Abstract

A photoacoustic tomograph based on optical ultrasound detection is demonstrated, which is capable of high resolution real-time projection imaging and fast three-dimensional (3D) imaging. Snapshots of the pressure field outside the imaged object are taken at defined delay times after photoacoustic excitation by use of a charge coupled device (CCD) camera in combination with an optical phase contrast method. From the obtained wave patterns photoacoustic projection images are reconstructed using a back propagation Fourier domain reconstruction algorithm. Applying the inverse Radon transform to a set of projections recorded over a half rotation of the sample provides 3D photoacoustic tomography images in less than one minute with a resolution below 100 µm. The sensitivity of the device was experimentally determined to be 5.1 kPa over a projection length of 1 mm. In vivo images of the vasculature of a mouse demonstrate the potential of the developed method for biomedical applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [CrossRef]
  2. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [CrossRef] [PubMed]
  3. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [CrossRef] [PubMed]
  4. E. Z. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [CrossRef] [PubMed]
  5. J. Laufer, P. Johnson, E. Z. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
    [CrossRef] [PubMed]
  6. R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
    [CrossRef] [PubMed]
  7. Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin Polymer Etalon Arrays for High-Resolution Photoacoustic Imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
    [CrossRef] [PubMed]
  8. A. Hochreiner, J. Bauer-Marschallinger, P. Burgholzer, B. Jakoby, and T. Berer, “Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification,” Biomed. Opt. Express 4(11), 2322–2331 (2013).
    [CrossRef] [PubMed]
  9. G. Rousseau, A. Blouin, and J. P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
    [CrossRef] [PubMed]
  10. A. Maxwell, S. Huang, T. Ling, J. S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer Microring Resonators for High-Frequency Ultrasound Detection and Imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 191–197 (2008).
  11. K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, and H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40(22), 3800–3809 (2001).
    [CrossRef] [PubMed]
  12. G. Paltauf, H. Schmidt-Kloiber, K. P. Koestli, M. Frenz, and H. P. Weber, “Optoacoustic imaging using two-dimensional ultrasonic detection” in A. A. Oraevsky, ed. (SPIE, 2000).
  13. M. Lamont and P. C. Beard, “2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot Polymer film sensor,” Electron. Lett. 42(3), 187–189 (2006).
    [CrossRef]
  14. J. J. Niederhauser, D. Frauchiger, H. P. Weber, and M. Frenz, “Real-Time Optoacoustic Imaging Using a Schlieren Transducer,” Appl. Phys. Lett. 81(4), 571–573 (2002).
    [CrossRef]
  15. J. J. Niederhauser, M. Jaeger, and M. Frenz, “Real-Time Three-Dimensional Optoacoustic Imaging Using an Acoustic Lens System,” Appl. Phys. Lett. 85(5), 846–848 (2004).
    [CrossRef]
  16. R. Nuster, G. Zangerl, M. Haltmeier, and G. Paltauf, “Full field detection in photoacoustic tomography,” Opt. Express 18(6), 6288–6299 (2010).
    [CrossRef] [PubMed]
  17. T. A. Pitts, A. Sagers, and J. F. Greenleaf, “Optical Phase Contrast Measurement of Ultrasonic Fields,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1686–1694 (2001).
    [CrossRef] [PubMed]
  18. E. K. Reichel and B. G. Zagar, “Phase contrast method for measuring ultrasonic fields,” IEEE Trans. Instrum. Meas. 55(4), 1356–1361 (2006).
    [CrossRef]
  19. P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
    [CrossRef] [PubMed]
  20. G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46(16), 3352–3358 (2007).
    [CrossRef] [PubMed]
  21. G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic Tomography with Integrating Area and Line Detectors,” in Photoacoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC Press Taylor & Francis Group, 2009), pp. 251–263.
  22. G. S. Settles, Schlieren and Shadowgraph Techniques (Springer, 2001).
  23. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  24. R. Nuster, S. Gratt, K. Passler, H. Grün, T. Berer, P. Burgholzer, and G. Paltauf, Comparison of optical and piezoelectric integrating line detectors” in Anonymous (SPIE, 2009).
  25. E. Z. Zhang and P. C. Beard, “Ultra high sensitivity, wideband Fabry Perot ultrasound sensors as alternative to piezoelectric PVDF transducers for biomedical photoacoustic detection” in Proc. SPIE 5320, ed., 2004).

