Abstract

The prefrontal cortex (PFC) is thought to play an important role in “higher” brain functions such as personality and emotion that may associated with several gender-related mental disorders. In this study, the gender effects of functional connectivity, cortical lateralization and significantly differences in the PFC were investigated by using resting-state functional optical tomography (fOT) measurement. A total of forty subjects including twenty healthy male and twenty healthy female adults were recruited for this study. In the results, the hemoglobin responses are higher in the male group. Additionally, male group exhibited the stronger connectivity in the PFC regions. In the result of lateralization, leftward dominant was observed in the male group but bilateral dominance in the female group. Finally, the 11 channels of the inferior PFC regions (corresponding to the region of Brodmann area 45) are significant different with spectrum analysis. Our findings suggest that the resting-state fOT method can provide high potential to apply to clinical neuroscience for several gender-related mental disorders diagnosis.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Rosazza and L. Minati, “Resting-state brain networks: literature review and clinical applications,” Neurol. Sci. 32(5), 773–785 (2011).
    [Crossref] [PubMed]
  2. H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS ONE 7(9), e45771 (2012).
    [Crossref] [PubMed]
  3. E. Glerean, J. Salmi, J. M. Lahnakoski, I. P. Jääskeläinen, and M. Sams, “Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity,” Brain Connect. 2(2), 91–101 (2012).
    [Crossref] [PubMed]
  4. L. Tian, J. Wang, C. Yan, and Y. He, “Hemisphere- and gender-related differences in small-world brain networks: A resting-state functional MRI study,” Neuroimage 54(1), 191–202 (2011).
    [Crossref] [PubMed]
  5. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
    [Crossref] [PubMed]
  6. D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
    [PubMed]
  7. X. W. Song, Z. Y. Dong, X. Y. Long, S. F. Li, X. N. Zuo, C. Z. Zhu, Y. He, C. G. Yan, and Y. F. Zang, “REST: A Toolkit for resting-state functional magnetic resonance imaging data processing,” PLoS ONE 6(9), e25031 (2011).
    [Crossref] [PubMed]
  8. M. D. Fox and M. Greicius, “Clinical applications of resting state functional connectivity,” Front Syst. Neurosci. 4, 19 (2010).
    [PubMed]
  9. P. Fransson, B. Skiöld, S. Horsch, A. Nordell, M. Blennow, H. Lagercrantz, and U. Åden, “Resting-state networks in the infant brain,” Proc. Natl. Acad. Sci. U.S.A. 104(39), 15531–15536 (2007).
    [Crossref] [PubMed]
  10. H. Yang, X. Y. Long, Y. Yang, H. Yan, C. Z. Zhu, X. P. Zhou, Y. F. Zang, and Q. Y. Gong, “Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI,” Neuroimage 36(1), 144–152 (2007).
    [Crossref] [PubMed]
  11. M. P. van den Heuvel and H. E. Hulshoff Pol, “Exploring the brain network: A review on resting-state fMRI functional connectivity,” Eur. Neuropsychopharmacol. 20(8), 519–534 (2010).
    [Crossref] [PubMed]
  12. G. Boas, “Noninvasive imaging of the brain,” Opt. Photonics News 15, 52–55 (2004).
  13. S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage 56(1), 252–257 (2011).
    [Crossref] [PubMed]
  14. S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
    [Crossref] [PubMed]
  15. A. V. Medvedev, “Does the resting state connectivity have hemispheric asymmetry? A near-infrared spectroscopy study,” Neuroimage 85(Pt 1), 400–407 (2014).
    [Crossref] [PubMed]
  16. Y. Tong, L. M. Hocke, S. C. Licata, and B. Frederick, “Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals,” J. Biomed. Opt. 17(10), 106004 (2012).
    [Crossref] [PubMed]
  17. R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” Neuroimage 31(4), 1536–1548 (2006).
    [Crossref] [PubMed]
  18. T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: Does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
    [Crossref] [PubMed]
  19. S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
    [Crossref] [PubMed]
  20. H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
    [Crossref] [PubMed]
  21. H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
    [Crossref] [PubMed]
  22. Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
    [Crossref] [PubMed]
  23. C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
    [Crossref] [PubMed]
  24. B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
    [Crossref] [PubMed]
  25. Z. F. Zaidi, “Gender differences in human brain: A review,” Open Anat. J. 2, 37–55 (2010).
    [Crossref]
  26. D. Tomasi and N. D. Volkow, “Gender differences in brain functional connectivity density,” Hum. Brain Mapp. 33(4), 849–860 (2012).
    [Crossref] [PubMed]
  27. G. Gong, Y. He, and A. C. Evans, “Brain connectivity: Gender makes a difference,” Neuroscientist 17(5), 575–591 (2011).
    [Crossref] [PubMed]
  28. N. Jaušovec and K. Jaušovec, “Resting brain activity: Differences between genders,” Neuropsychologia 48(13), 3918–3925 (2010).
    [Crossref] [PubMed]
  29. L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol. 51(5), N91–N98 (2006).
    [Crossref] [PubMed]
  30. P. H. Koh, D. E. Glaser, G. Flandin, S. Kiebel, B. Butterworth, A. Maki, D. T. Delpy, and C. E. Elwell, “Functional optical signal analysis: a software tool for near-infrared spectroscopy data processing incorporating statistical parametric mapping,” J. Biomed. Opt. 12(6), 064010 (2007).
    [Crossref] [PubMed]
  31. C.-C. Chuang, C.-M. Chen, Y.-S. Hsieh, T.-C. Liu, and C.-W. Sun, “Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data,” J. Biophotonics 6(3), 267–274 (2013).
    [Crossref] [PubMed]
  32. S. Lloyd-Fox, M. Papademetriou, M. K. Darboe, N. L. Everdell, R. Wegmuller, A. M. Prentice, S. E. Moore, and C. E. Elwell, “Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa,” Sci. Rep. 4, 4740 (2014).
    [Crossref] [PubMed]
  33. S. M. Coyle, T. E. Ward, and C. M. Markham, “Brain-computer interface using a simplified functional near-infrared spectroscopy system,” J. Neural Eng. 4(3), 219–226 (2007).
    [Crossref] [PubMed]
  34. Y. Hoshi and M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol. 75(4), 1842–1846 (1993).
    [PubMed]
  35. M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage 21(1), 99–111 (2004).
    [Crossref] [PubMed]
  36. E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nat. Rev. Neurosci. 10(3), 186–198 (2009).
    [Crossref] [PubMed]
  37. A. A. Fingelkurts, A. A. Fingelkurts, and S. Kähkönen, “Functional connectivity in the brain-is it an elusive concept?” Neurosci. Biobehav. Rev. 28(8), 827–836 (2005).
    [Crossref] [PubMed]
  38. B. Horwitz, “The elusive concept of brain connectivity,” Neuroimage 19(2), 466–470 (2003).
    [Crossref] [PubMed]
  39. K. J. Friston, “Functional and effective connectivity in neuroimaging: A synthesis,” Hum. Brain Mapp. 2(1-2), 56–78 (1994).
    [Crossref]
  40. D. Tomasi and N. D. Volkow, “Laterality patterns of brain functional connectivity: gender effects,” Cereb. Cortex 22(6), 1455–1462 (2012).
    [Crossref] [PubMed]
  41. N. Shimoda, K. Takeda, I. Imai, J. Kaneko, and H. Kato, “Cerebral laterality differences in handedness: A mental rotation study with NIRS,” Neurosci. Lett. 430(1), 43–47 (2008).
    [Crossref] [PubMed]
  42. K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: A longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
    [Crossref] [PubMed]
  43. R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp. 16(3), 183–189 (2002).
    [Crossref] [PubMed]
  44. N. F. Watson, C. Dodrill, D. Farrell, M. D. Holmes, and J. W. Miller, “Determination of language dominance with near-infrared spectroscopy: comparison with the intracarotid amobarbital procedure,” Seizure 13(6), 399–402 (2004).
    [Crossref] [PubMed]
  45. W. Koch, S. Teipel, S. Mueller, K. Buerger, A. L. W. Bokde, H. Hampel, U. Coates, M. Reiser, and T. Meindl, “Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?” Neuroimage 51(1), 280–287 (2010).
    [Crossref] [PubMed]
  46. M. Wallentin, “Putative sex differences in verbal abilities and language cortex: A critical review,” Brain Lang. 108(3), 175–183 (2009).
    [Crossref] [PubMed]
  47. E. M. Weiss, J. D. Ragland, C. M. Brensinger, W. B. Bilker, E. A. Deisenhammer, and M. Delazer, “Sex differences in clustering and switching in verbal fluency tasks,” J. Int. Neuropsychol. Soc. 12(4), 502–509 (2006).
    [Crossref] [PubMed]
  48. J. M. Andreano and L. Cahill, “Sex influences on the neurobiology of learning and memory,” Learn. Mem. 16(4), 248–266 (2009).
    [Crossref] [PubMed]
  49. H. Niu and Y. He, “Resting-State Functional Brain Connectivity: Lessons from Functional Near-Infrared Spectroscopy,” Neuroscientist 20(2), 173–188 (2014).
    [Crossref] [PubMed]
  50. Y. Hoshi, “Functional near-infrared spectroscopy: current status and future prospects,” J. Biomed. Opt. 12(6), 062106 (2007).
    [Crossref] [PubMed]

