Abstract

Salient features of a new non-ionizing bone diagnostics technique, truncated-correlation photothermal coherence tomography (TC-PCT), exhibiting optical-grade contrast and capable of resolving the trabecular network in three dimensions through the cortical region with and without a soft-tissue overlayer are presented. The absolute nature and early demineralization-detection capability of a marker called thermal wave occupation index, estimated using the proposed modality, have been established. Selective imaging of regions of a specific mineral density range has been demonstrated in a mouse femur. The method is maximum-permissible-exposure compatible. In a matrix of bone and soft-tissue a depth range of ~3.8 mm has been achieved, which can be increased through instrumental and modulation waveform optimization. Furthermore, photoacoustic microscopy, a comparable modality with TC-PCT, has been used to resolve the trabecular structure and for comparison with the photothermal tomography.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. C. Röntgen, “On a new kind of rays,” Science3(59), 227–231 (1896).
    [CrossRef] [PubMed]
  2. M. I. Pupin, “Röntgen rays,” Science3(59), 231–235 (1896).
    [CrossRef] [PubMed]
  3. W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol.51(13), R29–R43 (2006).
    [CrossRef] [PubMed]
  4. E. Seeram, Computed Tomography: Physical Principles, Clinical Applications, and Quality Control (Saunders/Elsevier, 2009).
  5. S. L. Bonnick, Bone Densitometry in Clinical Practice: Application and Interpretation (Humana Press, 2010).
  6. G. M. Blake and I. Fogelman, “Role of dual-energy X-ray absorptiometry in the diagnosis and treatment of osteoporosis,” J. Clin. Densitom.10(1), 102–110 (2007).
    [CrossRef] [PubMed]
  7. E. L. Ritman, “Current status of developments and applications of micro-CT,” Annu. Rev. Biomed. Eng.13(1), 531–552 (2011).
    [CrossRef] [PubMed]
  8. Z. C. Li, S. D. Jiang, J. Yan, L. S. Jiang, and L. Y. Dai, “Small-animal PET/CT assessment of bone microdamage in ovariectomized rats,” J. Nucl. Med.52(5), 769–775 (2011).
    [CrossRef] [PubMed]
  9. R. Linke, T. Kuwert, M. Uder, R. Forst, and W. Wuest, “Skeletal SPECT/CT of the peripheral extremities,” AJR Am. J. Roentgenol.194(4), W329–W335 (2010).
    [CrossRef] [PubMed]
  10. H. K. Genant, K. Engelke, and S. Prevrhal, “Advanced CT bone imaging in osteoporosis,” Rheumatology (Oxford)47(Suppl 4), iv9–iv16 (2008).
    [CrossRef] [PubMed]
  11. E. L. Kaijzel, T. J. A. Snoeks, J. T. Buijs, G. van der Pluijm, and C. W. G. M. Löwik, “Multimodal imaging and treatment of bone metastasis,” Clin. Exp. Metastasis26(4), 371–379 (2009).
    [CrossRef] [PubMed]
  12. E. R. C. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
    [CrossRef] [PubMed]
  13. L. Vico, P. Collet, A. Guignandon, M. H. Lafage-Proust, T. Thomas, M. Rehaillia, and C. Alexandre, “Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts,” Lancet355(9215), 1607–1611 (2000).
    [CrossRef] [PubMed]
  14. NASA HRP-47060, Evidence Book: Risk of Accelerated Osteoporosis (Lyndon B Johnson Space Center, 2008).
  15. S. Nayak, I. Olkin, H. Liu, M. Grabe, M. K. Gould, I. E. Allen, D. K. Owens, and D. M. Bravata, “Meta-analysis: Accuracy of quantitative ultrasound for identifying patients with osteoporosis,” Ann. Intern. Med.144(11), 832–841 (2006).
    [CrossRef] [PubMed]
  16. C. Djokoto, G. Tomlinson, S. Waldman, M. Grynpas, and A. M. Cheung, “Relationship among MRTA, DXA, and QUS,” J. Clin. Densitom.7(4), 448–456 (2004).
    [CrossRef] [PubMed]
  17. S. G. Roberts, T. M. Hutchinson, S. B. Arnaud, B. J. Kiratli, R. B. Martin, and C. R. Steele, “Noninvasive determination of bone mechanical properties using vibration response: a refined model and validation in vivo,” J. Biomech.29(1), 91–98 (1996).
    [CrossRef] [PubMed]
  18. L. V. Wang, Biomedical Optics: Principles and Imaging (John Wiley and Sons, 2007).
  19. T. J. A. Snoeks, A. Khmelinskii, B. P. F. Lelieveldt, E. L. Kaijzel, and C. W. G. M. Löwik, “Optical advances in skeletal imaging applied to bone metastases,” Bone48(1), 106–114 (2011).
    [CrossRef] [PubMed]
  20. K. M. Kozloff, R. Weissleder, and U. J. Mahmood, “Noninvasive Optical Detection of Bone Mineral,” J. Bone Miner. Res.22(8), 1208–1216 (2007).
    [CrossRef] [PubMed]
  21. A. Vatsa, D. Mizuno, T. H. Smit, C. F. Schmidt, F. C. MacKintosh, and J. Klein-Nulend, “Bio imaging of intracellular NO production in single bone cells after mechanical stimulation,” J. Bone Miner. Res.21(11), 1722–1728 (2006).
    [CrossRef] [PubMed]
  22. C. Kasseck, M. Kratz, A. Torcasio, N. C. Gerhardt, G. H. van Lenthe, T. Gambichler, K. Hoffmann, D. B. Jones, and M. R. Hofmann, “Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample,” J. Biomed. Opt.15(4), 046019 (2010).
    [CrossRef] [PubMed]
  23. K. Beaudette, M. Strupler, F. Benboujja, S. Parent, C. E. Aubin, and C. Boudoux, “Optical coherence tomography for the identification of musculoskeletal structures of the spine: a pilot study,” Biomed. Opt. Express3(3), 533–542 (2012).
    [CrossRef] [PubMed]
  24. Y. Xu, N. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt.7(1), 88–92 (2002).
    [CrossRef] [PubMed]
  25. A. Takeuchi, R. Araki, S. G. Proskurin, Y. Takahashi, Y. Yamada, J. Ishii, S. Katayama, and A. Itabashi, “A new method of bone tissue measurement based upon light scattering,” J. Bone Miner. Res.12(2), 261–266 (1997).
    [CrossRef] [PubMed]
  26. S. Gourion-Arsiquaud, L. Lukashova, J. Power, N. Loveridge, J. Reeve, and A. L. Boskey, “Fourier transform infrared imaging of femoral neck bone: Reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls,” J. Bone Miner. Res.28(1), 150–161 (2013).
    [CrossRef] [PubMed]
  27. E. P. Paschalis, R. Mendelsohn, and A. L. Boskey, “Infrared assessment of bone quality: a review,” Clin. Orthop. Relat. Res.469(8), 2170–2178 (2011).
    [CrossRef] [PubMed]
  28. M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res.469(8), 2160–2169 (2011).
    [CrossRef] [PubMed]
  29. D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman and Hall, 1996).
  30. S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
    [CrossRef] [PubMed]
  31. N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Phys. Med. Biol.49(3), 469–483 (2004).
    [CrossRef] [PubMed]
  32. A. Mandelis, L. Nicolaides, and Y. Chen, “Structure and the reflectionless/refractionless nature of parabolic diffusion-wave fields,” Phys. Rev. Lett.87(2), 020801 (2001).
    [CrossRef]
  33. S. A. Telenko, G. Vargas, J. S. Nelson, and T. E. Milner, “Coherent thermal wave imaging of subsurface chromophores in biological materials,” Phys. Med. Biol.47(4), 657–671 (2002).
    [CrossRef] [PubMed]
  34. E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, and D. Fournier, “Photothermal heterodyne holography of gold nanoparticles,” Opt. Express18(2), 780–786 (2010).
    [CrossRef] [PubMed]
  35. A. Mandelis, “Frequency modulated (FM) time delay photoacoustic and photothermal wave spectroscopies. Technique, instrumentation, and detection. Part I: Theoretical,” Rev. Sci. Instrum.57(4), 617–621 (1986).
    [CrossRef]
  36. N. Tabatabaei and A. Mandelis, “Thermal coherence tomography using match filter binary phase coded diffusion waves,” Phys. Rev. Lett.107(16), 165901 (2011).
    [CrossRef] [PubMed]
  37. N. Levanon and E. Mozeson, Radar Signals (John Wiley and Sons, 2004).
  38. S. Kaiplavil and A. Mandelis, “Truncated-correlation photothermal coherence tomography: “Crisp” imaging breaking through the diffusion resolution and depth barriers,” Revised. submitted.
  39. S. Kaiplavil and A. Mandelis, “Highly depth-resolved chirped pulse photothermal radar for bone diagnostics,” Rev. Sci. Instrum.82(7), 074906 (2011).
    [CrossRef] [PubMed]
  40. ANSI Z136.1, American National Standard for Safe Use of Lasers (Laser Institute of America, 2007).
  41. K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and Applications (Springer-Verlag, 2000).
  42. http://rsbweb.nih.gov/ij/
  43. L. Huang and M. J. Wang, “Image thresholding by minimizing the measures of fuzziness,” Pattern Recognit.28(1), 41–51 (1995).
    [CrossRef]
  44. H. Ehrlich, P. G. Koutsoukos, K. D. Demadis, and O. S. Pokrovsky, “Principles of demineralization: Modern strategies for the isolation of organic frameworks. Part II. Decalcification,” Micron40(2), 169–193 (2009).
    [CrossRef] [PubMed]
  45. B. C. Kuo and F. Golnaraghi, Automatic Control Systems (Wiley, 2002).
  46. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
    [CrossRef] [PubMed]
  47. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
    [CrossRef]
  48. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
    [CrossRef] [PubMed]
  49. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  50. X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: An animal study,” Med. Phys.33(8), 2691–2697 (2006).
    [CrossRef] [PubMed]
  51. D. L. Chamberland, A. Agarwal, N. Kotov, J. Brian Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study,” Nanotechnology19(9), 095101 (2008).
    [CrossRef] [PubMed]

