C.-M.  Lehr, “A Nonviral DNA Delivery System Based on Surface Modified Silica-Nanoparticles Can Efficiently Transfect Cells in Vitro,” Bioconjug. Chem. 11(6), 926–932 (2000).
[CrossRef] [PubMed]

Schmid, G.

M.  Tsoli, H.  Kuhn, W.  Brandau, H.  Esche, G.  Schmid, “Cellular uptake and toxicity of Au55 clusters,” Small 1(8-9), 841–844 (2005).
[CrossRef] [PubMed]

Schmidt, H.

C.  Kneuer, M.  Sameti, U.  Bakowsky, T.  Schiestel, H.  Schirra, H.  Schmidt, C.-M.  Lehr, “A Nonviral DNA Delivery System Based on Surface Modified Silica-Nanoparticles Can Efficiently Transfect Cells in Vitro,” Bioconjug. Chem. 11(6), 926–932 (2000).
[CrossRef] [PubMed]

Schneider, C. A.

C. A.  Schneider, W. S.  Rasband, K. W.  Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[CrossRef] [PubMed]

Schomaker, M.

D.  Heinemann, M.  Schomaker, S.  Kalies, M.  Schieck, R.  Carlson, H. M.  Escobar, T.  Ripken, H.  Meyer, A.  Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS ONE 8(3), e58604 (2013).
[CrossRef] [PubMed]

S.  Kalies, D.  Heinemann, M.  Schomaker, H. M.  Escobar, A.  Heisterkamp, T.  Ripken, H.  Meyer, “Plasmonic laser treatment for Morpholino oligomer delivery in antisense applications,” J. Biophoton. doi: . (2013)
[CrossRef]

S.  Kalies, T.  Birr, D.  Heinemann, M.  Schomaker, T.  Ripken, A.  Heisterkamp, H.  Meyer, “Enhancement of extracellular molecule uptake in plasmonic laser perforation,” J. Biophoton. doi: , (2013).
[CrossRef]

Shenefelt, D. L.

E. Y.  Lukianova-Hleb, X.  Ren, P. E.  Constantinou, B. P.  Danysh, D. L.  Shenefelt, D. D.  Carson, M. C.  Farach-Carson, V. A.  Kulchitsky, X.  Wu, D. S.  Wagner, D. O.  Lapotko, “Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems,” PLoS ONE 7(4), e34537 (2012).
[CrossRef] [PubMed]

Slowing, I. I.

I. I.  Slowing, J. L.  Vivero-Escoto, C.-W.  Wu, V. S.-Y.  Lin, “Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers,” Adv. Drug Deliv. Rev. 60(11), 1278–1288 (2008).
[CrossRef] [PubMed]

Stevenson, D. J.

D. J.  Stevenson, F. J.  Gunn-Moore, P.  Campbell, K.  Dholakia, “Single cell optical transfection,” J. R. Soc. Interface 7(47), 863–871 (2010).
[CrossRef] [PubMed]

Thaxton, C. S.

N. L.  Rosi, D. A.  Giljohann, C. S.  Thaxton, A. K.  Lytton-Jean, M. S.  Han, C. A.  Mirkin, “Oligonucleotide-modified gold nanoparticles for intracellular gene regulation,” Science 312(5776), 1027–1030 (2006).
[CrossRef] [PubMed]

Tirlapur, U. K.

U. K.  Tirlapur, K.  König, C.  Peuckert, R.  Krieg, K. J.  Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
[CrossRef] [PubMed]

Tranter, C. J.

H.  Goldenberg, C. J.  Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952).
[CrossRef]

Tsoli, M.

M.  Tsoli, H.  Kuhn, W.  Brandau, H.  Esche, G.  Schmid, “Cellular uptake and toxicity of Au55 clusters,” Small 1(8-9), 841–844 (2005).
[CrossRef] [PubMed]

Tsukakoshi, M.

M.  Tsukakoshi, S.  Kurata, Y.  Nomiya, Y.  Ikawa, T.  Kasuya, “A novel method of DNA transfection by laser microbeam cell surgery,” Appl. Phys. B. 35(3), 135–140 (1984).

Venugopalan, V.

A.  Vogel, V.  Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003), doi:.
[CrossRef] [PubMed]

Vivero-Escoto, J. L.

I. I.  Slowing, J. L.  Vivero-Escoto, C.-W.  Wu, V. S.-Y.  Lin, “Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers,” Adv. Drug Deliv. Rev. 60(11), 1278–1288 (2008).
[CrossRef] [PubMed]

Vogel, A.