2014 (3)

A. V. Medvedev, “Does the resting state connectivity have hemispheric asymmetry? A near-infrared spectroscopy study,” Neuroimage 85(Pt 1), 400–407 (2014).
[Crossref] [PubMed]

S. Lloyd-Fox, M. Papademetriou, M. K. Darboe, N. L. Everdell, R. Wegmuller, A. M. Prentice, S. E. Moore, and C. E. Elwell, “Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa,” Sci. Rep. 4, 4740 (2014).
[Crossref] [PubMed]

H. Niu and Y. He, “Resting-State Functional Brain Connectivity: Lessons from Functional Near-Infrared Spectroscopy,” Neuroscientist 20(2), 173–188 (2014).
[Crossref] [PubMed]

2013 (1)

C.-C. Chuang, C.-M. Chen, Y.-S. Hsieh, T.-C. Liu, and C.-W. Sun, “Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data,” J. Biophotonics 6(3), 267–274 (2013).
[Crossref] [PubMed]

2012 (6)

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

D. Tomasi and N. D. Volkow, “Gender differences in brain functional connectivity density,” Hum. Brain Mapp. 33(4), 849–860 (2012).
[Crossref] [PubMed]

Y. Tong, L. M. Hocke, S. C. Licata, and B. Frederick, “Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals,” J. Biomed. Opt. 17(10), 106004 (2012).
[Crossref] [PubMed]

H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS ONE 7(9), e45771 (2012).
[Crossref] [PubMed]

E. Glerean, J. Salmi, J. M. Lahnakoski, I. P. Jääskeläinen, and M. Sams, “Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity,” Brain Connect. 2(2), 91–101 (2012).
[Crossref] [PubMed]

D. Tomasi and N. D. Volkow, “Laterality patterns of brain functional connectivity: gender effects,” Cereb. Cortex 22(6), 1455–1462 (2012).
[Crossref] [PubMed]

2011 (6)

L. Tian, J. Wang, C. Yan, and Y. He, “Hemisphere- and gender-related differences in small-world brain networks: A resting-state functional MRI study,” Neuroimage 54(1), 191–202 (2011).
[Crossref] [PubMed]

X. W. Song, Z. Y. Dong, X. Y. Long, S. F. Li, X. N. Zuo, C. Z. Zhu, Y. He, C. G. Yan, and Y. F. Zang, “REST: A Toolkit for resting-state functional magnetic resonance imaging data processing,” PLoS ONE 6(9), e25031 (2011).
[Crossref] [PubMed]

C. Rosazza and L. Minati, “Resting-state brain networks: literature review and clinical applications,” Neurol. Sci. 32(5), 773–785 (2011).
[Crossref] [PubMed]

S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage 56(1), 252–257 (2011).
[Crossref] [PubMed]

G. Gong, Y. He, and A. C. Evans, “Brain connectivity: Gender makes a difference,” Neuroscientist 17(5), 575–591 (2011).
[Crossref] [PubMed]

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

2010 (9)

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

N. Jaušovec and K. Jaušovec, “Resting brain activity: Differences between genders,” Neuropsychologia 48(13), 3918–3925 (2010).
[Crossref] [PubMed]

Z. F. Zaidi, “Gender differences in human brain: A review,” Open Anat. J. 2, 37–55 (2010).
[Crossref]

M. P. van den Heuvel and H. E. Hulshoff Pol, “Exploring the brain network: A review on resting-state fMRI functional connectivity,” Eur. Neuropsychopharmacol. 20(8), 519–534 (2010).
[Crossref] [PubMed]

M. D. Fox and M. Greicius, “Clinical applications of resting state functional connectivity,” Front Syst. Neurosci. 4, 19 (2010).
[PubMed]

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
[Crossref] [PubMed]

W. Koch, S. Teipel, S. Mueller, K. Buerger, A. L. W. Bokde, H. Hampel, U. Coates, M. Reiser, and T. Meindl, “Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?” Neuroimage 51(1), 280–287 (2010).
[Crossref] [PubMed]

2009 (4)

M. Wallentin, “Putative sex differences in verbal abilities and language cortex: A critical review,” Brain Lang. 108(3), 175–183 (2009).
[Crossref] [PubMed]

J. M. Andreano and L. Cahill, “Sex influences on the neurobiology of learning and memory,” Learn. Mem. 16(4), 248–266 (2009).
[Crossref] [PubMed]

E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nat. Rev. Neurosci. 10(3), 186–198 (2009).
[Crossref] [PubMed]

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

2008 (1)

N. Shimoda, K. Takeda, I. Imai, J. Kaneko, and H. Kato, “Cerebral laterality differences in handedness: A mental rotation study with NIRS,” Neurosci. Lett. 430(1), 43–47 (2008).
[Crossref] [PubMed]

2007 (6)

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: A longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[Crossref] [PubMed]

S. M. Coyle, T. E. Ward, and C. M. Markham, “Brain-computer interface using a simplified functional near-infrared spectroscopy system,” J. Neural Eng. 4(3), 219–226 (2007).
[Crossref] [PubMed]

Y. Hoshi, “Functional near-infrared spectroscopy: current status and future prospects,” J. Biomed. Opt. 12(6), 062106 (2007).
[Crossref] [PubMed]

P. H. Koh, D. E. Glaser, G. Flandin, S. Kiebel, B. Butterworth, A. Maki, D. T. Delpy, and C. E. Elwell, “Functional optical signal analysis: a software tool for near-infrared spectroscopy data processing incorporating statistical parametric mapping,” J. Biomed. Opt. 12(6), 064010 (2007).
[Crossref] [PubMed]

P. Fransson, B. Skiöld, S. Horsch, A. Nordell, M. Blennow, H. Lagercrantz, and U. Åden, “Resting-state networks in the infant brain,” Proc. Natl. Acad. Sci. U.S.A. 104(39), 15531–15536 (2007).
[Crossref] [PubMed]

H. Yang, X. Y. Long, Y. Yang, H. Yan, C. Z. Zhu, X. P. Zhou, Y. F. Zang, and Q. Y. Gong, “Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI,” Neuroimage 36(1), 144–152 (2007).
[Crossref] [PubMed]

2006 (5)

R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” Neuroimage 31(4), 1536–1548 (2006).
[Crossref] [PubMed]

T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: Does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
[Crossref] [PubMed]

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[Crossref] [PubMed]

L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol. 51(5), N91–N98 (2006).
[Crossref] [PubMed]

E. M. Weiss, J. D. Ragland, C. M. Brensinger, W. B. Bilker, E. A. Deisenhammer, and M. Delazer, “Sex differences in clustering and switching in verbal fluency tasks,” J. Int. Neuropsychol. Soc. 12(4), 502–509 (2006).
[Crossref] [PubMed]

2005 (1)

A. A. Fingelkurts, A. A. Fingelkurts, and S. Kähkönen, “Functional connectivity in the brain-is it an elusive concept?” Neurosci. Biobehav. Rev. 28(8), 827–836 (2005).
[Crossref] [PubMed]

2004 (3)

G. Boas, “Noninvasive imaging of the brain,” Opt. Photonics News 15, 52–55 (2004).

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage 21(1), 99–111 (2004).
[Crossref] [PubMed]

N. F. Watson, C. Dodrill, D. Farrell, M. D. Holmes, and J. W. Miller, “Determination of language dominance with near-infrared spectroscopy: comparison with the intracarotid amobarbital procedure,” Seizure 13(6), 399–402 (2004).
[Crossref] [PubMed]

2003 (1)

B. Horwitz, “The elusive concept of brain connectivity,” Neuroimage 19(2), 466–470 (2003).
[Crossref] [PubMed]

2002 (1)

R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp. 16(3), 183–189 (2002).
[Crossref] [PubMed]

2001 (1)

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

1994 (1)

K. J. Friston, “Functional and effective connectivity in neuroimaging: A synthesis,” Hum. Brain Mapp. 2(1-2), 56–78 (1994).
[Crossref]

1993 (1)

Y. Hoshi and M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol. 75(4), 1842–1846 (1993).
[PubMed]

Åden, U.

