Abstract

We developed a high-resolution photoacoustic microscopy (PAM) system with a near-infrared (NIR) laser to noninvasively monitor the distribution of gold nanostar (GNS) in blood vessels, liver and spleen in mice. Photoacoustic images of organs at deep depths were continuously acquired in vivo every 30 minutes after a single dose of GNS by tail vein injection. The experimental results showed that GNS accumulated significantly in both liver and spleen from blood circulation after administration, which was qualitatively validated by fluorescence imaging. Our studies demonstrate that PAM might be potentially used for noninvasive tracing the kinetics of exogenous nanoparticles in biological system.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
    [Crossref] [PubMed]
  2. C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
    [Crossref] [PubMed]
  3. S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials 31(8), 2034–2042 (2010).
    [Crossref] [PubMed]
  4. H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE 8(2), e58208 (2013).
    [Crossref] [PubMed]
  5. C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano 7(4), 3498–3505 (2013).
    [Crossref] [PubMed]
  6. C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
    [Crossref]
  7. S. Ye, R. Yang, J. Xiong, K. K. Shung, Q. Zhou, C. Li, and Q. Ren, “Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy,” Biomed. Opt. Express 3(2), 360–365 (2012).
    [Crossref] [PubMed]
  8. S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17(9), 7688–7693 (2009).
    [Crossref] [PubMed]
  9. L. Xi, C. Duan, H. Xie, and H. Jiang, “Miniature probe combining optical-resolution photoacoustic microscopy and optical coherence tomography for in vivo microcirculation study,” Appl. Opt. 52(9), 1928–1931 (2013).
    [Crossref] [PubMed]
  10. L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt. 17(11), 110506 (2012).
    [Crossref] [PubMed]
  11. L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt. 16(7), 076005 (2011).
    [Crossref] [PubMed]
  12. K. H. Song and L. V. Wang, “Noninvasive photoacoustic imaging of the thoracic cavity and the kidney in small and large animals,” Med. Phys. 35(10), 4524–4529 (2008).
    [Crossref] [PubMed]
  13. L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale 6(3), 1271–1276 (2014).
    [Crossref] [PubMed]
  14. L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).
  15. K. H. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt. 12(6), 060503 (2007).
    [Crossref] [PubMed]
  16. J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photon Rev 7(5), 758–778 (2013).
    [Crossref] [PubMed]
  17. H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
    [Crossref] [PubMed]
  18. S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater. 25(22), 3055–3061 (2013).
    [Crossref] [PubMed]
  19. J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
    [Crossref] [PubMed]
  20. E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med. 50(1), 139–147 (2008).
    [Crossref] [PubMed]
  21. A. Chatziioannou, Y. C. Tai, N. Doshi, and S. R. Cherry, “Detector development for microPET II: a 1 μl resolution PET scanner for small animal imaging,” Phys. Med. Biol. 46(11), 2899–2910 (2001).
    [Crossref] [PubMed]

2014 (2)

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale 6(3), 1271–1276 (2014).
[Crossref] [PubMed]

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).

2013 (5)

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photon Rev 7(5), 758–778 (2013).
[Crossref] [PubMed]

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater. 25(22), 3055–3061 (2013).
[Crossref] [PubMed]

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE 8(2), e58208 (2013).
[Crossref] [PubMed]

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano 7(4), 3498–3505 (2013).
[Crossref] [PubMed]

L. Xi, C. Duan, H. Xie, and H. Jiang, “Miniature probe combining optical-resolution photoacoustic microscopy and optical coherence tomography for in vivo microcirculation study,” Appl. Opt. 52(9), 1928–1931 (2013).
[Crossref] [PubMed]

2012 (3)

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt. 17(11), 110506 (2012).
[Crossref] [PubMed]

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref] [PubMed]

S. Ye, R. Yang, J. Xiong, K. K. Shung, Q. Zhou, C. Li, and Q. Ren, “Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy,” Biomed. Opt. Express 3(2), 360–365 (2012).
[Crossref] [PubMed]

2011 (1)

L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt. 16(7), 076005 (2011).
[Crossref] [PubMed]

2010 (2)

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
[Crossref] [PubMed]

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials 31(8), 2034–2042 (2010).
[Crossref] [PubMed]

2009 (2)

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[Crossref]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17(9), 7688–7693 (2009).
[Crossref] [PubMed]

2008 (2)

K. H. Song and L. V. Wang, “Noninvasive photoacoustic imaging of the thoracic cavity and the kidney in small and large animals,” Med. Phys. 35(10), 4524–4529 (2008).
[Crossref] [PubMed]

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med. 50(1), 139–147 (2008).
[Crossref] [PubMed]

2007 (3)

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[Crossref] [PubMed]

K. H. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt. 12(6), 060503 (2007).
[Crossref] [PubMed]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref] [PubMed]

2001 (1)

A. Chatziioannou, Y. C. Tai, N. Doshi, and S. R. Cherry, “Detector development for microPET II: a 1 μl resolution PET scanner for small animal imaging,” Phys. Med. Biol. 46(11), 2899–2910 (2001).
[Crossref] [PubMed]

Anastasio, M. A.