2013 (1)

2012 (3)

G. Rousseau, A. Blouin, and J. P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
[CrossRef] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

J. Laufer, P. Johnson, E. Z. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[CrossRef] [PubMed]

2011 (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[CrossRef] [PubMed]

2010 (2)

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

R. Nuster, G. Zangerl, M. Haltmeier, and G. Paltauf, “Full field detection in photoacoustic tomography,” Opt. Express 18(6), 6288–6299 (2010).
[CrossRef] [PubMed]

2008 (3)

Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin Polymer Etalon Arrays for High-Resolution Photoacoustic Imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

E. Z. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[CrossRef] [PubMed]

A. Maxwell, S. Huang, T. Ling, J. S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer Microring Resonators for High-Frequency Ultrasound Detection and Imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 191–197 (2008).

2007 (1)

2006 (3)

M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

M. Lamont and P. C. Beard, “2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot Polymer film sensor,” Electron. Lett. 42(3), 187–189 (2006).
[CrossRef]

E. K. Reichel and B. G. Zagar, “Phase contrast method for measuring ultrasonic fields,” IEEE Trans. Instrum. Meas. 55(4), 1356–1361 (2006).
[CrossRef]

2005 (1)

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[CrossRef] [PubMed]

2004 (1)

J. J. Niederhauser, M. Jaeger, and M. Frenz, “Real-Time Three-Dimensional Optoacoustic Imaging Using an Acoustic Lens System,” Appl. Phys. Lett. 85(5), 846–848 (2004).
[CrossRef]

2002 (1)

J. J. Niederhauser, D. Frauchiger, H. P. Weber, and M. Frenz, “Real-Time Optoacoustic Imaging Using a Schlieren Transducer,” Appl. Phys. Lett. 81(4), 571–573 (2002).
[CrossRef]

2001 (2)

T. A. Pitts, A. Sagers, and J. F. Greenleaf, “Optical Phase Contrast Measurement of Ultrasonic Fields,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1686–1694 (2001).
[CrossRef] [PubMed]

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, and H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40(22), 3800–3809 (2001).
[CrossRef] [PubMed]

Ashkenazi, S.

Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin Polymer Etalon Arrays for High-Resolution Photoacoustic Imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

A. Maxwell, S. Huang, T. Ling, J. S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer Microring Resonators for High-Frequency Ultrasound Detection and Imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 191–197 (2008).

Bauer-Marschallinger, J.

Beard, P.

J. Laufer, P. Johnson, E. Z. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[CrossRef] [PubMed]

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[CrossRef] [PubMed]

E. Z. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[CrossRef] [PubMed]

Beard, P. C.

M. Lamont and P. C. Beard, “2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot Polymer film sensor,” Electron. Lett. 42(3), 187–189 (2006).
[CrossRef]

Berer, T.

Blouin, A.

Burgholzer, P.

A. Hochreiner, J. Bauer-Marschallinger, P. Burgholzer, B. Jakoby, and T. Berer, “Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification,” Biomed. Opt. Express 4(11), 2322–2331 (2013).
[CrossRef] [PubMed]

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46(16), 3352–3358 (2007).
[CrossRef] [PubMed]

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[CrossRef] [PubMed]

Cox, B.

J. Laufer, P. Johnson, E. Z. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[CrossRef] [PubMed]

Frauchiger, D.

J. J. Niederhauser, D. Frauchiger, H. P. Weber, and M. Frenz, “Real-Time Optoacoustic Imaging Using a Schlieren Transducer,” Appl. Phys. Lett. 81(4), 571–573 (2002).
[CrossRef]

Frenz, M.

J. J. Niederhauser, M. Jaeger, and M. Frenz, “Real-Time Three-Dimensional Optoacoustic Imaging Using an Acoustic Lens System,” Appl. Phys. Lett. 85(5), 846–848 (2004).
[CrossRef]

J. J. Niederhauser, D. Frauchiger, H. P. Weber, and M. Frenz, “Real-Time Optoacoustic Imaging Using a Schlieren Transducer,” Appl. Phys. Lett. 81(4), 571–573 (2002).
[CrossRef]

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, and H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40(22), 3800–3809 (2001).
[CrossRef] [PubMed]

Greenleaf, J. F.

T. A. Pitts, A. Sagers, and J. F. Greenleaf, “Optical Phase Contrast Measurement of Ultrasonic Fields,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1686–1694 (2001).
[CrossRef] [PubMed]

Grossauer, H.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

Guo, L. J.

A. Maxwell, S. Huang, T. Ling, J. S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer Microring Resonators for High-Frequency Ultrasound Detection and Imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 191–197 (2008).

Haltmeier, M.

Hochreiner, A.

Hofer, C.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[CrossRef] [PubMed]

Holotta, M.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

Hou, Y.

Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin Polymer Etalon Arrays for High-Resolution Photoacoustic Imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

Huang, S.

A. Maxwell, S. Huang, T. Ling, J. S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer Microring Resonators for High-Frequency Ultrasound Detection and Imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 191–197 (2008).