A.  Vogel, J.  Noack, G.  Hüttman, G.  Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

A.  Vogel, V.  Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003), doi:.
[CrossRef] [PubMed]

Vornlocher, H.-P.

A.  de Fougerolles, H.-P.  Vornlocher, J.  Maraganore, J.  Lieberman, “Interfering with disease: a progress report on siRNA-based therapeutics,” Nat. Rev. Drug Discov. 6(6), 443–453 (2007).
[CrossRef] [PubMed]

Voytik-Harbin, S. L.

S. L.  Voytik-Harbin, A. O.  Brightman, B.  Waisner, C. H.  Lamar, S. F.  Badylak, “Application and evaluation of the alamarBlue assay for cell growth and survival of fibroblasts,” In Vitro Cell. Dev. Biol. Anim. 34(3), 239–246 (1998).
[CrossRef] [PubMed]

Wagner, D. S.

E. Y.  Lukianova-Hleb, X.  Ren, P. E.  Constantinou, B. P.  Danysh, D. L.  Shenefelt, D. D.  Carson, M. C.  Farach-Carson, V. A.  Kulchitsky, X.  Wu, D. S.  Wagner, D. O.  Lapotko, “Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems,” PLoS ONE 7(4), e34537 (2012).
[CrossRef] [PubMed]

Waisner, B.

S. L.  Voytik-Harbin, A. O.  Brightman, B.  Waisner, C. H.  Lamar, S. F.  Badylak, “Application and evaluation of the alamarBlue assay for cell growth and survival of fibroblasts,” In Vitro Cell. Dev. Biol. Anim. 34(3), 239–246 (1998).
[CrossRef] [PubMed]

Westcott, S.

S.  Westcott, S.  Oldenburg, T.  Lee, N.  Halas, “Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces,” Langmuir 14(19), 5396–5401 (1998).
[CrossRef]

Whitehead, K. A.

K. A.  Whitehead, R.  Langer, D. G.  Anderson, “Knocking down barriers: advances in siRNA delivery,” Nat. Rev. Drug Discov. 8(2), 129–138 (2009).
[CrossRef] [PubMed]

Wu, C.-W.

I. I.  Slowing, J. L.  Vivero-Escoto, C.-W.  Wu, V. S.-Y.  Lin, “Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers,” Adv. Drug Deliv. Rev. 60(11), 1278–1288 (2008).
[CrossRef] [PubMed]

Wu, X.

E. Y.  Lukianova-Hleb, X.  Ren, P. E.  Constantinou, B. P.  Danysh, D. L.  Shenefelt, D. D.  Carson, M. C.  Farach-Carson, V. A.  Kulchitsky, X.  Wu, D. S.  Wagner, D. O.  Lapotko, “Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems,” PLoS ONE 7(4), e34537 (2012).
[CrossRef] [PubMed]

Yao, C.

C.  Yao, X.  Qu, Z.  Zhang, G.  Hüttmann, R.  Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
[CrossRef] [PubMed]

Yelin, D.

Zhang, Z.

C.  Liu, Z.  Li, Z.  Zhang, “Mechanisms of laser nanoparticle-based techniques for gene transfection-a calculation study,” J. Biol. Phys. 35(2), 175–183 (2009).
[CrossRef] [PubMed]

C.  Yao, X.  Qu, Z.  Zhang, G.  Hüttmann, R.  Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
[CrossRef] [PubMed]

Zharov, V. P.

V. P.  Zharov, R. R.  Letfullin, E. N.  Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
[CrossRef]

Zucolotto, V.

I. M. M.  Paino, V. S.  Marangoni, R. C.  de Oliveira, L. M. G.  Antunes, V.  Zucolotto, “Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells,” Toxicol. Lett. 215(2), 119–125 (2012).
[CrossRef] [PubMed]

Adv. Drug Deliv. Rev. (3)

T. M.  Allen, P. R.  Cullis, “Liposomal drug delivery systems: from concept to clinical applications,” Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).
[CrossRef] [PubMed]

J.  Panyam, V.  Labhasetwar, “Biodegradable nanoparticles for drug and gene delivery to cells and tissue,” Adv. Drug Deliv. Rev. 55(3), 329–347 (2003).
[CrossRef] [PubMed]

I. I.  Slowing, J. L.  Vivero-Escoto, C.-W.  Wu, V. S.-Y.  Lin, “Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers,” Adv. Drug Deliv. Rev. 60(11), 1278–1288 (2008).
[CrossRef] [PubMed]

Apoptosis (1)

J.  Piñero, M.  López-Baena, T.  Ortiz, F.  Cortés, “Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells,” Apoptosis 2(3), 330–336 (1997).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A.  Vogel, J.  Noack, G.  Hüttman, G.  Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Appl. Phys. B. (1)

M.  Tsukakoshi, S.  Kurata, Y.  Nomiya, Y.  Ikawa, T.  Kasuya, “A novel method of DNA transfection by laser microbeam cell surgery,” Appl. Phys. B. 35(3), 135–140 (1984).