P. Fransson, B. Skiöld, S. Horsch, A. Nordell, M. Blennow, H. Lagercrantz, and U. Åden, “Resting-state networks in the infant brain,” Proc. Natl. Acad. Sci. U.S.A. 104(39), 15531–15536 (2007).
[Crossref] [PubMed]

Andreano, J. M.

J. M. Andreano and L. Cahill, “Sex influences on the neurobiology of learning and memory,” Learn. Mem. 16(4), 248–266 (2009).
[Crossref] [PubMed]

Arfanakis, K.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

Bandettini, P. A.

R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” Neuroimage 31(4), 1536–1548 (2006).
[Crossref] [PubMed]

Bilker, W. B.

E. M. Weiss, J. D. Ragland, C. M. Brensinger, W. B. Bilker, E. A. Deisenhammer, and M. Delazer, “Sex differences in clustering and switching in verbal fluency tasks,” J. Int. Neuropsychol. Soc. 12(4), 502–509 (2006).
[Crossref] [PubMed]

Birn, R. M.

R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” Neuroimage 31(4), 1536–1548 (2006).
[Crossref] [PubMed]

Biswal, B. B.

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Blennow, M.

P. Fransson, B. Skiöld, S. Horsch, A. Nordell, M. Blennow, H. Lagercrantz, and U. Åden, “Resting-state networks in the infant brain,” Proc. Natl. Acad. Sci. U.S.A. 104(39), 15531–15536 (2007).
[Crossref] [PubMed]

Boas, D. A.

Boas, G.

G. Boas, “Noninvasive imaging of the brain,” Opt. Photonics News 15, 52–55 (2004).

Bokde, A. L. W.

W. Koch, S. Teipel, S. Mueller, K. Buerger, A. L. W. Bokde, H. Hampel, U. Coates, M. Reiser, and T. Meindl, “Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?” Neuroimage 51(1), 280–287 (2010).
[Crossref] [PubMed]

Brensinger, C. M.

E. M. Weiss, J. D. Ragland, C. M. Brensinger, W. B. Bilker, E. A. Deisenhammer, and M. Delazer, “Sex differences in clustering and switching in verbal fluency tasks,” J. Int. Neuropsychol. Soc. 12(4), 502–509 (2006).
[Crossref] [PubMed]

Buerger, K.

W. Koch, S. Teipel, S. Mueller, K. Buerger, A. L. W. Bokde, H. Hampel, U. Coates, M. Reiser, and T. Meindl, “Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?” Neuroimage 51(1), 280–287 (2010).
[Crossref] [PubMed]

Bullmore, E.

E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nat. Rev. Neurosci. 10(3), 186–198 (2009).
[Crossref] [PubMed]

Bunce, S. C.

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[Crossref] [PubMed]

Butterworth, B.

P. H. Koh, D. E. Glaser, G. Flandin, S. Kiebel, B. Butterworth, A. Maki, D. T. Delpy, and C. E. Elwell, “Functional optical signal analysis: a software tool for near-infrared spectroscopy data processing incorporating statistical parametric mapping,” J. Biomed. Opt. 12(6), 064010 (2007).
[Crossref] [PubMed]

Cahill, L.

J. M. Andreano and L. Cahill, “Sex influences on the neurobiology of learning and memory,” Learn. Mem. 16(4), 248–266 (2009).
[Crossref] [PubMed]

Carew, J. D.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

Chen, C.-M.

C.-C. Chuang, C.-M. Chen, Y.-S. Hsieh, T.-C. Liu, and C.-W. Sun, “Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data,” J. Biophotonics 6(3), 267–274 (2013).
[Crossref] [PubMed]

Chuang, C.-C.

C.-C. Chuang, C.-M. Chen, Y.-S. Hsieh, T.-C. Liu, and C.-W. Sun, “Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data,” J. Biophotonics 6(3), 267–274 (2013).
[Crossref] [PubMed]

Coates, U.

W. Koch, S. Teipel, S. Mueller, K. Buerger, A. L. W. Bokde, H. Hampel, U. Coates, M. Reiser, and T. Meindl, “Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?” Neuroimage 51(1), 280–287 (2010).
[Crossref] [PubMed]

Cohen, A. L.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

Constable, R. T.

R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp. 16(3), 183–189 (2002).
[Crossref] [PubMed]

Cordes, D.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

Coyle, S. M.

S. M. Coyle, T. E. Ward, and C. M. Markham, “Brain-computer interface using a simplified functional near-infrared spectroscopy system,” J. Neural Eng. 4(3), 219–226 (2007).
[Crossref] [PubMed]

Culver, J. P.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

Dan, H.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage 21(1), 99–111 (2004).
[Crossref] [PubMed]

Dan, I.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage 21(1), 99–111 (2004).
[Crossref] [PubMed]

Darboe, M. K.

S. Lloyd-Fox, M. Papademetriou, M. K. Darboe, N. L. Everdell, R. Wegmuller, A. M. Prentice, S. E. Moore, and C. E. Elwell, “Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa,” Sci. Rep. 4, 4740 (2014).
[Crossref] [PubMed]

Deisenhammer, E. A.

E. M. Weiss, J. D. Ragland, C. M. Brensinger, W. B. Bilker, E. A. Deisenhammer, and M. Delazer, “Sex differences in clustering and switching in verbal fluency tasks,” J. Int. Neuropsychol. Soc. 12(4), 502–509 (2006).
[Crossref] [PubMed]

Delazer, M.

E. M. Weiss, J. D. Ragland, C. M. Brensinger, W. B. Bilker, E. A. Deisenhammer, and M. Delazer, “Sex differences in clustering and switching in verbal fluency tasks,” J. Int. Neuropsychol. Soc. 12(4), 502–509 (2006).
[Crossref] [PubMed]

Delpy, D. T.

P. H. Koh, D. E. Glaser, G. Flandin, S. Kiebel, B. Butterworth, A. Maki, D. T. Delpy, and C. E. Elwell, “Functional optical signal analysis: a software tool for near-infrared spectroscopy data processing incorporating statistical parametric mapping,” J. Biomed. Opt. 12(6), 064010 (2007).
[Crossref] [PubMed]

Diamond, J. B.

R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” Neuroimage 31(4), 1536–1548 (2006).
[Crossref] [PubMed]

Dodrill, C.

N. F. Watson, C. Dodrill, D. Farrell, M. D. Holmes, and J. W. Miller, “Determination of language dominance with near-infrared spectroscopy: comparison with the intracarotid amobarbital procedure,” Seizure 13(6), 399–402 (2004).
[Crossref] [PubMed]

Dong, Z. Y.

X. W. Song, Z. Y. Dong, X. Y. Long, S. F. Li, X. N. Zuo, C. Z. Zhu, Y. He, C. G. Yan, and Y. F. Zang, “REST: A Toolkit for resting-state functional magnetic resonance imaging data processing,” PLoS ONE 6(9), e25031 (2011).
[Crossref] [PubMed]

Duan, L.

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

Eke, A.

L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol. 51(5), N91–N98 (2006).
[Crossref] [PubMed]

Elwell, C. E.

S. Lloyd-Fox, M. Papademetriou, M. K. Darboe, N. L. Everdell, R. Wegmuller, A. M. Prentice, S. E. Moore, and C. E. Elwell, “Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa,” Sci. Rep. 4, 4740 (2014).
[Crossref] [PubMed]

P. H. Koh, D. E. Glaser, G. Flandin, S. Kiebel, B. Butterworth, A. Maki, D. T. Delpy, and C. E. Elwell, “Functional optical signal analysis: a software tool for near-infrared spectroscopy data processing incorporating statistical parametric mapping,” J. Biomed. Opt. 12(6), 064010 (2007).
[Crossref] [PubMed]

Evans, A. C.

G. Gong, Y. He, and A. C. Evans, “Brain connectivity: Gender makes a difference,” Neuroscientist 17(5), 575–591 (2011).
[Crossref] [PubMed]

Everdell, N. L.