Huang, S. W.

Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin Polymer Etalon Arrays for High-Resolution Photoacoustic Imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

Jaeger, M.

J. J. Niederhauser, M. Jaeger, and M. Frenz, “Real-Time Three-Dimensional Optoacoustic Imaging Using an Acoustic Lens System,” Appl. Phys. Lett. 85(5), 846–848 (2004).
[CrossRef]

Jakoby, B.

Johnson, P.

J. Laufer, P. Johnson, E. Z. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[CrossRef] [PubMed]

Kim, J. S.

A. Maxwell, S. Huang, T. Ling, J. S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer Microring Resonators for High-Frequency Ultrasound Detection and Imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 191–197 (2008).

Köstli, K. P.

Kremser, C.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

Lamont, M.

M. Lamont and P. C. Beard, “2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot Polymer film sensor,” Electron. Lett. 42(3), 187–189 (2006).
[CrossRef]

Laufer, J.

J. Laufer, P. Johnson, E. Z. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[CrossRef] [PubMed]

E. Z. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[CrossRef] [PubMed]

Ling, T.

A. Maxwell, S. Huang, T. Ling, J. S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer Microring Resonators for High-Frequency Ultrasound Detection and Imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 191–197 (2008).

Maxwell, A.

A. Maxwell, S. Huang, T. Ling, J. S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer Microring Resonators for High-Frequency Ultrasound Detection and Imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 191–197 (2008).

Monchalin, J. P.

Niederhauser, J. J.

J. J. Niederhauser, M. Jaeger, and M. Frenz, “Real-Time Three-Dimensional Optoacoustic Imaging Using an Acoustic Lens System,” Appl. Phys. Lett. 85(5), 846–848 (2004).
[CrossRef]

J. J. Niederhauser, D. Frauchiger, H. P. Weber, and M. Frenz, “Real-Time Optoacoustic Imaging Using a Schlieren Transducer,” Appl. Phys. Lett. 81(4), 571–573 (2002).
[CrossRef]

Nuster, R.

O’Donnell, M.

Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin Polymer Etalon Arrays for High-Resolution Photoacoustic Imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

Paltauf, G.

Pedley, B.

J. Laufer, P. Johnson, E. Z. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[CrossRef] [PubMed]

Pitts, T. A.

T. A. Pitts, A. Sagers, and J. F. Greenleaf, “Optical Phase Contrast Measurement of Ultrasonic Fields,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1686–1694 (2001).
[CrossRef] [PubMed]

Reichel, E. K.

E. K. Reichel and B. G. Zagar, “Phase contrast method for measuring ultrasonic fields,” IEEE Trans. Instrum. Meas. 55(4), 1356–1361 (2006).
[CrossRef]

Rousseau, G.

Sagers, A.

T. A. Pitts, A. Sagers, and J. F. Greenleaf, “Optical Phase Contrast Measurement of Ultrasonic Fields,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1686–1694 (2001).
[CrossRef] [PubMed]

Scherzer, O.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[CrossRef] [PubMed]

Schmidt-Kloiber, H.

Treeby, B.

J. Laufer, P. Johnson, E. Z. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[CrossRef] [PubMed]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

Weber, H. P.

J. J. Niederhauser, D. Frauchiger, H. P. Weber, and M. Frenz, “Real-Time Optoacoustic Imaging Using a Schlieren Transducer,” Appl. Phys. Lett. 81(4), 571–573 (2002).
[CrossRef]

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, and H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40(22), 3800–3809 (2001).
[CrossRef] [PubMed]

Witte, R.

Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin Polymer Etalon Arrays for High-Resolution Photoacoustic Imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

Xu, M. H.

M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

Zagar, B. G.

E. K. Reichel and B. G. Zagar, “Phase contrast method for measuring ultrasonic fields,” IEEE Trans. Instrum. Meas. 55(4), 1356–1361 (2006).
[CrossRef]

Zangerl, G.

Zhang, E. Z.

J. Laufer, P. Johnson, E. Z. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[CrossRef] [PubMed]

E. Z. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

J. J. Niederhauser, D. Frauchiger, H. P. Weber, and M. Frenz, “Real-Time Optoacoustic Imaging Using a Schlieren Transducer,” Appl. Phys. Lett. 81(4), 571–573 (2002).
[CrossRef]

J. J. Niederhauser, M. Jaeger, and M. Frenz, “Real-Time Three-Dimensional Optoacoustic Imaging Using an Acoustic Lens System,” Appl. Phys. Lett. 85(5), 846–848 (2004).
[CrossRef]

Biomed. Opt. Express (2)

Electron. Lett. (1)

M. Lamont and P. C. Beard, “2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot Polymer film sensor,” Electron. Lett. 42(3), 187–189 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Maxwell, S. Huang, T. Ling, J. S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer Microring Resonators for High-Frequency Ultrasound Detection and Imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 191–197 (2008).