Bioconjug. Chem. (1)

C.  Kneuer, M.  Sameti, U.  Bakowsky, T.  Schiestel, H.  Schirra, H.  Schmidt, C.-M.  Lehr, “A Nonviral DNA Delivery System Based on Surface Modified Silica-Nanoparticles Can Efficiently Transfect Cells in Vitro,” Bioconjug. Chem. 11(6), 926–932 (2000).
[CrossRef] [PubMed]

Biomaterials (1)

J.  Baumgart, L.  Humbert, É.  Boulais, R.  Lachaine, J.-J.  Lebrun, M.  Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

Br. J. Appl. Phys. (1)

H.  Goldenberg, C. J.  Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952).
[CrossRef]

Chem. Rev. (1)

A.  Vogel, V.  Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003), doi:.
[CrossRef] [PubMed]

Exp. Cell Res. (1)

U. K.  Tirlapur, K.  König, C.  Peuckert, R.  Krieg, K. J.  Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
[CrossRef] [PubMed]

In Vitro Cell. Dev. Biol. Anim. (1)

S. L.  Voytik-Harbin, A. O.  Brightman, B.  Waisner, C. H.  Lamar, S. F.  Badylak, “Application and evaluation of the alamarBlue assay for cell growth and survival of fibroblasts,” In Vitro Cell. Dev. Biol. Anim. 34(3), 239–246 (1998).
[CrossRef] [PubMed]

J. Biol. Phys. (1)

C.  Liu, Z.  Li, Z.  Zhang, “Mechanisms of laser nanoparticle-based techniques for gene transfection-a calculation study,” J. Biol. Phys. 35(2), 175–183 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

C.  Yao, X.  Qu, Z.  Zhang, G.  Hüttmann, R.  Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
[CrossRef] [PubMed]

J.  Neumann, R.  Brinkmann, “Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses,” J. Biomed. Opt. 10(2), 024001 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

N. R.  Jana, L.  Gearheart, C. J.  Murphy, “Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[CrossRef]

J. Phys. D Appl. Phys. (1)

V. P.  Zharov, R. R.  Letfullin, E. N.  Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
[CrossRef]

J. R. Soc. Interface (1)

D. J.  Stevenson, F. J.  Gunn-Moore, P.  Campbell, K.  Dholakia, “Single cell optical transfection,” J. R. Soc. Interface 7(47), 863–871 (2010).
[CrossRef] [PubMed]

Langmuir (1)

S.  Westcott, S.  Oldenburg, T.  Lee, N.  Halas, “Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces,” Langmuir 14(19), 5396–5401 (1998).
[CrossRef]

Mol. Pharm. (1)

K.  Gao, L.  Huang, “Nonviral methods for siRNA delivery,” Mol. Pharm. 6(3), 651–658 (2009).
[CrossRef] [PubMed]

Nano Lett. (1)

E.  Boulais, R.  Lachaine, M.  Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[CrossRef] [PubMed]

Nat. Methods (1)

C. A.  Schneider, W. S.  Rasband, K. W.  Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[CrossRef] [PubMed]

Nat. Rev. Drug Discov. (2)

K. A.  Whitehead, R.  Langer, D. G.  Anderson, “Knocking down barriers: advances in siRNA delivery,” Nat. Rev. Drug Discov. 8(2), 129–138 (2009).
[CrossRef] [PubMed]

A.  de Fougerolles, H.-P.  Vornlocher, J.  Maraganore, J.  Lieberman, “Interfering with disease: a progress report on siRNA-based therapeutics,” Nat. Rev. Drug Discov. 6(6), 443–453 (2007).
[CrossRef] [PubMed]

PLoS ONE (2)

D.  Heinemann, M.  Schomaker, S.  Kalies, M.  Schieck, R.  Carlson, H. M.  Escobar, T.  Ripken, H.  Meyer, A.  Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS ONE 8(3), e58604 (2013).
[CrossRef] [PubMed]

E. Y.  Lukianova-Hleb, X.  Ren, P. E.  Constantinou, B. P.  Danysh, D. L.  Shenefelt, D. D.  Carson, M. C.  Farach-Carson, V. A.  Kulchitsky, X.  Wu, D. S.  Wagner, D. O.  Lapotko, “Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems,” PLoS ONE 7(4), e34537 (2012).
[CrossRef] [PubMed]