2013

S. Gourion-Arsiquaud, L. Lukashova, J. Power, N. Loveridge, J. Reeve, and A. L. Boskey, “Fourier transform infrared imaging of femoral neck bone: Reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls,” J. Bone Miner. Res.28(1), 150–161 (2013).
[CrossRef] [PubMed]

2012

2011

E. P. Paschalis, R. Mendelsohn, and A. L. Boskey, “Infrared assessment of bone quality: a review,” Clin. Orthop. Relat. Res.469(8), 2170–2178 (2011).
[CrossRef] [PubMed]

M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res.469(8), 2160–2169 (2011).
[CrossRef] [PubMed]

N. Tabatabaei and A. Mandelis, “Thermal coherence tomography using match filter binary phase coded diffusion waves,” Phys. Rev. Lett.107(16), 165901 (2011).
[CrossRef] [PubMed]

S. Kaiplavil and A. Mandelis, “Highly depth-resolved chirped pulse photothermal radar for bone diagnostics,” Rev. Sci. Instrum.82(7), 074906 (2011).
[CrossRef] [PubMed]

E. L. Ritman, “Current status of developments and applications of micro-CT,” Annu. Rev. Biomed. Eng.13(1), 531–552 (2011).
[CrossRef] [PubMed]

Z. C. Li, S. D. Jiang, J. Yan, L. S. Jiang, and L. Y. Dai, “Small-animal PET/CT assessment of bone microdamage in ovariectomized rats,” J. Nucl. Med.52(5), 769–775 (2011).
[CrossRef] [PubMed]

T. J. A. Snoeks, A. Khmelinskii, B. P. F. Lelieveldt, E. L. Kaijzel, and C. W. G. M. Löwik, “Optical advances in skeletal imaging applied to bone metastases,” Bone48(1), 106–114 (2011).
[CrossRef] [PubMed]

2010

C. Kasseck, M. Kratz, A. Torcasio, N. C. Gerhardt, G. H. van Lenthe, T. Gambichler, K. Hoffmann, D. B. Jones, and M. R. Hofmann, “Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample,” J. Biomed. Opt.15(4), 046019 (2010).
[CrossRef] [PubMed]

R. Linke, T. Kuwert, M. Uder, R. Forst, and W. Wuest, “Skeletal SPECT/CT of the peripheral extremities,” AJR Am. J. Roentgenol.194(4), W329–W335 (2010).
[CrossRef] [PubMed]

E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, and D. Fournier, “Photothermal heterodyne holography of gold nanoparticles,” Opt. Express18(2), 780–786 (2010).
[CrossRef] [PubMed]

2009

E. L. Kaijzel, T. J. A. Snoeks, J. T. Buijs, G. van der Pluijm, and C. W. G. M. Löwik, “Multimodal imaging and treatment of bone metastasis,” Clin. Exp. Metastasis26(4), 371–379 (2009).
[CrossRef] [PubMed]

H. Ehrlich, P. G. Koutsoukos, K. D. Demadis, and O. S. Pokrovsky, “Principles of demineralization: Modern strategies for the isolation of organic frameworks. Part II. Decalcification,” Micron40(2), 169–193 (2009).
[CrossRef] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
[CrossRef] [PubMed]

2008

D. L. Chamberland, A. Agarwal, N. Kotov, J. Brian Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study,” Nanotechnology19(9), 095101 (2008).
[CrossRef] [PubMed]

H. K. Genant, K. Engelke, and S. Prevrhal, “Advanced CT bone imaging in osteoporosis,” Rheumatology (Oxford)47(Suppl 4), iv9–iv16 (2008).
[CrossRef] [PubMed]

2007

G. M. Blake and I. Fogelman, “Role of dual-energy X-ray absorptiometry in the diagnosis and treatment of osteoporosis,” J. Clin. Densitom.10(1), 102–110 (2007).
[CrossRef] [PubMed]

K. M. Kozloff, R. Weissleder, and U. J. Mahmood, “Noninvasive Optical Detection of Bone Mineral,” J. Bone Miner. Res.22(8), 1208–1216 (2007).
[CrossRef] [PubMed]

2006

A. Vatsa, D. Mizuno, T. H. Smit, C. F. Schmidt, F. C. MacKintosh, and J. Klein-Nulend, “Bio imaging of intracellular NO production in single bone cells after mechanical stimulation,” J. Bone Miner. Res.21(11), 1722–1728 (2006).
[CrossRef] [PubMed]

S. Nayak, I. Olkin, H. Liu, M. Grabe, M. K. Gould, I. E. Allen, D. K. Owens, and D. M. Bravata, “Meta-analysis: Accuracy of quantitative ultrasound for identifying patients with osteoporosis,” Ann. Intern. Med.144(11), 832–841 (2006).
[CrossRef] [PubMed]

W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol.51(13), R29–R43 (2006).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: An animal study,” Med. Phys.33(8), 2691–2697 (2006).
[CrossRef] [PubMed]

2005

E. R. C. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

2004

C. Djokoto, G. Tomlinson, S. Waldman, M. Grynpas, and A. M. Cheung, “Relationship among MRTA, DXA, and QUS,” J. Clin. Densitom.7(4), 448–456 (2004).
[CrossRef] [PubMed]

N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Phys. Med. Biol.49(3), 469–483 (2004).
[CrossRef] [PubMed]

2003

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

2002

S. A. Telenko, G. Vargas, J. S. Nelson, and T. E. Milner, “Coherent thermal wave imaging of subsurface chromophores in biological materials,” Phys. Med. Biol.47(4), 657–671 (2002).
[CrossRef] [PubMed]

Y. Xu, N. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt.7(1), 88–92 (2002).
[CrossRef] [PubMed]

2001

A. Mandelis, L. Nicolaides, and Y. Chen, “Structure and the reflectionless/refractionless nature of parabolic diffusion-wave fields,” Phys. Rev. Lett.87(2), 020801 (2001).
[CrossRef]

2000

L. Vico, P. Collet, A. Guignandon, M. H. Lafage-Proust, T. Thomas, M. Rehaillia, and C. Alexandre, “Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts,” Lancet355(9215), 1607–1611 (2000).
[CrossRef] [PubMed]

1997

A. Takeuchi, R. Araki, S. G. Proskurin, Y. Takahashi, Y. Yamada, J. Ishii, S. Katayama, and A. Itabashi, “A new method of bone tissue measurement based upon light scattering,” J. Bone Miner. Res.12(2), 261–266 (1997).
[CrossRef] [PubMed]

1996

S. G. Roberts, T. M. Hutchinson, S. B. Arnaud, B. J. Kiratli, R. B. Martin, and C. R. Steele, “Noninvasive determination of bone mechanical properties using vibration response: a refined model and validation in vivo,” J. Biomech.29(1), 91–98 (1996).
[CrossRef] [PubMed]

1995

L. Huang and M. J. Wang, “Image thresholding by minimizing the measures of fuzziness,” Pattern Recognit.28(1), 41–51 (1995).
[CrossRef]

1992

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
[CrossRef] [PubMed]

1986

A. Mandelis, “Frequency modulated (FM) time delay photoacoustic and photothermal wave spectroscopies. Technique, instrumentation, and detection. Part I: Theoretical,” Rev. Sci. Instrum.57(4), 617–621 (1986).
[CrossRef]

1896

W. C. Röntgen, “On a new kind of rays,” Science3(59), 227–231 (1896).
[CrossRef] [PubMed]

M. I. Pupin, “Röntgen rays,” Science3(59), 231–235 (1896).
[CrossRef] [PubMed]

Absil, E.