S. Lloyd-Fox, M. Papademetriou, M. K. Darboe, N. L. Everdell, R. Wegmuller, A. M. Prentice, S. E. Moore, and C. E. Elwell, “Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa,” Sci. Rep. 4, 4740 (2014).
[Crossref] [PubMed]

Farrell, D.

N. F. Watson, C. Dodrill, D. Farrell, M. D. Holmes, and J. W. Miller, “Determination of language dominance with near-infrared spectroscopy: comparison with the intracarotid amobarbital procedure,” Seizure 13(6), 399–402 (2004).
[Crossref] [PubMed]

Fingelkurts, A. A.

A. A. Fingelkurts, A. A. Fingelkurts, and S. Kähkönen, “Functional connectivity in the brain-is it an elusive concept?” Neurosci. Biobehav. Rev. 28(8), 827–836 (2005).
[Crossref] [PubMed]

A. A. Fingelkurts, A. A. Fingelkurts, and S. Kähkönen, “Functional connectivity in the brain-is it an elusive concept?” Neurosci. Biobehav. Rev. 28(8), 827–836 (2005).
[Crossref] [PubMed]

Flandin, G.

P. H. Koh, D. E. Glaser, G. Flandin, S. Kiebel, B. Butterworth, A. Maki, D. T. Delpy, and C. E. Elwell, “Functional optical signal analysis: a software tool for near-infrared spectroscopy data processing incorporating statistical parametric mapping,” J. Biomed. Opt. 12(6), 064010 (2007).
[Crossref] [PubMed]

Fox, M. D.

M. D. Fox and M. Greicius, “Clinical applications of resting state functional connectivity,” Front Syst. Neurosci. 4, 19 (2010).
[PubMed]

Franceschini, M. A.

Fransson, P.

P. Fransson, B. Skiöld, S. Horsch, A. Nordell, M. Blennow, H. Lagercrantz, and U. Åden, “Resting-state networks in the infant brain,” Proc. Natl. Acad. Sci. U.S.A. 104(39), 15531–15536 (2007).
[Crossref] [PubMed]

Frederick, B.

Y. Tong, L. M. Hocke, S. C. Licata, and B. Frederick, “Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals,” J. Biomed. Opt. 17(10), 106004 (2012).
[Crossref] [PubMed]

Friston, K. J.

K. J. Friston, “Functional and effective connectivity in neuroimaging: A synthesis,” Hum. Brain Mapp. 2(1-2), 56–78 (1994).
[Crossref]

Glaser, D. E.

P. H. Koh, D. E. Glaser, G. Flandin, S. Kiebel, B. Butterworth, A. Maki, D. T. Delpy, and C. E. Elwell, “Functional optical signal analysis: a software tool for near-infrared spectroscopy data processing incorporating statistical parametric mapping,” J. Biomed. Opt. 12(6), 064010 (2007).
[Crossref] [PubMed]

Glerean, E.

E. Glerean, J. Salmi, J. M. Lahnakoski, I. P. Jääskeläinen, and M. Sams, “Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity,” Brain Connect. 2(2), 91–101 (2012).
[Crossref] [PubMed]

Gomi, Y.

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: A longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[Crossref] [PubMed]

Gong, G.

G. Gong, Y. He, and A. C. Evans, “Brain connectivity: Gender makes a difference,” Neuroscientist 17(5), 575–591 (2011).
[Crossref] [PubMed]

Gong, Q. Y.

H. Yang, X. Y. Long, Y. Yang, H. Yan, C. Z. Zhu, X. P. Zhou, Y. F. Zang, and Q. Y. Gong, “Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI,” Neuroimage 36(1), 144–152 (2007).
[Crossref] [PubMed]

Greicius, M.

M. D. Fox and M. Greicius, “Clinical applications of resting state functional connectivity,” Front Syst. Neurosci. 4, 19 (2010).
[PubMed]

Hampel, H.

W. Koch, S. Teipel, S. Mueller, K. Buerger, A. L. W. Bokde, H. Hampel, U. Coates, M. Reiser, and T. Meindl, “Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?” Neuroimage 51(1), 280–287 (2010).
[Crossref] [PubMed]

Haughton, V. M.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

He, Y.

H. Niu and Y. He, “Resting-State Functional Brain Connectivity: Lessons from Functional Near-Infrared Spectroscopy,” Neuroscientist 20(2), 173–188 (2014).
[Crossref] [PubMed]

H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS ONE 7(9), e45771 (2012).
[Crossref] [PubMed]

L. Tian, J. Wang, C. Yan, and Y. He, “Hemisphere- and gender-related differences in small-world brain networks: A resting-state functional MRI study,” Neuroimage 54(1), 191–202 (2011).
[Crossref] [PubMed]

X. W. Song, Z. Y. Dong, X. Y. Long, S. F. Li, X. N. Zuo, C. Z. Zhu, Y. He, C. G. Yan, and Y. F. Zang, “REST: A Toolkit for resting-state functional magnetic resonance imaging data processing,” PLoS ONE 6(9), e25031 (2011).
[Crossref] [PubMed]

G. Gong, Y. He, and A. C. Evans, “Brain connectivity: Gender makes a difference,” Neuroscientist 17(5), 575–591 (2011).
[Crossref] [PubMed]

Herman, P.

L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol. 51(5), N91–N98 (2006).
[Crossref] [PubMed]

Hiwatari, M.

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: A longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[Crossref] [PubMed]

Hocke, L. M.

Y. Tong, L. M. Hocke, S. C. Licata, and B. Frederick, “Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals,” J. Biomed. Opt. 17(10), 106004 (2012).
[Crossref] [PubMed]

Holmes, M. D.

N. F. Watson, C. Dodrill, D. Farrell, M. D. Holmes, and J. W. Miller, “Determination of language dominance with near-infrared spectroscopy: comparison with the intracarotid amobarbital procedure,” Seizure 13(6), 399–402 (2004).
[Crossref] [PubMed]

Homae, F.

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage 56(1), 252–257 (2011).
[Crossref] [PubMed]

Horsch, S.

P. Fransson, B. Skiöld, S. Horsch, A. Nordell, M. Blennow, H. Lagercrantz, and U. Åden, “Resting-state networks in the infant brain,” Proc. Natl. Acad. Sci. U.S.A. 104(39), 15531–15536 (2007).
[Crossref] [PubMed]

Horwitz, B.

B. Horwitz, “The elusive concept of brain connectivity,” Neuroimage 19(2), 466–470 (2003).
[Crossref] [PubMed]

Hoshi, Y.

Y. Hoshi, “Functional near-infrared spectroscopy: current status and future prospects,” J. Biomed. Opt. 12(6), 062106 (2007).
[Crossref] [PubMed]

Y. Hoshi and M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol. 75(4), 1842–1846 (1993).
[PubMed]

Hsieh, Y.-S.

C.-C. Chuang, C.-M. Chen, Y.-S. Hsieh, T.-C. Liu, and C.-W. Sun, “Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data,” J. Biophotonics 6(3), 267–274 (2013).
[Crossref] [PubMed]

Hulshoff Pol, H. E.

M. P. van den Heuvel and H. E. Hulshoff Pol, “Exploring the brain network: A review on resting-state fMRI functional connectivity,” Eur. Neuropsychopharmacol. 20(8), 519–534 (2010).
[Crossref] [PubMed]

Imai, I.

N. Shimoda, K. Takeda, I. Imai, J. Kaneko, and H. Kato, “Cerebral laterality differences in handedness: A mental rotation study with NIRS,” Neurosci. Lett. 430(1), 43–47 (2008).
[Crossref] [PubMed]

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: A longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[Crossref] [PubMed]

Isobe, S.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage 21(1), 99–111 (2004).
[Crossref] [PubMed]

Izzetoglu, K.

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[Crossref] [PubMed]

Izzetoglu, M.

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[Crossref] [PubMed]

Jääskeläinen, I. P.

E. Glerean, J. Salmi, J. M. Lahnakoski, I. P. Jääskeläinen, and M. Sams, “Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity,” Brain Connect. 2(2), 91–101 (2012).
[Crossref] [PubMed]

Jaušovec, K.

N. Jaušovec and K. Jaušovec, “Resting brain activity: Differences between genders,” Neuropsychologia 48(13), 3918–3925 (2010).
[Crossref] [PubMed]

Jaušovec, N.

N. Jaušovec and K. Jaušovec, “Resting brain activity: Differences between genders,” Neuropsychologia 48(13), 3918–3925 (2010).
[Crossref] [PubMed]

Kähkönen, S.

