Abstract

We developed a high-resolution photoacoustic microscopy (PAM) system with a near-infrared (NIR) laser to noninvasively monitor the distribution of gold nanostar (GNS) in blood vessels, liver and spleen in mice. Photoacoustic images of organs at deep depths were continuously acquired in vivo every 30 minutes after a single dose of GNS by tail vein injection. The experimental results showed that GNS accumulated significantly in both liver and spleen from blood circulation after administration, which was qualitatively validated by fluorescence imaging. Our studies demonstrate that PAM might be potentially used for noninvasive tracing the kinetics of exogenous nanoparticles in biological system.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(8), 1642–1647 (2007).
    [CrossRef] [PubMed]
  2. C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev.110(5), 2756–2782 (2010).
    [CrossRef] [PubMed]
  3. S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials31(8), 2034–2042 (2010).
    [CrossRef] [PubMed]
  4. H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE8(2), e58208 (2013).
    [CrossRef] [PubMed]
  5. C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano7(4), 3498–3505 (2013).
    [CrossRef] [PubMed]
  6. C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater.19(2), 215–222 (2009).
    [CrossRef]
  7. S. Ye, R. Yang, J. Xiong, K. K. Shung, Q. Zhou, C. Li, and Q. Ren, “Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy,” Biomed. Opt. Express3(2), 360–365 (2012).
    [CrossRef] [PubMed]
  8. S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express17(9), 7688–7693 (2009).
    [CrossRef] [PubMed]
  9. L. Xi, C. Duan, H. Xie, and H. Jiang, “Miniature probe combining optical-resolution photoacoustic microscopy and optical coherence tomography for in vivo microcirculation study,” Appl. Opt.52(9), 1928–1931 (2013).
    [CrossRef] [PubMed]
  10. L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt.17(11), 110506 (2012).
    [CrossRef] [PubMed]
  11. L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt.16(7), 076005 (2011).
    [CrossRef] [PubMed]
  12. K. H. Song and L. V. Wang, “Noninvasive photoacoustic imaging of the thoracic cavity and the kidney in small and large animals,” Med. Phys.35(10), 4524–4529 (2008).
    [CrossRef] [PubMed]
  13. L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale6(3), 1271–1276 (2014).
    [CrossRef] [PubMed]
  14. L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small10(8), 1585–1593 (2014).
  15. K. H. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt.12(6), 060503 (2007).
    [CrossRef] [PubMed]
  16. J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photon Rev7(5), 758–778 (2013).
    [CrossRef] [PubMed]
  17. H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology23(7), 075102 (2012).
    [CrossRef] [PubMed]
  18. S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater.25(22), 3055–3061 (2013).
    [CrossRef] [PubMed]
  19. J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol.52(1), 141–168 (2007).
    [CrossRef] [PubMed]
  20. E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med.50(1), 139–147 (2008).
    [CrossRef] [PubMed]
  21. A. Chatziioannou, Y. C. Tai, N. Doshi, and S. R. Cherry, “Detector development for microPET II: a 1 μl resolution PET scanner for small animal imaging,” Phys. Med. Biol.46(11), 2899–2910 (2001).
    [CrossRef] [PubMed]

2014

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale6(3), 1271–1276 (2014).
[CrossRef] [PubMed]

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small10(8), 1585–1593 (2014).

2013

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photon Rev7(5), 758–778 (2013).
[CrossRef] [PubMed]

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater.25(22), 3055–3061 (2013).
[CrossRef] [PubMed]

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE8(2), e58208 (2013).
[CrossRef] [PubMed]

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano7(4), 3498–3505 (2013).
[CrossRef] [PubMed]

L. Xi, C. Duan, H. Xie, and H. Jiang, “Miniature probe combining optical-resolution photoacoustic microscopy and optical coherence tomography for in vivo microcirculation study,” Appl. Opt.52(9), 1928–1931 (2013).
[CrossRef] [PubMed]

2012

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt.17(11), 110506 (2012).
[CrossRef] [PubMed]

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology23(7), 075102 (2012).
[CrossRef] [PubMed]

S. Ye, R. Yang, J. Xiong, K. K. Shung, Q. Zhou, C. Li, and Q. Ren, “Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy,” Biomed. Opt. Express3(2), 360–365 (2012).
[CrossRef] [PubMed]