Agarwal, A.

D. L. Chamberland, A. Agarwal, N. Kotov, J. Brian Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study,” Nanotechnology19(9), 095101 (2008).
[CrossRef] [PubMed]

Alexandre, C.

L. Vico, P. Collet, A. Guignandon, M. H. Lafage-Proust, T. Thomas, M. Rehaillia, and C. Alexandre, “Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts,” Lancet355(9215), 1607–1611 (2000).
[CrossRef] [PubMed]

Allen, I. E.

S. Nayak, I. Olkin, H. Liu, M. Grabe, M. K. Gould, I. E. Allen, D. K. Owens, and D. M. Bravata, “Meta-analysis: Accuracy of quantitative ultrasound for identifying patients with osteoporosis,” Ann. Intern. Med.144(11), 832–841 (2006).
[CrossRef] [PubMed]

Anderson, R. R.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
[CrossRef] [PubMed]

Araki, R.

A. Takeuchi, R. Araki, S. G. Proskurin, Y. Takahashi, Y. Yamada, J. Ishii, S. Katayama, and A. Itabashi, “A new method of bone tissue measurement based upon light scattering,” J. Bone Miner. Res.12(2), 261–266 (1997).
[CrossRef] [PubMed]

Arnaud, S. B.

S. G. Roberts, T. M. Hutchinson, S. B. Arnaud, B. J. Kiratli, R. B. Martin, and C. R. Steele, “Noninvasive determination of bone mechanical properties using vibration response: a refined model and validation in vivo,” J. Biomech.29(1), 91–98 (1996).
[CrossRef] [PubMed]

Atlan, M.

Attenburrow, D. P.

N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Phys. Med. Biol.49(3), 469–483 (2004).
[CrossRef] [PubMed]

Aubin, C. E.

Beaudette, K.

Benboujja, F.

Blake, G. M.

G. M. Blake and I. Fogelman, “Role of dual-energy X-ray absorptiometry in the diagnosis and treatment of osteoporosis,” J. Clin. Densitom.10(1), 102–110 (2007).
[CrossRef] [PubMed]

Bolster, M. B.

Y. Xu, N. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt.7(1), 88–92 (2002).
[CrossRef] [PubMed]

Boskey, A. L.

S. Gourion-Arsiquaud, L. Lukashova, J. Power, N. Loveridge, J. Reeve, and A. L. Boskey, “Fourier transform infrared imaging of femoral neck bone: Reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls,” J. Bone Miner. Res.28(1), 150–161 (2013).
[CrossRef] [PubMed]

E. P. Paschalis, R. Mendelsohn, and A. L. Boskey, “Infrared assessment of bone quality: a review,” Clin. Orthop. Relat. Res.469(8), 2170–2178 (2011).
[CrossRef] [PubMed]

Boudoux, C.

Bravata, D. M.

S. Nayak, I. Olkin, H. Liu, M. Grabe, M. K. Gould, I. E. Allen, D. K. Owens, and D. M. Bravata, “Meta-analysis: Accuracy of quantitative ultrasound for identifying patients with osteoporosis,” Ann. Intern. Med.144(11), 832–841 (2006).
[CrossRef] [PubMed]

Brian Fowlkes, J.

D. L. Chamberland, A. Agarwal, N. Kotov, J. Brian Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study,” Nanotechnology19(9), 095101 (2008).
[CrossRef] [PubMed]

Bruggemann, U.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
[CrossRef] [PubMed]

Bude, R. O.

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: An animal study,” Med. Phys.33(8), 2691–2697 (2006).
[CrossRef] [PubMed]

Buijs, J. T.

E. L. Kaijzel, T. J. A. Snoeks, J. T. Buijs, G. van der Pluijm, and C. W. G. M. Löwik, “Multimodal imaging and treatment of bone metastasis,” Clin. Exp. Metastasis26(4), 371–379 (2009).
[CrossRef] [PubMed]

Camacho, N. P.

E. R. C. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

Carson, P. L.

D. L. Chamberland, A. Agarwal, N. Kotov, J. Brian Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study,” Nanotechnology19(9), 095101 (2008).
[CrossRef] [PubMed]

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: An animal study,” Med. Phys.33(8), 2691–2697 (2006).
[CrossRef] [PubMed]

Chamberland, D. L.

D. L. Chamberland, A. Agarwal, N. Kotov, J. Brian Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study,” Nanotechnology19(9), 095101 (2008).
[CrossRef] [PubMed]

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: An animal study,” Med. Phys.33(8), 2691–2697 (2006).
[CrossRef] [PubMed]

Chen, Y.

A. Mandelis, L. Nicolaides, and Y. Chen, “Structure and the reflectionless/refractionless nature of parabolic diffusion-wave fields,” Phys. Rev. Lett.87(2), 020801 (2001).
[CrossRef]

Cheung, A. M.

C. Djokoto, G. Tomlinson, S. Waldman, M. Grynpas, and A. M. Cheung, “Relationship among MRTA, DXA, and QUS,” J. Clin. Densitom.7(4), 448–456 (2004).
[CrossRef] [PubMed]

Collet, P.

L. Vico, P. Collet, A. Guignandon, M. H. Lafage-Proust, T. Thomas, M. Rehaillia, and C. Alexandre, “Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts,” Lancet355(9215), 1607–1611 (2000).
[CrossRef] [PubMed]

Coppey-Moisan, M.

Dai, L. Y.

Z. C. Li, S. D. Jiang, J. Yan, L. S. Jiang, and L. Y. Dai, “Small-animal PET/CT assessment of bone microdamage in ovariectomized rats,” J. Nucl. Med.52(5), 769–775 (2011).
[CrossRef] [PubMed]

Demadis, K. D.

H. Ehrlich, P. G. Koutsoukos, K. D. Demadis, and O. S. Pokrovsky, “Principles of demineralization: Modern strategies for the isolation of organic frameworks. Part II. Decalcification,” Micron40(2), 169–193 (2009).
[CrossRef] [PubMed]

Djokoto, C.

C. Djokoto, G. Tomlinson, S. Waldman, M. Grynpas, and A. M. Cheung, “Relationship among MRTA, DXA, and QUS,” J. Clin. Densitom.7(4), 448–456 (2004).
[CrossRef] [PubMed]

Draper, E. R. C.

E. R. C. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

Ehrlich, H.

H. Ehrlich, P. G. Koutsoukos, K. D. Demadis, and O. S. Pokrovsky, “Principles of demineralization: Modern strategies for the isolation of organic frameworks. Part II. Decalcification,” Micron40(2), 169–193 (2009).
[CrossRef] [PubMed]

Engelke, K.

H. K. Genant, K. Engelke, and S. Prevrhal, “Advanced CT bone imaging in osteoporosis,” Rheumatology (Oxford)47(Suppl 4), iv9–iv16 (2008).
[CrossRef] [PubMed]

Fogelman, I.

G. M. Blake and I. Fogelman, “Role of dual-energy X-ray absorptiometry in the diagnosis and treatment of osteoporosis,” J. Clin. Densitom.10(1), 102–110 (2007).
[CrossRef] [PubMed]

Forst, R.

R. Linke, T. Kuwert, M. Uder, R. Forst, and W. Wuest, “Skeletal SPECT/CT of the peripheral extremities,” AJR Am. J. Roentgenol.194(4), W329–W335 (2010).
[CrossRef] [PubMed]

Fournier, D.