Science (1)

N. L.  Rosi, D. A.  Giljohann, C. S.  Thaxton, A. K.  Lytton-Jean, M. S.  Han, C. A.  Mirkin, “Oligonucleotide-modified gold nanoparticles for intracellular gene regulation,” Science 312(5776), 1027–1030 (2006).
[CrossRef] [PubMed]

Small (1)

M.  Tsoli, H.  Kuhn, W.  Brandau, H.  Esche, G.  Schmid, “Cellular uptake and toxicity of Au55 clusters,” Small 1(8-9), 841–844 (2005).
[CrossRef] [PubMed]

Toxicol. Lett. (1)

I. M. M.  Paino, V. S.  Marangoni, R. C.  de Oliveira, L. M. G.  Antunes, V.  Zucolotto, “Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells,” Toxicol. Lett. 215(2), 119–125 (2012).
[CrossRef] [PubMed]

Other (3)

P.  Laven, “MiePlot: a computer program for scattering of light from a sphere using Mie theory & the Debye series,” http://www.philiplaven.com/mieplot.htm

S.  Kalies, D.  Heinemann, M.  Schomaker, H. M.  Escobar, A.  Heisterkamp, T.  Ripken, H.  Meyer, “Plasmonic laser treatment for Morpholino oligomer delivery in antisense applications,” J. Biophoton. doi: . (2013)
[CrossRef]

S.  Kalies, T.  Birr, D.  Heinemann, M.  Schomaker, T.  Ripken, A.  Heisterkamp, H.  Meyer, “Enhancement of extracellular molecule uptake in plasmonic laser perforation,” J. Biophoton. doi: , (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Binding of 30 nm particles to 1µm silica microparticles at the highest ratio of 1:40. Some particles formed clusters and are in very close distance. The image is recorded with electron microscopy (Quanta 400F, FEI, Netherlands).

Fig. 2
Fig. 2

Progression of the temperature rise inside and outside of spherical gold nanoparticles irradiated with 850 ps laser pulses at a wavelength of 532 nm and a radiant exposure of 42 mJ/cm2.

Fig. 3
Fig. 3

Microscopic images illustrating the number of particles per cell after 30 min of incubation. Cells are co-stained with Calcein AM green (green) and Hoechst 33342 (blue). Particles are red fluorescent. For a mass concentration of 2 µg/cm2 about 7.9 ± 2.3 particles per cell were present (a). The higher concentration of silica particles (b) led to an accumulation of particles on the membrane, while the lower concentration yielded separated particles (see arrows). Scale bar 100 µm.

Fig. 4
Fig. 4

a) Relative fluorescence of 10 kDa dextrans after laser treatment normalized to the highest level. b) Corresponding cell viability one hour after laser treatment. The highest fluorescence levels for about 10 particles per cell (2 µg/cm2) were obtained for silica-gold particle ratio of 1:40 for 15 nm particles. For 100 particles per cell (20 µg/cm2), silica particles modified with 4 nm gold particles yielded the best perforation. In the case of larger particles, the viability was deteriorated to about half of the untreated control. No perforation or decrease in viability was observed for unmodified silica particles.

Fig. 5
Fig. 5

a) Relative fluorescence of 10 kDa dextrans after laser treatment normalized to the level of gold nanoparticle mediated laser perforation using 200 nm gold nanoparticles and the standard procedure of 3 hours of incubation (~six particles per cell, 0.5 µg/cm2). b) Corresponding cell viability one hour after laser treatment. The level of fluorescence is increased for the procedure employing the gold modified silica particles. Hence, the perforation efficiency, combining total fluorescence and fluorescence per cell, is higher. The viability is slightly lower compared to the standard procedure. It is not affected by the particles itself, as no impact on the particle controls was observable.

Fig. 6
Fig. 6

Microscopic images illustrating perforation with 10 kDa dextrans. In a) the perforation efficiency with 200 nm gold nanoparticles after 3h of incubation is depicted, while b) demonstrates the perforation efficiency with 15 nm silica-GNP-particles at a ratio of 1:40. The efficiency, which combines the number of fluorophores per cell and the totally perforated cell number with our readout, is slightly higher for the silica-GNP-particles. Scale bar 500 µm.

Tables (2)

Tables Icon

Table 1 Number of gold nanoparticles per single silica particle for the indicated volumetric ratios depending on the size of gold nanoparticles and on the ratio of the mixed silica and gold nanoparticle stock solutions.

Tables Icon

Table 2 Extinction, scattering and absorption efficiency as well as the calculated temperature rise.

Metrics