2011

L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt.16(7), 076005 (2011).
[CrossRef] [PubMed]

2010

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev.110(5), 2756–2782 (2010).
[CrossRef] [PubMed]

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials31(8), 2034–2042 (2010).
[CrossRef] [PubMed]

2009

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater.19(2), 215–222 (2009).
[CrossRef]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express17(9), 7688–7693 (2009).
[CrossRef] [PubMed]

2008

K. H. Song and L. V. Wang, “Noninvasive photoacoustic imaging of the thoracic cavity and the kidney in small and large animals,” Med. Phys.35(10), 4524–4529 (2008).
[CrossRef] [PubMed]

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med.50(1), 139–147 (2008).
[CrossRef] [PubMed]

2007

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

K. H. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt.12(6), 060503 (2007).
[CrossRef] [PubMed]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol.52(1), 141–168 (2007).
[CrossRef] [PubMed]

2001

A. Chatziioannou, Y. C. Tai, N. Doshi, and S. R. Cherry, “Detector development for microPET II: a 1 μl resolution PET scanner for small animal imaging,” Phys. Med. Biol.46(11), 2899–2910 (2001).
[CrossRef] [PubMed]

Anastasio, M. A.

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt.17(11), 110506 (2012).
[CrossRef] [PubMed]

Balasubramanian, S. K.

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials31(8), 2034–2042 (2010).
[CrossRef] [PubMed]

Beard, P.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol.52(1), 141–168 (2007).
[CrossRef] [PubMed]

Boerman, O. C.

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med.50(1), 139–147 (2008).
[CrossRef] [PubMed]

Brom, M.

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med.50(1), 139–147 (2008).
[CrossRef] [PubMed]

Cai, X.

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt.17(11), 110506 (2012).
[CrossRef] [PubMed]

Calvo-Fernández, T.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano7(4), 3498–3505 (2013).
[CrossRef] [PubMed]

Chatziioannou, A.

A. Chatziioannou, Y. C. Tai, N. Doshi, and S. R. Cherry, “Detector development for microPET II: a 1 μl resolution PET scanner for small animal imaging,” Phys. Med. Biol.46(11), 2899–2910 (2001).
[CrossRef] [PubMed]

Chen, C. T.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater.19(2), 215–222 (2009).
[CrossRef]

Chen, C.-D.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Chen, H.

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE8(2), e58208 (2013).
[CrossRef] [PubMed]

Chen, M.

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale6(3), 1271–1276 (2014).
[CrossRef] [PubMed]

Chen, N. T.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater.19(2), 215–222 (2009).
[CrossRef]

Chen, S.

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater.25(22), 3055–3061 (2013).
[CrossRef] [PubMed]

Chen, X.

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale6(3), 1271–1276 (2014).
[CrossRef] [PubMed]

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small10(8), 1585–1593 (2014).

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater.25(22), 3055–3061 (2013).
[CrossRef] [PubMed]

Chen, Y. C.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater.19(2), 215–222 (2009).
[CrossRef]

Cheng, S. H.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater.19(2), 215–222 (2009).
[CrossRef]

Cherry, S. R.

A. Chatziioannou, Y. C. Tai, N. Doshi, and S. R. Cherry, “Detector development for microPET II: a 1 μl resolution PET scanner for small animal imaging,” Phys. Med. Biol.46(11), 2899–2910 (2001).
[CrossRef] [PubMed]

Cortie, M. B.

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE8(2), e58208 (2013).
[CrossRef] [PubMed]

Delpy, D.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol.52(1), 141–168 (2007).
[CrossRef] [PubMed]

Disselhorst, J. A.

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med.50(1), 139–147 (2008).
[CrossRef] [PubMed]

Dorrigan, A.

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE8(2), e58208 (2013).
[CrossRef] [PubMed]

Doshi, N.

A. Chatziioannou, Y. C. Tai, N. Doshi, and S. R. Cherry, “Detector development for microPET II: a 1 μl resolution PET scanner for small animal imaging,” Phys. Med. Biol.46(11), 2899–2910 (2001).
[CrossRef] [PubMed]

Duan, C.