Fowlkes, J. B.

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: An animal study,” Med. Phys.33(8), 2691–2697 (2006).
[CrossRef] [PubMed]

Gambichler, T.

C. Kasseck, M. Kratz, A. Torcasio, N. C. Gerhardt, G. H. van Lenthe, T. Gambichler, K. Hoffmann, D. B. Jones, and M. R. Hofmann, “Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample,” J. Biomed. Opt.15(4), 046019 (2010).
[CrossRef] [PubMed]

Genant, H. K.

H. K. Genant, K. Engelke, and S. Prevrhal, “Advanced CT bone imaging in osteoporosis,” Rheumatology (Oxford)47(Suppl 4), iv9–iv16 (2008).
[CrossRef] [PubMed]

Gerhardt, N. C.

C. Kasseck, M. Kratz, A. Torcasio, N. C. Gerhardt, G. H. van Lenthe, T. Gambichler, K. Hoffmann, D. B. Jones, and M. R. Hofmann, “Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample,” J. Biomed. Opt.15(4), 046019 (2010).
[CrossRef] [PubMed]

Goodship, A. E.

E. R. C. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

Gould, M. K.

S. Nayak, I. Olkin, H. Liu, M. Grabe, M. K. Gould, I. E. Allen, D. K. Owens, and D. M. Bravata, “Meta-analysis: Accuracy of quantitative ultrasound for identifying patients with osteoporosis,” Ann. Intern. Med.144(11), 832–841 (2006).
[CrossRef] [PubMed]

Gourion-Arsiquaud, S.

S. Gourion-Arsiquaud, L. Lukashova, J. Power, N. Loveridge, J. Reeve, and A. L. Boskey, “Fourier transform infrared imaging of femoral neck bone: Reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls,” J. Bone Miner. Res.28(1), 150–161 (2013).
[CrossRef] [PubMed]

Grabe, M.

S. Nayak, I. Olkin, H. Liu, M. Grabe, M. K. Gould, I. E. Allen, D. K. Owens, and D. M. Bravata, “Meta-analysis: Accuracy of quantitative ultrasound for identifying patients with osteoporosis,” Ann. Intern. Med.144(11), 832–841 (2006).
[CrossRef] [PubMed]

Gross, M.

Grynpas, M.

C. Djokoto, G. Tomlinson, S. Waldman, M. Grynpas, and A. M. Cheung, “Relationship among MRTA, DXA, and QUS,” J. Clin. Densitom.7(4), 448–456 (2004).
[CrossRef] [PubMed]

Guignandon, A.

L. Vico, P. Collet, A. Guignandon, M. H. Lafage-Proust, T. Thomas, M. Rehaillia, and C. Alexandre, “Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts,” Lancet355(9215), 1607–1611 (2000).
[CrossRef] [PubMed]

Hoffmann, K.

C. Kasseck, M. Kratz, A. Torcasio, N. C. Gerhardt, G. H. van Lenthe, T. Gambichler, K. Hoffmann, D. B. Jones, and M. R. Hofmann, “Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample,” J. Biomed. Opt.15(4), 046019 (2010).
[CrossRef] [PubMed]

Hofmann, M. R.

C. Kasseck, M. Kratz, A. Torcasio, N. C. Gerhardt, G. H. van Lenthe, T. Gambichler, K. Hoffmann, D. B. Jones, and M. R. Hofmann, “Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample,” J. Biomed. Opt.15(4), 046019 (2010).
[CrossRef] [PubMed]

Huang, L.

L. Huang and M. J. Wang, “Image thresholding by minimizing the measures of fuzziness,” Pattern Recognit.28(1), 41–51 (1995).
[CrossRef]

Hutchinson, T. M.

S. G. Roberts, T. M. Hutchinson, S. B. Arnaud, B. J. Kiratli, R. B. Martin, and C. R. Steele, “Noninvasive determination of bone mechanical properties using vibration response: a refined model and validation in vivo,” J. Biomech.29(1), 91–98 (1996).
[CrossRef] [PubMed]

Iftimia, N.

Y. Xu, N. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt.7(1), 88–92 (2002).
[CrossRef] [PubMed]

Ishii, J.

A. Takeuchi, R. Araki, S. G. Proskurin, Y. Takahashi, Y. Yamada, J. Ishii, S. Katayama, and A. Itabashi, “A new method of bone tissue measurement based upon light scattering,” J. Bone Miner. Res.12(2), 261–266 (1997).
[CrossRef] [PubMed]

Itabashi, A.

A. Takeuchi, R. Araki, S. G. Proskurin, Y. Takahashi, Y. Yamada, J. Ishii, S. Katayama, and A. Itabashi, “A new method of bone tissue measurement based upon light scattering,” J. Bone Miner. Res.12(2), 261–266 (1997).
[CrossRef] [PubMed]

Jamadar, D. A.

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: An animal study,” Med. Phys.33(8), 2691–2697 (2006).
[CrossRef] [PubMed]

Jiang, H.

Y. Xu, N. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt.7(1), 88–92 (2002).
[CrossRef] [PubMed]

Jiang, L. S.

Z. C. Li, S. D. Jiang, J. Yan, L. S. Jiang, and L. Y. Dai, “Small-animal PET/CT assessment of bone microdamage in ovariectomized rats,” J. Nucl. Med.52(5), 769–775 (2011).
[CrossRef] [PubMed]

Jiang, S. D.

Z. C. Li, S. D. Jiang, J. Yan, L. S. Jiang, and L. Y. Dai, “Small-animal PET/CT assessment of bone microdamage in ovariectomized rats,” J. Nucl. Med.52(5), 769–775 (2011).
[CrossRef] [PubMed]

Jones, D. B.

C. Kasseck, M. Kratz, A. Torcasio, N. C. Gerhardt, G. H. van Lenthe, T. Gambichler, K. Hoffmann, D. B. Jones, and M. R. Hofmann, “Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample,” J. Biomed. Opt.15(4), 046019 (2010).
[CrossRef] [PubMed]

Kaijzel, E. L.

T. J. A. Snoeks, A. Khmelinskii, B. P. F. Lelieveldt, E. L. Kaijzel, and C. W. G. M. Löwik, “Optical advances in skeletal imaging applied to bone metastases,” Bone48(1), 106–114 (2011).
[CrossRef] [PubMed]

E. L. Kaijzel, T. J. A. Snoeks, J. T. Buijs, G. van der Pluijm, and C. W. G. M. Löwik, “Multimodal imaging and treatment of bone metastasis,” Clin. Exp. Metastasis26(4), 371–379 (2009).
[CrossRef] [PubMed]

Kaiplavil, S.

S. Kaiplavil and A. Mandelis, “Highly depth-resolved chirped pulse photothermal radar for bone diagnostics,” Rev. Sci. Instrum.82(7), 074906 (2011).
[CrossRef] [PubMed]

S. Kaiplavil and A. Mandelis, “Truncated-correlation photothermal coherence tomography: “Crisp” imaging breaking through the diffusion resolution and depth barriers,” Revised. submitted.

Kalender, W. A.

W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol.51(13), R29–R43 (2006).
[CrossRef] [PubMed]

Kasseck, C.

C. Kasseck, M. Kratz, A. Torcasio, N. C. Gerhardt, G. H. van Lenthe, T. Gambichler, K. Hoffmann, D. B. Jones, and M. R. Hofmann, “Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample,” J. Biomed. Opt.15(4), 046019 (2010).
[CrossRef] [PubMed]

Katayama, S.

A. Takeuchi, R. Araki, S. G. Proskurin, Y. Takahashi, Y. Yamada, J. Ishii, S. Katayama, and A. Itabashi, “A new method of bone tissue measurement based upon light scattering,” J. Bone Miner. Res.12(2), 261–266 (1997).
[CrossRef] [PubMed]

Key, L. L.

Y. Xu, N. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt.7(1), 88–92 (2002).
[CrossRef] [PubMed]

Khmelinskii, A.

T. J. A. Snoeks, A. Khmelinskii, B. P. F. Lelieveldt, E. L. Kaijzel, and C. W. G. M. Löwik, “Optical advances in skeletal imaging applied to bone metastases,” Bone48(1), 106–114 (2011).
[CrossRef] [PubMed]

Kiratli, B. J.