A. A. Fingelkurts, A. A. Fingelkurts, and S. Kähkönen, “Functional connectivity in the brain-is it an elusive concept?” Neurosci. Biobehav. Rev. 28(8), 827–836 (2005).
[Crossref] [PubMed]

Kaneko, J.

N. Shimoda, K. Takeda, I. Imai, J. Kaneko, and H. Kato, “Cerebral laterality differences in handedness: A mental rotation study with NIRS,” Neurosci. Lett. 430(1), 43–47 (2008).
[Crossref] [PubMed]

Kato, H.

N. Shimoda, K. Takeda, I. Imai, J. Kaneko, and H. Kato, “Cerebral laterality differences in handedness: A mental rotation study with NIRS,” Neurosci. Lett. 430(1), 43–47 (2008).
[Crossref] [PubMed]

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: A longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[Crossref] [PubMed]

Kennan, R. P.

R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp. 16(3), 183–189 (2002).
[Crossref] [PubMed]

Kiebel, S.

P. H. Koh, D. E. Glaser, G. Flandin, S. Kiebel, B. Butterworth, A. Maki, D. T. Delpy, and C. E. Elwell, “Functional optical signal analysis: a software tool for near-infrared spectroscopy data processing incorporating statistical parametric mapping,” J. Biomed. Opt. 12(6), 064010 (2007).
[Crossref] [PubMed]

Kim, D.

R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp. 16(3), 183–189 (2002).
[Crossref] [PubMed]

Koch, W.

W. Koch, S. Teipel, S. Mueller, K. Buerger, A. L. W. Bokde, H. Hampel, U. Coates, M. Reiser, and T. Meindl, “Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?” Neuroimage 51(1), 280–287 (2010).
[Crossref] [PubMed]

Kocsis, L.

L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol. 51(5), N91–N98 (2006).
[Crossref] [PubMed]

Koh, P. H.

P. H. Koh, D. E. Glaser, G. Flandin, S. Kiebel, B. Butterworth, A. Maki, D. T. Delpy, and C. E. Elwell, “Functional optical signal analysis: a software tool for near-infrared spectroscopy data processing incorporating statistical parametric mapping,” J. Biomed. Opt. 12(6), 064010 (2007).
[Crossref] [PubMed]

Kohno, S.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage 21(1), 99–111 (2004).
[Crossref] [PubMed]

Kohyama, K.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage 21(1), 99–111 (2004).
[Crossref] [PubMed]

Koizumi, H.

R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp. 16(3), 183–189 (2002).
[Crossref] [PubMed]

Lagercrantz, H.

P. Fransson, B. Skiöld, S. Horsch, A. Nordell, M. Blennow, H. Lagercrantz, and U. Åden, “Resting-state networks in the infant brain,” Proc. Natl. Acad. Sci. U.S.A. 104(39), 15531–15536 (2007).
[Crossref] [PubMed]

Lahnakoski, J. M.

E. Glerean, J. Salmi, J. M. Lahnakoski, I. P. Jääskeläinen, and M. Sams, “Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity,” Brain Connect. 2(2), 91–101 (2012).
[Crossref] [PubMed]

Li, S. F.

X. W. Song, Z. Y. Dong, X. Y. Long, S. F. Li, X. N. Zuo, C. Z. Zhu, Y. He, C. G. Yan, and Y. F. Zang, “REST: A Toolkit for resting-state functional magnetic resonance imaging data processing,” PLoS ONE 6(9), e25031 (2011).
[Crossref] [PubMed]

Licata, S. C.

Y. Tong, L. M. Hocke, S. C. Licata, and B. Frederick, “Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals,” J. Biomed. Opt. 17(10), 106004 (2012).
[Crossref] [PubMed]

Liu, H.

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

Liu, T.-C.

C.-C. Chuang, C.-M. Chen, Y.-S. Hsieh, T.-C. Liu, and C.-W. Sun, “Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data,” J. Biophotonics 6(3), 267–274 (2013).
[Crossref] [PubMed]

Lloyd-Fox, S.

S. Lloyd-Fox, M. Papademetriou, M. K. Darboe, N. L. Everdell, R. Wegmuller, A. M. Prentice, S. E. Moore, and C. E. Elwell, “Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa,” Sci. Rep. 4, 4740 (2014).
[Crossref] [PubMed]

Long, X. Y.

X. W. Song, Z. Y. Dong, X. Y. Long, S. F. Li, X. N. Zuo, C. Z. Zhu, Y. He, C. G. Yan, and Y. F. Zang, “REST: A Toolkit for resting-state functional magnetic resonance imaging data processing,” PLoS ONE 6(9), e25031 (2011).
[Crossref] [PubMed]

H. Yang, X. Y. Long, Y. Yang, H. Yan, C. Z. Zhu, X. P. Zhou, Y. F. Zang, and Q. Y. Gong, “Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI,” Neuroimage 36(1), 144–152 (2007).
[Crossref] [PubMed]

Lu, C. M.

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Lund, T. E.

T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: Does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
[Crossref] [PubMed]

Luo, W. L.

T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: Does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
[Crossref] [PubMed]

Ma, S. Y.

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

Madsen, K. H.

T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: Does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
[Crossref] [PubMed]

Maki, A.

P. H. Koh, D. E. Glaser, G. Flandin, S. Kiebel, B. Butterworth, A. Maki, D. T. Delpy, and C. E. Elwell, “Functional optical signal analysis: a software tool for near-infrared spectroscopy data processing incorporating statistical parametric mapping,” J. Biomed. Opt. 12(6), 064010 (2007).
[Crossref] [PubMed]

R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp. 16(3), 183–189 (2002).
[Crossref] [PubMed]

Markham, C. M.

S. M. Coyle, T. E. Ward, and C. M. Markham, “Brain-computer interface using a simplified functional near-infrared spectroscopy system,” J. Neural Eng. 4(3), 219–226 (2007).
[Crossref] [PubMed]

Medvedev, A. V.

A. V. Medvedev, “Does the resting state connectivity have hemispheric asymmetry? A near-infrared spectroscopy study,” Neuroimage 85(Pt 1), 400–407 (2014).
[Crossref] [PubMed]

Meindl, T.

W. Koch, S. Teipel, S. Mueller, K. Buerger, A. L. W. Bokde, H. Hampel, U. Coates, M. Reiser, and T. Meindl, “Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?” Neuroimage 51(1), 280–287 (2010).
[Crossref] [PubMed]

Mesquita, R. C.

Meyerand, M. E.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

Miller, J. W.

N. F. Watson, C. Dodrill, D. Farrell, M. D. Holmes, and J. W. Miller, “Determination of language dominance with near-infrared spectroscopy: comparison with the intracarotid amobarbital procedure,” Seizure 13(6), 399–402 (2004).
[Crossref] [PubMed]

Minati, L.

C. Rosazza and L. Minati, “Resting-state brain networks: literature review and clinical applications,” Neurol. Sci. 32(5), 773–785 (2011).
[Crossref] [PubMed]

Moore, S. E.

S. Lloyd-Fox, M. Papademetriou, M. K. Darboe, N. L. Everdell, R. Wegmuller, A. M. Prentice, S. E. Moore, and C. E. Elwell, “Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa,” Sci. Rep. 4, 4740 (2014).
[Crossref] [PubMed]

Moritz, C. H.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

Mueller, S.

W. Koch, S. Teipel, S. Mueller, K. Buerger, A. L. W. Bokde, H. Hampel, U. Coates, M. Reiser, and T. Meindl, “Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?” Neuroimage 51(1), 280–287 (2010).
[Crossref] [PubMed]

Nichols, T. E.

T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: Does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
[Crossref] [PubMed]

Niu, H.

H. Niu and Y. He, “Resting-State Functional Brain Connectivity: Lessons from Functional Near-Infrared Spectroscopy,” Neuroscientist 20(2), 173–188 (2014).
[Crossref] [PubMed]

H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS ONE 7(9), e45771 (2012).
[Crossref] [PubMed]

Nordell, A.

P. Fransson, B. Skiöld, S. Horsch, A. Nordell, M. Blennow, H. Lagercrantz, and U. Åden, “Resting-state networks in the infant brain,” Proc. Natl. Acad. Sci. U.S.A. 104(39), 15531–15536 (2007).
[Crossref] [PubMed]

Oda, I.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage 21(1), 99–111 (2004).
[Crossref] [PubMed]

Okamoto, M.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage 21(1), 99–111 (2004).
[Crossref] [PubMed]

Onaral, B.