Elwell, C.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol.52(1), 141–168 (2007).
[CrossRef] [PubMed]

Favazza, C.

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev.110(5), 2756–2782 (2010).
[CrossRef] [PubMed]

Garcia-Uribe, A.

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt.17(11), 110506 (2012).
[CrossRef] [PubMed]

Gómez-Vallejo, V.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano7(4), 3498–3505 (2013).
[CrossRef] [PubMed]

Gotthardt, M.

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med.50(1), 139–147 (2008).
[CrossRef] [PubMed]

Grant, G. A.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology23(7), 075102 (2012).
[CrossRef] [PubMed]

Guo, Z.

L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt.16(7), 076005 (2011).
[CrossRef] [PubMed]

Hare, D. J.

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE8(2), e58208 (2013).
[CrossRef] [PubMed]

Hu, S.

Huang, P.

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small10(8), 1585–1593 (2014).

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater.25(22), 3055–3061 (2013).
[CrossRef] [PubMed]

Hwang, H.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology23(7), 075102 (2012).
[CrossRef] [PubMed]

Jiang, H.

Jittiwat, J.

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials31(8), 2034–2042 (2010).
[CrossRef] [PubMed]

Khoury, C. G.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology23(7), 075102 (2012).
[CrossRef] [PubMed]

Kim, C.

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev.110(5), 2756–2782 (2010).
[CrossRef] [PubMed]

Laufer, J.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol.52(1), 141–168 (2007).
[CrossRef] [PubMed]

Laverman, P.

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med.50(1), 139–147 (2008).
[CrossRef] [PubMed]

Lee, C. H.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater.19(2), 215–222 (2009).
[CrossRef]

Li, C.

Li, P. C.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Liao, C.-K.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Lin, J.

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater.25(22), 3055–3061 (2013).
[CrossRef] [PubMed]

Liu, D.

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater.25(22), 3055–3061 (2013).
[CrossRef] [PubMed]

Llop, J.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano7(4), 3498–3505 (2013).
[CrossRef] [PubMed]

Lo, L. W.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater.19(2), 215–222 (2009).
[CrossRef]

Lu, G.

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small10(8), 1585–1593 (2014).

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater.25(22), 3055–3061 (2013).
[CrossRef] [PubMed]

Manikandan, J.

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials31(8), 2034–2042 (2010).
[CrossRef] [PubMed]

Martín, A.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano7(4), 3498–3505 (2013).
[CrossRef] [PubMed]

Maslov, K.

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt.17(11), 110506 (2012).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express17(9), 7688–7693 (2009).
[CrossRef] [PubMed]

Mou, C. Y.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater.19(2), 215–222 (2009).
[CrossRef]

Moya, S. E.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano7(4), 3498–3505 (2013).
[CrossRef] [PubMed]

Nie, L.

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale6(3), 1271–1276 (2014).
[CrossRef] [PubMed]

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small10(8), 1585–1593 (2014).

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater.25(22), 3055–3061 (2013).
[CrossRef] [PubMed]

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt.17(11), 110506 (2012).
[CrossRef] [PubMed]

L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt.16(7), 076005 (2011).
[CrossRef] [PubMed]

Niu, G.

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small10(8), 1585–1593 (2014).

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater.25(22), 3055–3061 (2013).
[CrossRef] [PubMed]

Ong, C.-N.

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials31(8), 2034–2042 (2010).
[CrossRef] [PubMed]

Ong, W. Y.

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials31(8), 2034–2042 (2010).
[CrossRef] [PubMed]

Oyen, W. J. G.

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med.50(1), 139–147 (2008).
[CrossRef] [PubMed]

Pao, K.-C.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Pérez-Campaña, C.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano7(4), 3498–3505 (2013).
[CrossRef] [PubMed]

Puigivila, M.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano7(4), 3498–3505 (2013).
[CrossRef] [PubMed]

Reese, T.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano7(4), 3498–3505 (2013).
[CrossRef] [PubMed]

Ren, Q.

Rong, P.

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small10(8), 1585–1593 (2014).

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale6(3), 1271–1276 (2014).
[CrossRef] [PubMed]

Saad, S.