S. G. Roberts, T. M. Hutchinson, S. B. Arnaud, B. J. Kiratli, R. B. Martin, and C. R. Steele, “Noninvasive determination of bone mechanical properties using vibration response: a refined model and validation in vivo,” J. Biomech.29(1), 91–98 (1996).
[CrossRef] [PubMed]

Klein-Nulend, J.

A. Vatsa, D. Mizuno, T. H. Smit, C. F. Schmidt, F. C. MacKintosh, and J. Klein-Nulend, “Bio imaging of intracellular NO production in single bone cells after mechanical stimulation,” J. Bone Miner. Res.21(11), 1722–1728 (2006).
[CrossRef] [PubMed]

Kotov, N.

D. L. Chamberland, A. Agarwal, N. Kotov, J. Brian Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study,” Nanotechnology19(9), 095101 (2008).
[CrossRef] [PubMed]

Koutsoukos, P. G.

H. Ehrlich, P. G. Koutsoukos, K. D. Demadis, and O. S. Pokrovsky, “Principles of demineralization: Modern strategies for the isolation of organic frameworks. Part II. Decalcification,” Micron40(2), 169–193 (2009).
[CrossRef] [PubMed]

Kozloff, K. M.

K. M. Kozloff, R. Weissleder, and U. J. Mahmood, “Noninvasive Optical Detection of Bone Mineral,” J. Bone Miner. Res.22(8), 1208–1216 (2007).
[CrossRef] [PubMed]

Kratz, M.

C. Kasseck, M. Kratz, A. Torcasio, N. C. Gerhardt, G. H. van Lenthe, T. Gambichler, K. Hoffmann, D. B. Jones, and M. R. Hofmann, “Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample,” J. Biomed. Opt.15(4), 046019 (2010).
[CrossRef] [PubMed]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Kuwert, T.

R. Linke, T. Kuwert, M. Uder, R. Forst, and W. Wuest, “Skeletal SPECT/CT of the peripheral extremities,” AJR Am. J. Roentgenol.194(4), W329–W335 (2010).
[CrossRef] [PubMed]

Lafage-Proust, M. H.

L. Vico, P. Collet, A. Guignandon, M. H. Lafage-Proust, T. Thomas, M. Rehaillia, and C. Alexandre, “Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts,” Lancet355(9215), 1607–1611 (2000).
[CrossRef] [PubMed]

Lelieveldt, B. P. F.

T. J. A. Snoeks, A. Khmelinskii, B. P. F. Lelieveldt, E. L. Kaijzel, and C. W. G. M. Löwik, “Optical advances in skeletal imaging applied to bone metastases,” Bone48(1), 106–114 (2011).
[CrossRef] [PubMed]

Li, Z. C.

Z. C. Li, S. D. Jiang, J. Yan, L. S. Jiang, and L. Y. Dai, “Small-animal PET/CT assessment of bone microdamage in ovariectomized rats,” J. Nucl. Med.52(5), 769–775 (2011).
[CrossRef] [PubMed]

Linke, R.

R. Linke, T. Kuwert, M. Uder, R. Forst, and W. Wuest, “Skeletal SPECT/CT of the peripheral extremities,” AJR Am. J. Roentgenol.194(4), W329–W335 (2010).
[CrossRef] [PubMed]

Liu, H.

S. Nayak, I. Olkin, H. Liu, M. Grabe, M. K. Gould, I. E. Allen, D. K. Owens, and D. M. Bravata, “Meta-analysis: Accuracy of quantitative ultrasound for identifying patients with osteoporosis,” Ann. Intern. Med.144(11), 832–841 (2006).
[CrossRef] [PubMed]

Loveridge, N.

S. Gourion-Arsiquaud, L. Lukashova, J. Power, N. Loveridge, J. Reeve, and A. L. Boskey, “Fourier transform infrared imaging of femoral neck bone: Reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls,” J. Bone Miner. Res.28(1), 150–161 (2013).
[CrossRef] [PubMed]

Löwik, C. W. G. M.

T. J. A. Snoeks, A. Khmelinskii, B. P. F. Lelieveldt, E. L. Kaijzel, and C. W. G. M. Löwik, “Optical advances in skeletal imaging applied to bone metastases,” Bone48(1), 106–114 (2011).
[CrossRef] [PubMed]

E. L. Kaijzel, T. J. A. Snoeks, J. T. Buijs, G. van der Pluijm, and C. W. G. M. Löwik, “Multimodal imaging and treatment of bone metastasis,” Clin. Exp. Metastasis26(4), 371–379 (2009).
[CrossRef] [PubMed]

Lukashova, L.

S. Gourion-Arsiquaud, L. Lukashova, J. Power, N. Loveridge, J. Reeve, and A. L. Boskey, “Fourier transform infrared imaging of femoral neck bone: Reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls,” J. Bone Miner. Res.28(1), 150–161 (2013).
[CrossRef] [PubMed]

MacKintosh, F. C.

A. Vatsa, D. Mizuno, T. H. Smit, C. F. Schmidt, F. C. MacKintosh, and J. Klein-Nulend, “Bio imaging of intracellular NO production in single bone cells after mechanical stimulation,” J. Bone Miner. Res.21(11), 1722–1728 (2006).
[CrossRef] [PubMed]

Mahmood, U. J.

K. M. Kozloff, R. Weissleder, and U. J. Mahmood, “Noninvasive Optical Detection of Bone Mineral,” J. Bone Miner. Res.22(8), 1208–1216 (2007).
[CrossRef] [PubMed]

Mandair, G. S.

M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res.469(8), 2160–2169 (2011).
[CrossRef] [PubMed]

Mandelis, A.

S. Kaiplavil and A. Mandelis, “Highly depth-resolved chirped pulse photothermal radar for bone diagnostics,” Rev. Sci. Instrum.82(7), 074906 (2011).
[CrossRef] [PubMed]

N. Tabatabaei and A. Mandelis, “Thermal coherence tomography using match filter binary phase coded diffusion waves,” Phys. Rev. Lett.107(16), 165901 (2011).
[CrossRef] [PubMed]

A. Mandelis, L. Nicolaides, and Y. Chen, “Structure and the reflectionless/refractionless nature of parabolic diffusion-wave fields,” Phys. Rev. Lett.87(2), 020801 (2001).
[CrossRef]

A. Mandelis, “Frequency modulated (FM) time delay photoacoustic and photothermal wave spectroscopies. Technique, instrumentation, and detection. Part I: Theoretical,” Rev. Sci. Instrum.57(4), 617–621 (1986).
[CrossRef]

S. Kaiplavil and A. Mandelis, “Truncated-correlation photothermal coherence tomography: “Crisp” imaging breaking through the diffusion resolution and depth barriers,” Revised. submitted.

Martin, R. B.

S. G. Roberts, T. M. Hutchinson, S. B. Arnaud, B. J. Kiratli, R. B. Martin, and C. R. Steele, “Noninvasive determination of bone mechanical properties using vibration response: a refined model and validation in vivo,” J. Biomech.29(1), 91–98 (1996).
[CrossRef] [PubMed]

Maslov, K.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Matcher, S. J.

N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Phys. Med. Biol.49(3), 469–483 (2004).
[CrossRef] [PubMed]

Matousek, P.

E. R. C. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

Mendelsohn, R.

E. P. Paschalis, R. Mendelsohn, and A. L. Boskey, “Infrared assessment of bone quality: a review,” Clin. Orthop. Relat. Res.469(8), 2170–2178 (2011).
[CrossRef] [PubMed]

Milner, T. E.

S. A. Telenko, G. Vargas, J. S. Nelson, and T. E. Milner, “Coherent thermal wave imaging of subsurface chromophores in biological materials,” Phys. Med. Biol.47(4), 657–671 (2002).
[CrossRef] [PubMed]

Mizuno, D.

A. Vatsa, D. Mizuno, T. H. Smit, C. F. Schmidt, F. C. MacKintosh, and J. Klein-Nulend, “Bio imaging of intracellular NO production in single bone cells after mechanical stimulation,” J. Bone Miner. Res.21(11), 1722–1728 (2006).
[CrossRef] [PubMed]

Morris, M. D.

M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res.469(8), 2160–2169 (2011).
[CrossRef] [PubMed]

E. R. C. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

Nayak, S.