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[Crossref] [PubMed]

Papademetriou, M.

S. Lloyd-Fox, M. Papademetriou, M. K. Darboe, N. L. Everdell, R. Wegmuller, A. M. Prentice, S. E. Moore, and C. E. Elwell, “Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa,” Sci. Rep. 4, 4740 (2014).
[Crossref] [PubMed]

Peng, D. L.

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Petersen, S. E.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

Pourrezaei, K.

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[Crossref] [PubMed]

Prentice, A. M.

S. Lloyd-Fox, M. Papademetriou, M. K. Darboe, N. L. Everdell, R. Wegmuller, A. M. Prentice, S. E. Moore, and C. E. Elwell, “Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa,” Sci. Rep. 4, 4740 (2014).
[Crossref] [PubMed]

Quigley, M. A.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

Ragland, J. D.

E. M. Weiss, J. D. Ragland, C. M. Brensinger, W. B. Bilker, E. A. Deisenhammer, and M. Delazer, “Sex differences in clustering and switching in verbal fluency tasks,” J. Int. Neuropsychol. Soc. 12(4), 502–509 (2006).
[Crossref] [PubMed]

Raichle, M. E.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

Reiser, M.

W. Koch, S. Teipel, S. Mueller, K. Buerger, A. L. W. Bokde, H. Hampel, U. Coates, M. Reiser, and T. Meindl, “Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?” Neuroimage 51(1), 280–287 (2010).
[Crossref] [PubMed]

Rosazza, C.

C. Rosazza and L. Minati, “Resting-state brain networks: literature review and clinical applications,” Neurol. Sci. 32(5), 773–785 (2011).
[Crossref] [PubMed]

Sadato, N.

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

Sakamoto, K.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage 21(1), 99–111 (2004).
[Crossref] [PubMed]

Salmi, J.

E. Glerean, J. Salmi, J. M. Lahnakoski, I. P. Jääskeläinen, and M. Sams, “Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity,” Brain Connect. 2(2), 91–101 (2012).
[Crossref] [PubMed]

Sams, M.

E. Glerean, J. Salmi, J. M. Lahnakoski, I. P. Jääskeläinen, and M. Sams, “Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity,” Brain Connect. 2(2), 91–101 (2012).
[Crossref] [PubMed]

Sasai, S.

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage 56(1), 252–257 (2011).
[Crossref] [PubMed]

Sasaki, A. T.

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

Schlaggar, B. L.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

Shimizu, K.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage 21(1), 99–111 (2004).
[Crossref] [PubMed]

Shimoda, N.

N. Shimoda, K. Takeda, I. Imai, J. Kaneko, and H. Kato, “Cerebral laterality differences in handedness: A mental rotation study with NIRS,” Neurosci. Lett. 430(1), 43–47 (2008).
[Crossref] [PubMed]

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: A longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[Crossref] [PubMed]

Shu, N.

H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS ONE 7(9), e45771 (2012).
[Crossref] [PubMed]

Sidaros, K.

T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: Does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
[Crossref] [PubMed]

Skiöld, B.

P. Fransson, B. Skiöld, S. Horsch, A. Nordell, M. Blennow, H. Lagercrantz, and U. Åden, “Resting-state networks in the infant brain,” Proc. Natl. Acad. Sci. U.S.A. 104(39), 15531–15536 (2007).
[Crossref] [PubMed]

Smith, M. A.

R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” Neuroimage 31(4), 1536–1548 (2006).
[Crossref] [PubMed]

Snyder, A. Z.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

Song, X. W.

X. W. Song, Z. Y. Dong, X. Y. Long, S. F. Li, X. N. Zuo, C. Z. Zhu, Y. He, C. G. Yan, and Y. F. Zang, “REST: A Toolkit for resting-state functional magnetic resonance imaging data processing,” PLoS ONE 6(9), e25031 (2011).
[Crossref] [PubMed]

Sporns, O.

E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nat. Rev. Neurosci. 10(3), 186–198 (2009).
[Crossref] [PubMed]

Sun, C.-W.

C.-C. Chuang, C.-M. Chen, Y.-S. Hsieh, T.-C. Liu, and C.-W. Sun, “Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data,” J. Biophotonics 6(3), 267–274 (2013).
[Crossref] [PubMed]

Suzuki, T.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage 21(1), 99–111 (2004).
[Crossref] [PubMed]

Taga, G.

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage 56(1), 252–257 (2011).
[Crossref] [PubMed]

Takeda, K.

N. Shimoda, K. Takeda, I. Imai, J. Kaneko, and H. Kato, “Cerebral laterality differences in handedness: A mental rotation study with NIRS,” Neurosci. Lett. 430(1), 43–47 (2008).
[Crossref] [PubMed]

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: A longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[Crossref] [PubMed]

Takeo, K.

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage 21(1), 99–111 (2004).
[Crossref] [PubMed]

Tamura, M.

Y. Hoshi and M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol. 75(4), 1842–1846 (1993).
[PubMed]

Tanabe, H. C.

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

Teipel, S.

W. Koch, S. Teipel, S. Mueller, K. Buerger, A. L. W. Bokde, H. Hampel, U. Coates, M. Reiser, and T. Meindl, “Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?” Neuroimage 51(1), 280–287 (2010).
[Crossref] [PubMed]

Tian, L.

L. Tian, J. Wang, C. Yan, and Y. He, “Hemisphere- and gender-related differences in small-world brain networks: A resting-state functional MRI study,” Neuroimage 54(1), 191–202 (2011).
[Crossref] [PubMed]

Tomasi, D.

D. Tomasi and N. D. Volkow, “Laterality patterns of brain functional connectivity: gender effects,” Cereb. Cortex 22(6), 1455–1462 (2012).
[Crossref] [PubMed]

D. Tomasi and N. D. Volkow, “Gender differences in brain functional connectivity density,” Hum. Brain Mapp. 33(4), 849–860 (2012).
[Crossref] [PubMed]

Tong, Y.

Y. Tong, L. M. Hocke, S. C. Licata, and B. Frederick, “Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals,” J. Biomed. Opt. 17(10), 106004 (2012).
[Crossref] [PubMed]

Turski, P. A.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

van den Heuvel, M. P.

M. P. van den Heuvel and H. E. Hulshoff Pol, “Exploring the brain network: A review on resting-state fMRI functional connectivity,” Eur. Neuropsychopharmacol. 20(8), 519–534 (2010).
[Crossref] [PubMed]

Volkow, N. D.

D. Tomasi and N. D. Volkow, “Gender differences in brain functional connectivity density,” Hum. Brain Mapp. 33(4), 849–860 (2012).
[Crossref] [PubMed]

D. Tomasi and N. D. Volkow, “Laterality patterns of brain functional connectivity: gender effects,” Cereb. Cortex 22(6), 1455–1462 (2012).
[Crossref] [PubMed]

Wallentin, M.

M. Wallentin, “Putative sex differences in verbal abilities and language cortex: A critical review,” Brain Lang. 108(3), 175–183 (2009).
[Crossref] [PubMed]

Wang, J.

H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS ONE 7(9), e45771 (2012).
[Crossref] [PubMed]

L. Tian, J. Wang, C. Yan, and Y. He, “Hemisphere- and gender-related differences in small-world brain networks: A resting-state functional MRI study,” Neuroimage 54(1), 191–202 (2011).
[Crossref] [PubMed]

Ward, T. E.

S. M. Coyle, T. E. Ward, and C. M. Markham, “Brain-computer interface using a simplified functional near-infrared spectroscopy system,” J. Neural Eng. 4(3), 219–226 (2007).
[Crossref] [PubMed]

Watanabe, H.

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage 56(1), 252–257 (2011).
[Crossref] [PubMed]

Watson, N. F.

N. F. Watson, C. Dodrill, D. Farrell, M. D. Holmes, and J. W. Miller, “Determination of language dominance with near-infrared spectroscopy: comparison with the intracarotid amobarbital procedure,” Seizure 13(6), 399–402 (2004).
[Crossref] [PubMed]

Wegmuller, R.

S. Lloyd-Fox, M. Papademetriou, M. K. Darboe, N. L. Everdell, R. Wegmuller, A. M. Prentice, S. E. Moore, and C. E. Elwell, “Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa,” Sci. Rep. 4, 4740 (2014).
[Crossref] [PubMed]

Weiss, E. M.