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE8(2), e58208 (2013).
[CrossRef] [PubMed]

Shieh, D.-B.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Shung, K. K.

Song, K. H.

K. H. Song and L. V. Wang, “Noninvasive photoacoustic imaging of the thoracic cavity and the kidney in small and large animals,” Med. Phys.35(10), 4524–4529 (2008).
[CrossRef] [PubMed]

K. H. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt.12(6), 060503 (2007).
[CrossRef] [PubMed]

Souris, J.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater.19(2), 215–222 (2009).
[CrossRef]

Sun, X.

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale6(3), 1271–1276 (2014).
[CrossRef] [PubMed]

Tai, Y. C.

A. Chatziioannou, Y. C. Tai, N. Doshi, and S. R. Cherry, “Detector development for microPET II: a 1 μl resolution PET scanner for small animal imaging,” Phys. Med. Biol.46(11), 2899–2910 (2001).
[CrossRef] [PubMed]

Valenzuela, S. M.

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE8(2), e58208 (2013).
[CrossRef] [PubMed]

Visser, E. P.

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med.50(1), 139–147 (2008).
[CrossRef] [PubMed]

Vo-Dinh, T.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology23(7), 075102 (2012).
[CrossRef] [PubMed]

Wang, C.-R.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Wang, L. V.

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photon Rev7(5), 758–778 (2013).
[CrossRef] [PubMed]

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt.17(11), 110506 (2012).
[CrossRef] [PubMed]

L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt.16(7), 076005 (2011).
[CrossRef] [PubMed]

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev.110(5), 2756–2782 (2010).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express17(9), 7688–7693 (2009).
[CrossRef] [PubMed]

K. H. Song and L. V. Wang, “Noninvasive photoacoustic imaging of the thoracic cavity and the kidney in small and large animals,” Med. Phys.35(10), 4524–4529 (2008).
[CrossRef] [PubMed]

K. H. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt.12(6), 060503 (2007).
[CrossRef] [PubMed]

Wang, S.

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small10(8), 1585–1593 (2014).

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater.25(22), 3055–3061 (2013).
[CrossRef] [PubMed]

Wang, X.

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small10(8), 1585–1593 (2014).

Wang, Y. J.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater.19(2), 215–222 (2009).
[CrossRef]

Wang, Z.

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater.25(22), 3055–3061 (2013).
[CrossRef] [PubMed]

Wei, C. W.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Wilson, C. M.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology23(7), 075102 (2012).
[CrossRef] [PubMed]

Wu, Y.-N.

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Xi, L.

Xie, H.

Xing, R.

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater.25(22), 3055–3061 (2013).
[CrossRef] [PubMed]

Xiong, J.

Yang, C. S.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater.19(2), 215–222 (2009).
[CrossRef]

Yang, R.

Yao, J.

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photon Rev7(5), 758–778 (2013).
[CrossRef] [PubMed]

Ye, S.

Yu, L. E.

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials31(8), 2034–2042 (2010).
[CrossRef] [PubMed]

Yuan, H.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology23(7), 075102 (2012).
[CrossRef] [PubMed]

Zheng, N.

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale6(3), 1271–1276 (2014).
[CrossRef] [PubMed]

Zhou, Q.

Ziolo, R. F.

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano7(4), 3498–3505 (2013).
[CrossRef] [PubMed]

ACS Nano

C. Pérez-Campaña, V. Gómez-Vallejo, M. Puigivila, A. Martín, T. Calvo-Fernández, S. E. Moya, R. F. Ziolo, T. Reese, and J. Llop, “Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles,” ACS Nano7(4), 3498–3505 (2013).
[CrossRef] [PubMed]

Adv. Funct. Mater.

C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution,” Adv. Funct. Mater.19(2), 215–222 (2009).
[CrossRef]

Adv. Mater.

S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars,” Adv. Mater.25(22), 3055–3061 (2013).
[CrossRef] [PubMed]

Appl. Opt.

Biomaterials

S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials31(8), 2034–2042 (2010).
[CrossRef] [PubMed]

Biomed. Opt. Express

Chem. Rev.