S. Nayak, I. Olkin, H. Liu, M. Grabe, M. K. Gould, I. E. Allen, D. K. Owens, and D. M. Bravata, “Meta-analysis: Accuracy of quantitative ultrasound for identifying patients with osteoporosis,” Ann. Intern. Med.144(11), 832–841 (2006).
[CrossRef] [PubMed]

Nelson, J. S.

S. A. Telenko, G. Vargas, J. S. Nelson, and T. E. Milner, “Coherent thermal wave imaging of subsurface chromophores in biological materials,” Phys. Med. Biol.47(4), 657–671 (2002).
[CrossRef] [PubMed]

Nicolaides, L.

A. Mandelis, L. Nicolaides, and Y. Chen, “Structure and the reflectionless/refractionless nature of parabolic diffusion-wave fields,” Phys. Rev. Lett.87(2), 020801 (2001).
[CrossRef]

Olkin, I.

S. Nayak, I. Olkin, H. Liu, M. Grabe, M. K. Gould, I. E. Allen, D. K. Owens, and D. M. Bravata, “Meta-analysis: Accuracy of quantitative ultrasound for identifying patients with osteoporosis,” Ann. Intern. Med.144(11), 832–841 (2006).
[CrossRef] [PubMed]

Owens, D. K.

S. Nayak, I. Olkin, H. Liu, M. Grabe, M. K. Gould, I. E. Allen, D. K. Owens, and D. M. Bravata, “Meta-analysis: Accuracy of quantitative ultrasound for identifying patients with osteoporosis,” Ann. Intern. Med.144(11), 832–841 (2006).
[CrossRef] [PubMed]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Parent, S.

Parker, A. W.

E. R. C. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

Paschalis, E. P.

E. P. Paschalis, R. Mendelsohn, and A. L. Boskey, “Infrared assessment of bone quality: a review,” Clin. Orthop. Relat. Res.469(8), 2170–2178 (2011).
[CrossRef] [PubMed]

Pokrovsky, O. S.

H. Ehrlich, P. G. Koutsoukos, K. D. Demadis, and O. S. Pokrovsky, “Principles of demineralization: Modern strategies for the isolation of organic frameworks. Part II. Decalcification,” Micron40(2), 169–193 (2009).
[CrossRef] [PubMed]

Power, J.

S. Gourion-Arsiquaud, L. Lukashova, J. Power, N. Loveridge, J. Reeve, and A. L. Boskey, “Fourier transform infrared imaging of femoral neck bone: Reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls,” J. Bone Miner. Res.28(1), 150–161 (2013).
[CrossRef] [PubMed]

Prahl, S. A.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
[CrossRef] [PubMed]

Prevrhal, S.

H. K. Genant, K. Engelke, and S. Prevrhal, “Advanced CT bone imaging in osteoporosis,” Rheumatology (Oxford)47(Suppl 4), iv9–iv16 (2008).
[CrossRef] [PubMed]

Proskurin, S. G.

A. Takeuchi, R. Araki, S. G. Proskurin, Y. Takahashi, Y. Yamada, J. Ishii, S. Katayama, and A. Itabashi, “A new method of bone tissue measurement based upon light scattering,” J. Bone Miner. Res.12(2), 261–266 (1997).
[CrossRef] [PubMed]

Pupin, M. I.

M. I. Pupin, “Röntgen rays,” Science3(59), 231–235 (1896).
[CrossRef] [PubMed]

Reeve, J.

S. Gourion-Arsiquaud, L. Lukashova, J. Power, N. Loveridge, J. Reeve, and A. L. Boskey, “Fourier transform infrared imaging of femoral neck bone: Reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls,” J. Bone Miner. Res.28(1), 150–161 (2013).
[CrossRef] [PubMed]

Rehaillia, M.

L. Vico, P. Collet, A. Guignandon, M. H. Lafage-Proust, T. Thomas, M. Rehaillia, and C. Alexandre, “Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts,” Lancet355(9215), 1607–1611 (2000).
[CrossRef] [PubMed]

Ritman, E. L.

E. L. Ritman, “Current status of developments and applications of micro-CT,” Annu. Rev. Biomed. Eng.13(1), 531–552 (2011).
[CrossRef] [PubMed]

Roberts, S. G.

S. G. Roberts, T. M. Hutchinson, S. B. Arnaud, B. J. Kiratli, R. B. Martin, and C. R. Steele, “Noninvasive determination of bone mechanical properties using vibration response: a refined model and validation in vivo,” J. Biomech.29(1), 91–98 (1996).
[CrossRef] [PubMed]

Roessler, B. J.

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: An animal study,” Med. Phys.33(8), 2691–2697 (2006).
[CrossRef] [PubMed]

Röntgen, W. C.

W. C. Röntgen, “On a new kind of rays,” Science3(59), 227–231 (1896).
[CrossRef] [PubMed]

Schmidt, C. F.

A. Vatsa, D. Mizuno, T. H. Smit, C. F. Schmidt, F. C. MacKintosh, and J. Klein-Nulend, “Bio imaging of intracellular NO production in single bone cells after mechanical stimulation,” J. Bone Miner. Res.21(11), 1722–1728 (2006).
[CrossRef] [PubMed]

Smit, T. H.

A. Vatsa, D. Mizuno, T. H. Smit, C. F. Schmidt, F. C. MacKintosh, and J. Klein-Nulend, “Bio imaging of intracellular NO production in single bone cells after mechanical stimulation,” J. Bone Miner. Res.21(11), 1722–1728 (2006).
[CrossRef] [PubMed]

Snoeks, T. J. A.

T. J. A. Snoeks, A. Khmelinskii, B. P. F. Lelieveldt, E. L. Kaijzel, and C. W. G. M. Löwik, “Optical advances in skeletal imaging applied to bone metastases,” Bone48(1), 106–114 (2011).
[CrossRef] [PubMed]

E. L. Kaijzel, T. J. A. Snoeks, J. T. Buijs, G. van der Pluijm, and C. W. G. M. Löwik, “Multimodal imaging and treatment of bone metastasis,” Clin. Exp. Metastasis26(4), 371–379 (2009).
[CrossRef] [PubMed]

Steele, C. R.

S. G. Roberts, T. M. Hutchinson, S. B. Arnaud, B. J. Kiratli, R. B. Martin, and C. R. Steele, “Noninvasive determination of bone mechanical properties using vibration response: a refined model and validation in vivo,” J. Biomech.29(1), 91–98 (1996).
[CrossRef] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Strupler, M.

Suck, S.

Tabatabaei, N.

N. Tabatabaei and A. Mandelis, “Thermal coherence tomography using match filter binary phase coded diffusion waves,” Phys. Rev. Lett.107(16), 165901 (2011).
[CrossRef] [PubMed]

Takahashi, Y.

A. Takeuchi, R. Araki, S. G. Proskurin, Y. Takahashi, Y. Yamada, J. Ishii, S. Katayama, and A. Itabashi, “A new method of bone tissue measurement based upon light scattering,” J. Bone Miner. Res.12(2), 261–266 (1997).
[CrossRef] [PubMed]

Takeuchi, A.

A. Takeuchi, R. Araki, S. G. Proskurin, Y. Takahashi, Y. Yamada, J. Ishii, S. Katayama, and A. Itabashi, “A new method of bone tissue measurement based upon light scattering,” J. Bone Miner. Res.12(2), 261–266 (1997).
[CrossRef] [PubMed]

Telenko, S. A.

S. A. Telenko, G. Vargas, J. S. Nelson, and T. E. Milner, “Coherent thermal wave imaging of subsurface chromophores in biological materials,” Phys. Med. Biol.47(4), 657–671 (2002).
[CrossRef] [PubMed]

Tessier, G.

Thomas, T.

L. Vico, P. Collet, A. Guignandon, M. H. Lafage-Proust, T. Thomas, M. Rehaillia, and C. Alexandre, “Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts,” Lancet355(9215), 1607–1611 (2000).
[CrossRef] [PubMed]

Tomlinson, G.

C. Djokoto, G. Tomlinson, S. Waldman, M. Grynpas, and A. M. Cheung, “Relationship among MRTA, DXA, and QUS,” J. Clin. Densitom.7(4), 448–456 (2004).
[CrossRef] [PubMed]

Torcasio, A.