E. M. Weiss, J. D. Ragland, C. M. Brensinger, W. B. Bilker, E. A. Deisenhammer, and M. Delazer, “Sex differences in clustering and switching in verbal fluency tasks,” J. Int. Neuropsychol. Soc. 12(4), 502–509 (2006).
[Crossref] [PubMed]

White, B. R.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

Yan, C.

L. Tian, J. Wang, C. Yan, and Y. He, “Hemisphere- and gender-related differences in small-world brain networks: A resting-state functional MRI study,” Neuroimage 54(1), 191–202 (2011).
[Crossref] [PubMed]

Yan, C. G.

X. W. Song, Z. Y. Dong, X. Y. Long, S. F. Li, X. N. Zuo, C. Z. Zhu, Y. He, C. G. Yan, and Y. F. Zang, “REST: A Toolkit for resting-state functional magnetic resonance imaging data processing,” PLoS ONE 6(9), e25031 (2011).
[Crossref] [PubMed]

Yan, H.

H. Yang, X. Y. Long, Y. Yang, H. Yan, C. Z. Zhu, X. P. Zhou, Y. F. Zang, and Q. Y. Gong, “Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI,” Neuroimage 36(1), 144–152 (2007).
[Crossref] [PubMed]

Yang, H.

H. Yang, X. Y. Long, Y. Yang, H. Yan, C. Z. Zhu, X. P. Zhou, Y. F. Zang, and Q. Y. Gong, “Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI,” Neuroimage 36(1), 144–152 (2007).
[Crossref] [PubMed]

Yang, Y.

H. Yang, X. Y. Long, Y. Yang, H. Yan, C. Z. Zhu, X. P. Zhou, Y. F. Zang, and Q. Y. Gong, “Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI,” Neuroimage 36(1), 144–152 (2007).
[Crossref] [PubMed]

Zaidi, Z. F.

Z. F. Zaidi, “Gender differences in human brain: A review,” Open Anat. J. 2, 37–55 (2010).
[Crossref]

Zang, Y. F.

X. W. Song, Z. Y. Dong, X. Y. Long, S. F. Li, X. N. Zuo, C. Z. Zhu, Y. He, C. G. Yan, and Y. F. Zang, “REST: A Toolkit for resting-state functional magnetic resonance imaging data processing,” PLoS ONE 6(9), e25031 (2011).
[Crossref] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

H. Yang, X. Y. Long, Y. Yang, H. Yan, C. Z. Zhu, X. P. Zhou, Y. F. Zang, and Q. Y. Gong, “Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI,” Neuroimage 36(1), 144–152 (2007).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

Zhang, Y. J.

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Zhao, T.

H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS ONE 7(9), e45771 (2012).
[Crossref] [PubMed]

Zhou, X. P.

H. Yang, X. Y. Long, Y. Yang, H. Yan, C. Z. Zhu, X. P. Zhou, Y. F. Zang, and Q. Y. Gong, “Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI,” Neuroimage 36(1), 144–152 (2007).
[Crossref] [PubMed]

Zhu, C. Z.

X. W. Song, Z. Y. Dong, X. Y. Long, S. F. Li, X. N. Zuo, C. Z. Zhu, Y. He, C. G. Yan, and Y. F. Zang, “REST: A Toolkit for resting-state functional magnetic resonance imaging data processing,” PLoS ONE 6(9), e25031 (2011).
[Crossref] [PubMed]

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

H. Yang, X. Y. Long, Y. Yang, H. Yan, C. Z. Zhu, X. P. Zhou, Y. F. Zang, and Q. Y. Gong, “Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI,” Neuroimage 36(1), 144–152 (2007).
[Crossref] [PubMed]

Zuo, X. N.

X. W. Song, Z. Y. Dong, X. Y. Long, S. F. Li, X. N. Zuo, C. Z. Zhu, Y. He, C. G. Yan, and Y. F. Zang, “REST: A Toolkit for resting-state functional magnetic resonance imaging data processing,” PLoS ONE 6(9), e25031 (2011).
[Crossref] [PubMed]

AJNR Am. J. Neuroradiol. (1)

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

Biomed. Opt. Express (1)

Brain Connect. (1)

E. Glerean, J. Salmi, J. M. Lahnakoski, I. P. Jääskeläinen, and M. Sams, “Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity,” Brain Connect. 2(2), 91–101 (2012).
[Crossref] [PubMed]

Brain Lang. (1)

M. Wallentin, “Putative sex differences in verbal abilities and language cortex: A critical review,” Brain Lang. 108(3), 175–183 (2009).
[Crossref] [PubMed]

Cereb. Cortex (1)

D. Tomasi and N. D. Volkow, “Laterality patterns of brain functional connectivity: gender effects,” Cereb. Cortex 22(6), 1455–1462 (2012).
[Crossref] [PubMed]

Eur. Neuropsychopharmacol. (1)

M. P. van den Heuvel and H. E. Hulshoff Pol, “Exploring the brain network: A review on resting-state fMRI functional connectivity,” Eur. Neuropsychopharmacol. 20(8), 519–534 (2010).
[Crossref] [PubMed]

Front Syst. Neurosci. (1)

M. D. Fox and M. Greicius, “Clinical applications of resting state functional connectivity,” Front Syst. Neurosci. 4, 19 (2010).
[PubMed]

Hum. Brain Mapp. (3)

D. Tomasi and N. D. Volkow, “Gender differences in brain functional connectivity density,” Hum. Brain Mapp. 33(4), 849–860 (2012).
[Crossref] [PubMed]

R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp. 16(3), 183–189 (2002).
[Crossref] [PubMed]

K. J. Friston, “Functional and effective connectivity in neuroimaging: A synthesis,” Hum. Brain Mapp. 2(1-2), 56–78 (1994).
[Crossref]

IEEE Eng. Med. Biol. Mag. (1)

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

Y. Hoshi and M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol. 75(4), 1842–1846 (1993).
[PubMed]

J. Biomed. Opt. (4)

P. H. Koh, D. E. Glaser, G. Flandin, S. Kiebel, B. Butterworth, A. Maki, D. T. Delpy, and C. E. Elwell, “Functional optical signal analysis: a software tool for near-infrared spectroscopy data processing incorporating statistical parametric mapping,” J. Biomed. Opt. 12(6), 064010 (2007).
[Crossref] [PubMed]

Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt. 15(4), 047003 (2010).
[Crossref] [PubMed]

Y. Tong, L. M. Hocke, S. C. Licata, and B. Frederick, “Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals,” J. Biomed. Opt. 17(10), 106004 (2012).
[Crossref] [PubMed]

Y. Hoshi, “Functional near-infrared spectroscopy: current status and future prospects,” J. Biomed. Opt. 12(6), 062106 (2007).
[Crossref] [PubMed]

J. Biophotonics (1)

C.-C. Chuang, C.-M. Chen, Y.-S. Hsieh, T.-C. Liu, and C.-W. Sun, “Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data,” J. Biophotonics 6(3), 267–274 (2013).
[Crossref] [PubMed]

J. Int. Neuropsychol. Soc. (1)

E. M. Weiss, J. D. Ragland, C. M. Brensinger, W. B. Bilker, E. A. Deisenhammer, and M. Delazer, “Sex differences in clustering and switching in verbal fluency tasks,” J. Int. Neuropsychol. Soc. 12(4), 502–509 (2006).
[Crossref] [PubMed]

J. Neural Eng. (1)

S. M. Coyle, T. E. Ward, and C. M. Markham, “Brain-computer interface using a simplified functional near-infrared spectroscopy system,” J. Neural Eng. 4(3), 219–226 (2007).
[Crossref] [PubMed]

J. Neurosci. Methods (1)

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Learn. Mem. (1)

J. M. Andreano and L. Cahill, “Sex influences on the neurobiology of learning and memory,” Learn. Mem. 16(4), 248–266 (2009).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nat. Rev. Neurosci. 10(3), 186–198 (2009).
[Crossref] [PubMed]

Neuroimage (13)

M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage 21(1), 99–111 (2004).
[Crossref] [PubMed]

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” Neuroimage 31(4), 1536–1548 (2006).
[Crossref] [PubMed]

T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: Does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
[Crossref] [PubMed]

S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage 56(1), 252–257 (2011).
[Crossref] [PubMed]

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

A. V. Medvedev, “Does the resting state connectivity have hemispheric asymmetry? A near-infrared spectroscopy study,” Neuroimage 85(Pt 1), 400–407 (2014).
[Crossref] [PubMed]