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev.110(5), 2756–2782 (2010).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

P. C. Li, C. W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt.

L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, and L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt.17(11), 110506 (2012).
[CrossRef] [PubMed]

L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt.16(7), 076005 (2011).
[CrossRef] [PubMed]

K. H. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt.12(6), 060503 (2007).
[CrossRef] [PubMed]

J. Nucl. Med.

E. P. Visser, J. A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W. J. G. Oyen, and O. C. Boerman, “Spatial resolution and sensitivity of the Inveon small-animal PET scanner,” J. Nucl. Med.50(1), 139–147 (2008).
[CrossRef] [PubMed]

Laser Photon Rev

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photon Rev7(5), 758–778 (2013).
[CrossRef] [PubMed]

Med. Phys.

K. H. Song and L. V. Wang, “Noninvasive photoacoustic imaging of the thoracic cavity and the kidney in small and large animals,” Med. Phys.35(10), 4524–4529 (2008).
[CrossRef] [PubMed]

Nanoscale

L. Nie, M. Chen, X. Sun, P. Rong, N. Zheng, and X. Chen, “Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging,” Nanoscale6(3), 1271–1276 (2014).
[CrossRef] [PubMed]

Nanotechnology

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging,” Nanotechnology23(7), 075102 (2012).
[CrossRef] [PubMed]

Opt. Express

Phys. Med. Biol.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol.52(1), 141–168 (2007).
[CrossRef] [PubMed]

A. Chatziioannou, Y. C. Tai, N. Doshi, and S. R. Cherry, “Detector development for microPET II: a 1 μl resolution PET scanner for small animal imaging,” Phys. Med. Biol.46(11), 2899–2910 (2001).
[CrossRef] [PubMed]

PLoS ONE

H. Chen, A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela, “In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice,” PLoS ONE8(2), e58208 (2013).
[CrossRef] [PubMed]

Small

L. Nie, S. Wang, X. Wang, P. Rong, G. Niu, P. Huang, G. Lu, and X. Chen, “Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars,” Small10(8), 1585–1593 (2014).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the PAM system for monitoring of NPs kinetics in vivo.

Fig. 2
Fig. 2

(a) TEM image of GNS. The nanoparticle size is 56 ± 4 nm. (b) Absorption spectrum of GNS in water solution.

Fig. 3
Fig. 3

(a) Sagittal PA MAP image of the liver corresponding to the dashed area in (b). (b) Anatomical photograph of the mouse liver with the skin removed after experiment. While dashed area indicates imaging area. (c) Axial B-scan PA image corresponding to the dotted line in (a) showing the imaging depth of the anatomical structure and needle.

Fig. 4
Fig. 4

PA MAP images and signal ratio change in the liver. (a) Sequential PA MAP images captured at 7 min, 0.5 h, 1 h, 1.5 h, 2 h, 2.5 h, and 3 h post-injection of GNS. Blood vessel and liver were indicated by white and red arrows, respectively. (b) Sequential PA MAP images obtained at 7 min, 1 h, 2 h, and 3 h post-injection of PBS as control. (c) Normalized PA signal ratio of liver to blood vessel curves derived from PA MAP images in (a) and (b), respectively. Values represent means ± SD (n = 5/group).

Fig. 5
Fig. 5

PA MAP images and signal ratio change in a ROI of mouse spleen. (a) Sequential MAP images captured 7 min, 0.5 h, 1 h, 1.5 h, 2 h, 2.5 h, and 3 h post-injection of GNS. Blood vessel and spleen were indicated by white and red arrows, respectively. (b) Sequential MAP images achieved at 7 min, 1, 2, and 3 h post-injection of 200 µL PBS. (c) PA signal ratio of spleen to blood vessel derived from PA MAP images in (a) and (b), respectively. Values represent means ± standard deviation (n = 5/group).

Fig. 6
Fig. 6

Fluorescence images of the biodistribution of GNS-Cy5.5 in the liver (red arrow) and the spleen (black arrow). (a) In vivo fluorescence images of liver and spleen in mouse acquired before (0 h) and after injection (0.5, 1, 1.5, 2, 2.5, 3 h) of GNS-Cy5.5. (b) Average light intensity of the liver time-activity curve. (d) Average signal of the spleen time-activity curve. Fluorescence signal unit: 109 photons/cm2/s.

Metrics