C. Kasseck, M. Kratz, A. Torcasio, N. C. Gerhardt, G. H. van Lenthe, T. Gambichler, K. Hoffmann, D. B. Jones, and M. R. Hofmann, “Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample,” J. Biomed. Opt.15(4), 046019 (2010).
[CrossRef] [PubMed]

Towrie, M.

E. R. C. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

Uder, M.

R. Linke, T. Kuwert, M. Uder, R. Forst, and W. Wuest, “Skeletal SPECT/CT of the peripheral extremities,” AJR Am. J. Roentgenol.194(4), W329–W335 (2010).
[CrossRef] [PubMed]

Ugryumova, N.

N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Phys. Med. Biol.49(3), 469–483 (2004).
[CrossRef] [PubMed]

van der Pluijm, G.

E. L. Kaijzel, T. J. A. Snoeks, J. T. Buijs, G. van der Pluijm, and C. W. G. M. Löwik, “Multimodal imaging and treatment of bone metastasis,” Clin. Exp. Metastasis26(4), 371–379 (2009).
[CrossRef] [PubMed]

van Lenthe, G. H.

C. Kasseck, M. Kratz, A. Torcasio, N. C. Gerhardt, G. H. van Lenthe, T. Gambichler, K. Hoffmann, D. B. Jones, and M. R. Hofmann, “Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample,” J. Biomed. Opt.15(4), 046019 (2010).
[CrossRef] [PubMed]

Vargas, G.

S. A. Telenko, G. Vargas, J. S. Nelson, and T. E. Milner, “Coherent thermal wave imaging of subsurface chromophores in biological materials,” Phys. Med. Biol.47(4), 657–671 (2002).
[CrossRef] [PubMed]

Vatsa, A.

A. Vatsa, D. Mizuno, T. H. Smit, C. F. Schmidt, F. C. MacKintosh, and J. Klein-Nulend, “Bio imaging of intracellular NO production in single bone cells after mechanical stimulation,” J. Bone Miner. Res.21(11), 1722–1728 (2006).
[CrossRef] [PubMed]

Vico, L.

L. Vico, P. Collet, A. Guignandon, M. H. Lafage-Proust, T. Thomas, M. Rehaillia, and C. Alexandre, “Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts,” Lancet355(9215), 1607–1611 (2000).
[CrossRef] [PubMed]

Vitkin, I. A.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
[CrossRef] [PubMed]

Waldman, S.

C. Djokoto, G. Tomlinson, S. Waldman, M. Grynpas, and A. M. Cheung, “Relationship among MRTA, DXA, and QUS,” J. Clin. Densitom.7(4), 448–456 (2004).
[CrossRef] [PubMed]

Wang, L. V.

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Wang, M. J.

L. Huang and M. J. Wang, “Image thresholding by minimizing the measures of fuzziness,” Pattern Recognit.28(1), 41–51 (1995).
[CrossRef]

Wang, X.

D. L. Chamberland, A. Agarwal, N. Kotov, J. Brian Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study,” Nanotechnology19(9), 095101 (2008).
[CrossRef] [PubMed]

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: An animal study,” Med. Phys.33(8), 2691–2697 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Warnasooriya, N.

Weissleder, R.

K. M. Kozloff, R. Weissleder, and U. J. Mahmood, “Noninvasive Optical Detection of Bone Mineral,” J. Bone Miner. Res.22(8), 1208–1216 (2007).
[CrossRef] [PubMed]

Wilson, B. C.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
[CrossRef] [PubMed]

Wuest, W.

R. Linke, T. Kuwert, M. Uder, R. Forst, and W. Wuest, “Skeletal SPECT/CT of the peripheral extremities,” AJR Am. J. Roentgenol.194(4), W329–W335 (2010).
[CrossRef] [PubMed]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Xu, Y.

Y. Xu, N. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt.7(1), 88–92 (2002).
[CrossRef] [PubMed]

Yamada, Y.

A. Takeuchi, R. Araki, S. G. Proskurin, Y. Takahashi, Y. Yamada, J. Ishii, S. Katayama, and A. Itabashi, “A new method of bone tissue measurement based upon light scattering,” J. Bone Miner. Res.12(2), 261–266 (1997).
[CrossRef] [PubMed]

Yan, J.

Z. C. Li, S. D. Jiang, J. Yan, L. S. Jiang, and L. Y. Dai, “Small-animal PET/CT assessment of bone microdamage in ovariectomized rats,” J. Nucl. Med.52(5), 769–775 (2011).
[CrossRef] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

AJR Am. J. Roentgenol.

R. Linke, T. Kuwert, M. Uder, R. Forst, and W. Wuest, “Skeletal SPECT/CT of the peripheral extremities,” AJR Am. J. Roentgenol.194(4), W329–W335 (2010).
[CrossRef] [PubMed]

Ann. Intern. Med.

S. Nayak, I. Olkin, H. Liu, M. Grabe, M. K. Gould, I. E. Allen, D. K. Owens, and D. M. Bravata, “Meta-analysis: Accuracy of quantitative ultrasound for identifying patients with osteoporosis,” Ann. Intern. Med.144(11), 832–841 (2006).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng.

E. L. Ritman, “Current status of developments and applications of micro-CT,” Annu. Rev. Biomed. Eng.13(1), 531–552 (2011).
[CrossRef] [PubMed]

Biomed. Opt. Express

Bone

T. J. A. Snoeks, A. Khmelinskii, B. P. F. Lelieveldt, E. L. Kaijzel, and C. W. G. M. Löwik, “Optical advances in skeletal imaging applied to bone metastases,” Bone48(1), 106–114 (2011).
[CrossRef] [PubMed]

Clin. Exp. Metastasis

E. L. Kaijzel, T. J. A. Snoeks, J. T. Buijs, G. van der Pluijm, and C. W. G. M. Löwik, “Multimodal imaging and treatment of bone metastasis,” Clin. Exp. Metastasis26(4), 371–379 (2009).
[CrossRef] [PubMed]

Clin. Orthop. Relat. Res.

E. P. Paschalis, R. Mendelsohn, and A. L. Boskey, “Infrared assessment of bone quality: a review,” Clin. Orthop. Relat. Res.469(8), 2170–2178 (2011).
[CrossRef] [PubMed]

M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res.469(8), 2160–2169 (2011).
[CrossRef] [PubMed]

J. Biomech.

S. G. Roberts, T. M. Hutchinson, S. B. Arnaud, B. J. Kiratli, R. B. Martin, and C. R. Steele, “Noninvasive determination of bone mechanical properties using vibration response: a refined model and validation in vivo,” J. Biomech.29(1), 91–98 (1996).
[CrossRef] [PubMed]

J. Biomed. Opt.

C. Kasseck, M. Kratz, A. Torcasio, N. C. Gerhardt, G. H. van Lenthe, T. Gambichler, K. Hoffmann, D. B. Jones, and M. R. Hofmann, “Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample,” J. Biomed. Opt.15(4), 046019 (2010).
[CrossRef] [PubMed]

Y. Xu, N. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt.7(1), 88–92 (2002).
[CrossRef] [PubMed]

J. Bone Miner. Res.

A. Takeuchi, R. Araki, S. G. Proskurin, Y. Takahashi, Y. Yamada, J. Ishii, S. Katayama, and A. Itabashi, “A new method of bone tissue measurement based upon light scattering,” J. Bone Miner. Res.12(2), 261–266 (1997).
[CrossRef] [PubMed]

S. Gourion-Arsiquaud, L. Lukashova, J. Power, N. Loveridge, J. Reeve, and A. L. Boskey, “Fourier transform infrared imaging of femoral neck bone: Reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls,” J. Bone Miner. Res.28(1), 150–161 (2013).
[CrossRef] [PubMed]

K. M. Kozloff, R. Weissleder, and U. J. Mahmood, “Noninvasive Optical Detection of Bone Mineral,” J. Bone Miner. Res.22(8), 1208–1216 (2007).
[CrossRef] [PubMed]

A. Vatsa, D. Mizuno, T. H. Smit, C. F. Schmidt, F. C. MacKintosh, and J. Klein-Nulend, “Bio imaging of intracellular NO production in single bone cells after mechanical stimulation,” J. Bone Miner. Res.21(11), 1722–1728 (2006).
[CrossRef] [PubMed]

E. R. C. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

J. Clin. Densitom.

C. Djokoto, G. Tomlinson, S. Waldman, M. Grynpas, and A. M. Cheung, “Relationship among MRTA, DXA, and QUS,” J. Clin. Densitom.7(4), 448–456 (2004).
[CrossRef] [PubMed]

G. M. Blake and I. Fogelman, “Role of dual-energy X-ray absorptiometry in the diagnosis and treatment of osteoporosis,” J. Clin. Densitom.10(1), 102–110 (2007).
[CrossRef] [PubMed]

J. Nucl. Med.

Z. C. Li, S. D. Jiang, J. Yan, L. S. Jiang, and L. Y. Dai, “Small-animal PET/CT assessment of bone microdamage in ovariectomized rats,” J. Nucl. Med.52(5), 769–775 (2011).
[CrossRef] [PubMed]

Lancet

L. Vico, P. Collet, A. Guignandon, M. H. Lafage-Proust, T. Thomas, M. Rehaillia, and C. Alexandre, “Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts,” Lancet355(9215), 1607–1611 (2000).
[CrossRef] [PubMed]

Med. Phys.