H. Yang, X. Y. Long, Y. Yang, H. Yan, C. Z. Zhu, X. P. Zhou, Y. F. Zang, and Q. Y. Gong, “Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI,” Neuroimage 36(1), 144–152 (2007).
[Crossref] [PubMed]

L. Tian, J. Wang, C. Yan, and Y. He, “Hemisphere- and gender-related differences in small-world brain networks: A resting-state functional MRI study,” Neuroimage 54(1), 191–202 (2011).
[Crossref] [PubMed]

B. Horwitz, “The elusive concept of brain connectivity,” Neuroimage 19(2), 466–470 (2003).
[Crossref] [PubMed]

W. Koch, S. Teipel, S. Mueller, K. Buerger, A. L. W. Bokde, H. Hampel, U. Coates, M. Reiser, and T. Meindl, “Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?” Neuroimage 51(1), 280–287 (2010).
[Crossref] [PubMed]

Neurol. Sci. (1)

C. Rosazza and L. Minati, “Resting-state brain networks: literature review and clinical applications,” Neurol. Sci. 32(5), 773–785 (2011).
[Crossref] [PubMed]

Neuropsychologia (1)

N. Jaušovec and K. Jaušovec, “Resting brain activity: Differences between genders,” Neuropsychologia 48(13), 3918–3925 (2010).
[Crossref] [PubMed]

Neurosci. Biobehav. Rev. (1)

A. A. Fingelkurts, A. A. Fingelkurts, and S. Kähkönen, “Functional connectivity in the brain-is it an elusive concept?” Neurosci. Biobehav. Rev. 28(8), 827–836 (2005).
[Crossref] [PubMed]

Neurosci. Lett. (1)

N. Shimoda, K. Takeda, I. Imai, J. Kaneko, and H. Kato, “Cerebral laterality differences in handedness: A mental rotation study with NIRS,” Neurosci. Lett. 430(1), 43–47 (2008).
[Crossref] [PubMed]

Neurosci. Res. (1)

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: A longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[Crossref] [PubMed]

Neuroscientist (2)

H. Niu and Y. He, “Resting-State Functional Brain Connectivity: Lessons from Functional Near-Infrared Spectroscopy,” Neuroscientist 20(2), 173–188 (2014).
[Crossref] [PubMed]

G. Gong, Y. He, and A. C. Evans, “Brain connectivity: Gender makes a difference,” Neuroscientist 17(5), 575–591 (2011).
[Crossref] [PubMed]

Open Anat. J. (1)

Z. F. Zaidi, “Gender differences in human brain: A review,” Open Anat. J. 2, 37–55 (2010).
[Crossref]

Opt. Photonics News (1)

G. Boas, “Noninvasive imaging of the brain,” Opt. Photonics News 15, 52–55 (2004).

Phys. Med. Biol. (1)

L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol. 51(5), N91–N98 (2006).
[Crossref] [PubMed]

PLoS ONE (2)

H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS ONE 7(9), e45771 (2012).
[Crossref] [PubMed]

X. W. Song, Z. Y. Dong, X. Y. Long, S. F. Li, X. N. Zuo, C. Z. Zhu, Y. He, C. G. Yan, and Y. F. Zang, “REST: A Toolkit for resting-state functional magnetic resonance imaging data processing,” PLoS ONE 6(9), e25031 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

P. Fransson, B. Skiöld, S. Horsch, A. Nordell, M. Blennow, H. Lagercrantz, and U. Åden, “Resting-state networks in the infant brain,” Proc. Natl. Acad. Sci. U.S.A. 104(39), 15531–15536 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Lloyd-Fox, M. Papademetriou, M. K. Darboe, N. L. Everdell, R. Wegmuller, A. M. Prentice, S. E. Moore, and C. E. Elwell, “Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa,” Sci. Rep. 4, 4740 (2014).
[Crossref] [PubMed]

Seizure (1)

N. F. Watson, C. Dodrill, D. Farrell, M. D. Holmes, and J. W. Miller, “Determination of language dominance with near-infrared spectroscopy: comparison with the intracarotid amobarbital procedure,” Seizure 13(6), 399–402 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The fOT channels localization. (Top left) the 3-D image of the optode position; (Bottom) The localizations of all 52 channels were positioned according to the international 10-20 system. Red and blue circles indicate near-infrared light emitter and detector positions, respectively. By using the international 10-20 system the detector 26 was positioned at the FZ marker point while the bottom row of sources 11, 13, 14 and 16 were placed on the T3–FP1–FP2–T4 line. Yellow diamonds indicate the measuring region of PFC.

Fig. 2
Fig. 2

The flowchart of resting-state fOT data analysis. (a) fOT channels localization above the PFC; (b) distribution of power spectrum within low-frequency band 0.01 to 0.08 Hz of ΔHbO2, ΔHb and ΔtHb for a single channel of one subject; (c) spectrogram from each channel of group-level statistics on averaging that was used for (d) significant difference analysis; (e) distribution of time series within low-frequency band 0.01 to 0.08 Hz of ΔHbO2, ΔHb and ΔtHb for a single channel of one subject that was used for correlation and lateralization analysis; (f) schematic diagram of group average correlation matrices for all channels; (g) schematic diagram of cortical lateralization analysis; (h) schematic diagram of functional connectivity in PFC; (i) schematic diagram of correlation coefficient between left vs. right PFC.

Fig. 3
Fig. 3

The correlation matrices derived from male and female groups. (a) and (d) are the correlation matrices of each pair channel of ΔHbO2; (b) and (e) are the correlation matrices of each pair channel of ΔHb; (c) and (f) are the correlation matrices of each pair channel of ΔtHb. Each figure shows a 52 × 52 square matrix, where the x and y axes correspond to the channels listed in optode geometry, and where each unit of matrix indicates the mean strength of the functional connectivity between each pair channel.

Fig. 4
Fig. 4

The distributions of correlation coefficient of male and female group of the same channel. (a), (b), and (c) are the distributions of correlation coefficient of ΔHbO2, ΔHb, and ΔtHb of male and female group of the same channel, respectively. The data were derived from correlation matrices. The red lines mean the result of linear regression. The dots mean the correlation coefficient of male and female group of the same channel.

Fig. 5
Fig. 5

Correlation analysis of hemodynamic response between left vs. right (Ch 3 vs. Ch 8, Ch4 vs. Ch7 et al.) bilateral PFC regions from male and female groups. (a), (c), and (e) are the correlation analysis of male bilateral PFC regions of ΔHbO2, ΔHb, and ΔtHb, respectively. (b), (d), and (f) are the correlation analysis of female bilateral PFC regions of ΔHbO2, ΔHb, and ΔtHb, respectively. The color bars indicate the mean concentration changes of hemoglobin include ΔHbO2, ΔHb and ΔtHb.

Fig. 6
Fig. 6

The functional connectivity pattern of left-side and right-side PFC in resting-state of (a) male group and (b) female group. The red dots represent the channels of each PFC region. The orange lines represent the functional connectivity (group-level correlation network) of left-side and right-side PFC region with correlation coefficient rXY larger than 0.6.

Fig. 7
Fig. 7

Cortical dominance channel of PFC region by computing LI of all left vs. right channel pairs in resting-state. (a) The result of cortical dominance of male group. (b) The result of cortical dominance of female group. The channels of blue diamond indicate the dominance region of leftward or rightward, and others indicate bilateral dominance.

Fig. 8
Fig. 8

The spectrogram of ΔtHb of each channel from (a) male and (b) female groups. Color bar indicates the intensity of frequency. The range of frequency 0.01 to 0.08 Hz was used to assess the significantly different channel of PFC between male and female groups. The channels of PFC regions are Ch. 3 to 8; Ch. 13 to 19; Ch. 23 to 30; Ch. 34 to 40 and Ch. 45 to 50 of frequency 0.01 to 0.08 Hz were highlighted on the bottom of figure.

Fig. 9
Fig. 9

The result of two-sample t-test from power spectrum of each channel of PFC between male and female groups. The Ch. 7, 8, 19, 29, 30, 38, and 39 marked with orange diamonds of left-side PFC and Ch. 13, 23, 34, and 45 marked with orange diamonds of right-side PFC are significantly different with p value < 0.001 between male and female groups.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r XY = i=1 n ( X i X ¯ )( Y i Y ¯ ) i=1 n ( X i X ¯ ) 2 ( Y i Y ¯ ) 2
LI= T L T R T L + T R

Metrics