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt. 17(11), 110506 (2012).
[Crossref] [PubMed]

Balasubramanian, S. K.

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials 31(8), 2034–2042 (2010).
[Crossref] [PubMed]

Beard, P.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref] [PubMed]

Boerman, O. C.

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med. 50(1), 139–147 (2008).
[Crossref] [PubMed]

Brom, M.

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med. 50(1), 139–147 (2008).
[Crossref] [PubMed]

Cai, X.

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt. 17(11), 110506 (2012).
[Crossref] [PubMed]

Calvo-Fernández, T.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano 7(4), 3498–3505 (2013).
[Crossref] [PubMed]

Chatziioannou, A.

A. Chatziioannou, Y. C. Tai, N. Doshi, and S. R. Cherry, “Detector development for microPET II: a 1 μl resolution PET scanner for small animal imaging,” Phys. Med. Biol. 46(11), 2899–2910 (2001).
[Crossref] [PubMed]

Chen, C. T.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[Crossref]

Chen, C.-D.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[Crossref] [PubMed]

Chen, H.

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE 8(2), e58208 (2013).
[Crossref] [PubMed]

Chen, M.

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale 6(3), 1271–1276 (2014).
[Crossref] [PubMed]

Chen, N. T.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[Crossref]

Chen, S.

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater. 25(22), 3055–3061 (2013).
[Crossref] [PubMed]

Chen, X.

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale 6(3), 1271–1276 (2014).
[Crossref] [PubMed]

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater. 25(22), 3055–3061 (2013).
[Crossref] [PubMed]

Chen, Y. C.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[Crossref]

Cheng, S. H.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[Crossref]

Cherry, S. R.

A. Chatziioannou, Y. C. Tai, N. Doshi, and S. R. Cherry, “Detector development for microPET II: a 1 μl resolution PET scanner for small animal imaging,” Phys. Med. Biol. 46(11), 2899–2910 (2001).
[Crossref] [PubMed]

Cortie, M. B.

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE 8(2), e58208 (2013).
[Crossref] [PubMed]

Delpy, D.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref] [PubMed]

Disselhorst, J. A.

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med. 50(1), 139–147 (2008).
[Crossref] [PubMed]

Dorrigan, A.

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE 8(2), e58208 (2013).
[Crossref] [PubMed]

Doshi, N.

A. Chatziioannou, Y. C. Tai, N. Doshi, and S. R. Cherry, “Detector development for microPET II: a 1 μl resolution PET scanner for small animal imaging,” Phys. Med. Biol. 46(11), 2899–2910 (2001).
[Crossref] [PubMed]

Duan, C.

Elwell, C.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref] [PubMed]

Favazza, C.

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
[Crossref] [PubMed]

Garcia-Uribe, A.

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt. 17(11), 110506 (2012).
[Crossref] [PubMed]

Gómez-Vallejo, V.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano 7(4), 3498–3505 (2013).
[Crossref] [PubMed]

Gotthardt, M.

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med. 50(1), 139–147 (2008).
[Crossref] [PubMed]

Grant, G. A.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref] [PubMed]

Guo, Z.

L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt. 16(7), 076005 (2011).
[Crossref] [PubMed]

Hare, D. J.

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE 8(2), e58208 (2013).
[Crossref] [PubMed]

Hu, S.

Huang, P.

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater. 25(22), 3055–3061 (2013).
[Crossref] [PubMed]

Hwang, H.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref] [PubMed]

Jiang, H.

Jittiwat, J.

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials 31(8), 2034–2042 (2010).
[Crossref] [PubMed]

Khoury, C. G.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref] [PubMed]

Kim, C.

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
[Crossref] [PubMed]

Laufer, J.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref] [PubMed]

Laverman, P.

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med. 50(1), 139–147 (2008).
[Crossref] [PubMed]

Lee, C. H.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[Crossref]

Li, C.

Li, P. C.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[Crossref] [PubMed]

Liao, C.-K.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[Crossref] [PubMed]

Lin, J.