IEEE Trans. Instrum. Meas. (1)

E. K. Reichel and B. G. Zagar, “Phase contrast method for measuring ultrasonic fields,” IEEE Trans. Instrum. Meas. 55(4), 1356–1361 (2006).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[CrossRef] [PubMed]

T. A. Pitts, A. Sagers, and J. F. Greenleaf, “Optical Phase Contrast Measurement of Ultrasonic Fields,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1686–1694 (2001).
[CrossRef] [PubMed]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

J. Laufer, P. Johnson, E. Z. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[CrossRef] [PubMed]

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin Polymer Etalon Arrays for High-Resolution Photoacoustic Imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Rev. Sci. Instrum. (1)

M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

Other (6)

G. Paltauf, H. Schmidt-Kloiber, K. P. Koestli, M. Frenz, and H. P. Weber, “Optoacoustic imaging using two-dimensional ultrasonic detection” in A. A. Oraevsky, ed. (SPIE, 2000).

G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic Tomography with Integrating Area and Line Detectors,” in Photoacoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC Press Taylor & Francis Group, 2009), pp. 251–263.

G. S. Settles, Schlieren and Shadowgraph Techniques (Springer, 2001).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

R. Nuster, S. Gratt, K. Passler, H. Grün, T. Berer, P. Burgholzer, and G. Paltauf, Comparison of optical and piezoelectric integrating line detectors” in Anonymous (SPIE, 2009).

E. Z. Zhang and P. C. Beard, “Ultra high sensitivity, wideband Fabry Perot ultrasound sensors as alternative to piezoelectric PVDF transducers for biomedical photoacoustic detection” in Proc. SPIE 5320, ed., 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Phase contrast detection setup to capture projection images of acoustic fields. PP: partially absorbing phase plate, OW, optical window, NBPF: narrow bandpass filter, L: lens, M: mirror

Fig. 2
Fig. 2

Representative recorded background image (a) and foreground image (b). Four times averaged wave pattern image after background subtraction (c). Reconstructed projection image (d) from the preprocessed wave pattern image (c).

Fig. 3
Fig. 3

Thirty-two times averaged preprocessed wave pattern image originating from a defined acoustic source (a). Profile taken from the wave pattern image along z direction at x = 0 position (b). Linear dependency of the contrast to noise ratio (CNR) on the pressure length product (c). The reciprocal value of the slope corresponds to the noise equivalent pressure length product (NEPLP).

Fig. 4
Fig. 4

Photoacoustic maximum amplitude projection images of the 3D-image of the phantom sample along three different directions (a), (b) and (c). Horizontal and vertical profiles taken from (a) and (b) are shown in (d), where pixel values along the line HP are displayed and in (e) for values along line VP. The full width half maximum (FWHM) values of the peaks, labeled by the black arrows, are representative for the horizontal and vertical resolution.

Fig. 5
Fig. 5

Photoacoustic projection images from four different sample orientations α of the left hind leg of a mouse. The peculiarity of photoacoustic projection images is that blood vessels (extended absorbing structures) oriented in projection direction appear as bright spots (white arrows).

Fig. 6
Fig. 6

Photoacoustic maximum amplitude projection (MAP) images from side and top view of the left hind leg of the imaged mouse in (a) and (b). A zoom of small blood vessels in the dashed box in (b) is shown in (c) indicating the image resolution <100 µm. Scale bar: 300 µm.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ t α (x,z)= 2π λ Det n p p t α (x,y,z)y,
I t α (x,z)= T CS I 0 ±2Δ ϕ t α (x,z) I 0 ,
Λ min =2 S P M O =2 14.8µm 0.45 66µm ν max 23MHz
ν min c H 2 O D PP 2 n H 2 O λ Det f 1 .
p t=0 α (x,z)=F T 1 [FT[ p t= T 0 α (x,z)]2cos( c H 2 O k T 0 )],
CNR= P V max RMS N AVG ,
CNR= n signal n noise
n noise = n Ph 2 + n CCD 2 + n RO 2 with n Ph = 2 n BG + n signal
CNR= Δϕ T PP 2 n BG = Δϕ T PP FWC .
NEPLP= (pl) min = λ Det T PP 2π n / p FWC .
sin α q =q λ Det Λ =q λ Det ν c H 2 0
tanβ= D PP 2 f 1 ,
ν min = c H 2 O sin[ tan 1 ( D PP / 2 f 1 ) ] λ Det n H 2 O .
ν min c H 2 O D PP 2 n H 2 O λ Det f 1 .

Metrics