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater. 25(22), 3055–3061 (2013).
[Crossref] [PubMed]

Liu, D.

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater. 25(22), 3055–3061 (2013).
[Crossref] [PubMed]

Llop, J.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano 7(4), 3498–3505 (2013).
[Crossref] [PubMed]

Lo, L. W.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[Crossref]

Lu, G.

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater. 25(22), 3055–3061 (2013).
[Crossref] [PubMed]

Manikandan, J.

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials 31(8), 2034–2042 (2010).
[Crossref] [PubMed]

Martín, A.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano 7(4), 3498–3505 (2013).
[Crossref] [PubMed]

Maslov, K.

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt. 17(11), 110506 (2012).
[Crossref] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17(9), 7688–7693 (2009).
[Crossref] [PubMed]

Mou, C. Y.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[Crossref]

Moya, S. E.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano 7(4), 3498–3505 (2013).
[Crossref] [PubMed]

Nie, L.

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale 6(3), 1271–1276 (2014).
[Crossref] [PubMed]

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater. 25(22), 3055–3061 (2013).
[Crossref] [PubMed]

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt. 17(11), 110506 (2012).
[Crossref] [PubMed]

L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt. 16(7), 076005 (2011).
[Crossref] [PubMed]

Niu, G.

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater. 25(22), 3055–3061 (2013).
[Crossref] [PubMed]

Ong, C.-N.

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials 31(8), 2034–2042 (2010).
[Crossref] [PubMed]

Ong, W. Y.

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials 31(8), 2034–2042 (2010).
[Crossref] [PubMed]

Oyen, W. J. G.

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med. 50(1), 139–147 (2008).
[Crossref] [PubMed]

Pao, K.-C.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[Crossref] [PubMed]

Pérez-Campaña, C.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano 7(4), 3498–3505 (2013).
[Crossref] [PubMed]

Puigivila, M.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano 7(4), 3498–3505 (2013).
[Crossref] [PubMed]

Reese, T.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano 7(4), 3498–3505 (2013).
[Crossref] [PubMed]

Ren, Q.

Rong, P.

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale 6(3), 1271–1276 (2014).
[Crossref] [PubMed]

Saad, S.

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE 8(2), e58208 (2013).
[Crossref] [PubMed]

Shieh, D.-B.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[Crossref] [PubMed]

Shung, K. K.

Song, K. H.

K. H. Song and L. V. Wang, “Noninvasive photoacoustic imaging of the thoracic cavity and the kidney in small and large animals,” Med. Phys. 35(10), 4524–4529 (2008).
[Crossref] [PubMed]

K. H. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt. 12(6), 060503 (2007).
[Crossref] [PubMed]

Souris, J.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[Crossref]

Sun, X.

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale 6(3), 1271–1276 (2014).
[Crossref] [PubMed]

Tai, Y. C.

A. Chatziioannou, Y. C. Tai, N. Doshi, and S. R. Cherry, “Detector development for microPET II: a 1 μl resolution PET scanner for small animal imaging,” Phys. Med. Biol. 46(11), 2899–2910 (2001).
[Crossref] [PubMed]

Valenzuela, S. M.

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE 8(2), e58208 (2013).
[Crossref] [PubMed]

Visser, E. P.

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med. 50(1), 139–147 (2008).
[Crossref] [PubMed]

Vo-Dinh, T.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref] [PubMed]

Wang, C.-R.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[Crossref] [PubMed]

Wang, L. V.

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photon Rev 7(5), 758–778 (2013).
[Crossref] [PubMed]

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt. 17(11), 110506 (2012).
[Crossref] [PubMed]

L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt. 16(7), 076005 (2011).
[Crossref] [PubMed]

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
[Crossref] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17(9), 7688–7693 (2009).
[Crossref] [PubMed]

K. H. Song and L. V. Wang, “Noninvasive photoacoustic imaging of the thoracic cavity and the kidney in small and large animals,” Med. Phys. 35(10), 4524–4529 (2008).
[Crossref] [PubMed]

K. H. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt. 12(6), 060503 (2007).
[Crossref] [PubMed]

Wang, S.

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater. 25(22), 3055–3061 (2013).
[Crossref] [PubMed]

Wang, X.

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).

Wang, Y. J.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[Crossref]

Wang, Z.

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater. 25(22), 3055–3061 (2013).
[Crossref] [PubMed]

Wei, C. W.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[Crossref] [PubMed]

Wilson, C. M.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref] [PubMed]

Wu, Y.-N.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[Crossref] [PubMed]

Xi, L.

Xie, H.

Xing, R.

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater. 25(22), 3055–3061 (2013).
[Crossref] [PubMed]

Xiong, J.

Yang, C. S.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[Crossref]

Yang, R.

Yao, J.

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photon Rev 7(5), 758–778 (2013).
[Crossref] [PubMed]

Ye, S.

Yu, L. E.

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials 31(8), 2034–2042 (2010).
[Crossref] [PubMed]

Yuan, H.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref] [PubMed]

Zheng, N.

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale 6(3), 1271–1276 (2014).
[Crossref] [PubMed]

Zhou, Q.

Ziolo, R. F.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano 7(4), 3498–3505 (2013).
[Crossref] [PubMed]

ACS Nano (1)

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano 7(4), 3498–3505 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[Crossref]

Adv. Mater. (1)

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater. 25(22), 3055–3061 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomaterials (1)

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials 31(8), 2034–2042 (2010).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Chem. Rev. (1)

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt. 17(11), 110506 (2012).
[Crossref] [PubMed]

L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt. 16(7), 076005 (2011).
[Crossref] [PubMed]

K. H. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt. 12(6), 060503 (2007).
[Crossref] [PubMed]

J. Nucl. Med. (1)

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med. 50(1), 139–147 (2008).
[Crossref] [PubMed]

Laser Photon Rev (1)

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photon Rev 7(5), 758–778 (2013).
[Crossref] [PubMed]

Med. Phys. (1)

K. H. Song and L. V. Wang, “Noninvasive photoacoustic imaging of the thoracic cavity and the kidney in small and large animals,” Med. Phys. 35(10), 4524–4529 (2008).
[Crossref] [PubMed]

Nanoscale (1)

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale 6(3), 1271–1276 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology 23(7), 075102 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (2)

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref] [PubMed]

A. Chatziioannou, Y. C. Tai, N. Doshi, and S. R. Cherry, “Detector development for microPET II: a 1 μl resolution PET scanner for small animal imaging,” Phys. Med. Biol. 46(11), 2899–2910 (2001).
[Crossref] [PubMed]

PLoS ONE (1)

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE 8(2), e58208 (2013).
[Crossref] [PubMed]

Small (1)

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small 10(8), 1585–1593 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the PAM system for monitoring of NPs kinetics in vivo.

Fig. 2
Fig. 2

(a) TEM image of GNS. The nanoparticle size is 56 ± 4 nm. (b) Absorption spectrum of GNS in water solution.

Fig. 3
Fig. 3

(a) Sagittal PA MAP image of the liver corresponding to the dashed area in (b). (b) Anatomical photograph of the mouse liver with the skin removed after experiment. While dashed area indicates imaging area. (c) Axial B-scan PA image corresponding to the dotted line in (a) showing the imaging depth of the anatomical structure and needle.

Fig. 4
Fig. 4

PA MAP images and signal ratio change in the liver. (a) Sequential PA MAP images captured at 7 min, 0.5 h, 1 h, 1.5 h, 2 h, 2.5 h, and 3 h post-injection of GNS. Blood vessel and liver were indicated by white and red arrows, respectively. (b) Sequential PA MAP images obtained at 7 min, 1 h, 2 h, and 3 h post-injection of PBS as control. (c) Normalized PA signal ratio of liver to blood vessel curves derived from PA MAP images in (a) and (b), respectively. Values represent means ± SD (n = 5/group).

Fig. 5
Fig. 5

PA MAP images and signal ratio change in a ROI of mouse spleen. (a) Sequential MAP images captured 7 min, 0.5 h, 1 h, 1.5 h, 2 h, 2.5 h, and 3 h post-injection of GNS. Blood vessel and spleen were indicated by white and red arrows, respectively. (b) Sequential MAP images achieved at 7 min, 1, 2, and 3 h post-injection of 200 µL PBS. (c) PA signal ratio of spleen to blood vessel derived from PA MAP images in (a) and (b), respectively. Values represent means ± standard deviation (n = 5/group).

Fig. 6
Fig. 6

Fluorescence images of the biodistribution of GNS-Cy5.5 in the liver (red arrow) and the spleen (black arrow). (a) In vivo fluorescence images of liver and spleen in mouse acquired before (0 h) and after injection (0.5, 1, 1.5, 2, 2.5, 3 h) of GNS-Cy5.5. (b) Average light intensity of the liver time-activity curve. (d) Average signal of the spleen time-activity curve. Fluorescence signal unit: 109 photons/cm2/s.

Metrics