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: An animal study,” Med. Phys.33(8), 2691–2697 (2006).
[CrossRef] [PubMed]

Micron

H. Ehrlich, P. G. Koutsoukos, K. D. Demadis, and O. S. Pokrovsky, “Principles of demineralization: Modern strategies for the isolation of organic frameworks. Part II. Decalcification,” Micron40(2), 169–193 (2009).
[CrossRef] [PubMed]

Nanotechnology

D. L. Chamberland, A. Agarwal, N. Kotov, J. Brian Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study,” Nanotechnology19(9), 095101 (2008).
[CrossRef] [PubMed]

Nat. Biotechnol.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Nat. Photonics

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
[CrossRef] [PubMed]

Opt. Express

Pattern Recognit.

L. Huang and M. J. Wang, “Image thresholding by minimizing the measures of fuzziness,” Pattern Recognit.28(1), 41–51 (1995).
[CrossRef]

Phys. Med. Biol.

W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol.51(13), R29–R43 (2006).
[CrossRef] [PubMed]

S. A. Telenko, G. Vargas, J. S. Nelson, and T. E. Milner, “Coherent thermal wave imaging of subsurface chromophores in biological materials,” Phys. Med. Biol.47(4), 657–671 (2002).
[CrossRef] [PubMed]

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
[CrossRef] [PubMed]

N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Phys. Med. Biol.49(3), 469–483 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. Mandelis, L. Nicolaides, and Y. Chen, “Structure and the reflectionless/refractionless nature of parabolic diffusion-wave fields,” Phys. Rev. Lett.87(2), 020801 (2001).
[CrossRef]

N. Tabatabaei and A. Mandelis, “Thermal coherence tomography using match filter binary phase coded diffusion waves,” Phys. Rev. Lett.107(16), 165901 (2011).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

A. Mandelis, “Frequency modulated (FM) time delay photoacoustic and photothermal wave spectroscopies. Technique, instrumentation, and detection. Part I: Theoretical,” Rev. Sci. Instrum.57(4), 617–621 (1986).
[CrossRef]

S. Kaiplavil and A. Mandelis, “Highly depth-resolved chirped pulse photothermal radar for bone diagnostics,” Rev. Sci. Instrum.82(7), 074906 (2011).
[CrossRef] [PubMed]

Rheumatology (Oxford)

H. K. Genant, K. Engelke, and S. Prevrhal, “Advanced CT bone imaging in osteoporosis,” Rheumatology (Oxford)47(Suppl 4), iv9–iv16 (2008).
[CrossRef] [PubMed]

Science

W. C. Röntgen, “On a new kind of rays,” Science3(59), 227–231 (1896).
[CrossRef] [PubMed]

M. I. Pupin, “Röntgen rays,” Science3(59), 231–235 (1896).
[CrossRef] [PubMed]

Other

E. Seeram, Computed Tomography: Physical Principles, Clinical Applications, and Quality Control (Saunders/Elsevier, 2009).

S. L. Bonnick, Bone Densitometry in Clinical Practice: Application and Interpretation (Humana Press, 2010).

NASA HRP-47060, Evidence Book: Risk of Accelerated Osteoporosis (Lyndon B Johnson Space Center, 2008).

L. V. Wang, Biomedical Optics: Principles and Imaging (John Wiley and Sons, 2007).

ANSI Z136.1, American National Standard for Safe Use of Lasers (Laser Institute of America, 2007).

K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and Applications (Springer-Verlag, 2000).

http://rsbweb.nih.gov/ij/

B. C. Kuo and F. Golnaraghi, Automatic Control Systems (Wiley, 2002).

N. Levanon and E. Mozeson, Radar Signals (John Wiley and Sons, 2004).

S. Kaiplavil and A. Mandelis, “Truncated-correlation photothermal coherence tomography: “Crisp” imaging breaking through the diffusion resolution and depth barriers,” Revised. submitted.

D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman and Hall, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for bone TC-PCT. A thermally stabilized pulsed diode laser excites the sample. A 2-5 μm spectral-band IR camera captures the evolution of laser-induced thermal signature from the bone surface. The TC-PCT algorithm is executed in LabView environment.

Fig. 2
Fig. 2

(a) Excitation and PT relaxation chirps and delay-swept truncated-references (not drawn on the actual time scale). (b) Flow diagram of the frequency domain TC-PCT algorithm. EX-OR: Binary Exclusive-OR, FFT: Fast Fourier Transform, Z*: Complex conjugate, X: Multiplication, IFFT: Inverse Fast Fourier Transform, Re: Real component, Im: Imaginary component.

Fig. 3
Fig. 3

Depth scaled planar images for a rib bone (RB). Below every image shown is the respective delay in ms. WT was 2 ms. The last plane is ~1.6 mm below the irradiated surface.

Fig. 4
Fig. 4

TC-PCT of a demineralized goat rib. A1-3: Cross-sectional photographs of intact, 0.5- and 20-hour demineralized sample. The yellow scale in A1 corresponds to the width of the image (3.2 mm). B1-3: Binarized amplitude tomogram of the trabecular region for samples A1-3. C1-3: Binarized amplitude tomogram of the cortical layer for samples A1-3. D1-3: Cross-section of the combined cortical-trabecular regions obtained by slicing B1-3 along PQ in the (X-Z) plane (see text). Laser irradiation was shone from the bottom cortical surface, which was the plane of imaging. B, C and D series were generated using Huang binarization algorithm. E1-3: Counterpart of D1-3, binarized using mean-threshold algorithm. F1-3: Threshold-adjusted absolute amplitude TC-PCT from which D1-3 and E1-3 were derived.

Fig. 5
Fig. 5

(a) Volumes of thermal-wave occupation and its rectangular envelope for a goat rib sample. (b) Dependence of TWOI of a rib sample, excited with chirp-1 waveform, on the truncated-correlation pulsewidth for 200 ms total delay. The spline interpolation (blue line) is the characteristic step-response of an under-damped harmonic oscillator. The stability is better than 98.5% if the pulsewidth ≤ 6 ms.

Fig. 6
Fig. 6

Binarized amplitude TC-PCT of a rib sample reconstructed using different truncated-correlation pulsewidths (shown below the tomogram). Total delay is 200 ms that corresponds to a depth of ~2.5 mm in bone. Letters T and C in the 2-ms tomogram indicate trabecular and cortical regions. As WT increases the degree of energy localization comes down and the uncertainty in the estimation of TWOI increases. The sample was illuminated on the cortical surface. All these tomograms have the same coordinate system, shown at bottom left.

Fig. 7
Fig. 7

Variation of fractional loss in μCT-estimated BMD and TWOI with demineralization-time for the goat rib sample (trabecular region). TC-PCT is ~5.6 times more sensitive than μCT at low demineralization levels.

Fig. 8
Fig. 8

Variable-threshold TC-PCT amplitude tomograms for a mouse femur. Selective mapping of regions of a specific BMD range is possible by adjusting the threshold. Amplitude tomogram (TF) is developed by irradiating the cortical surface in BF. TF is rotated to view from the rear side (TR1-5). BR is the rear view photograph.

Fig. 9
Fig. 9

Binary amplitude TC-PCT of rib-bone with soft-tissue overlayer. Imaged bone dimensions along X and Y directions are 4 and 3.2 mm, respectively. The resolved depth is ~3.8 mm. (A) Photograph of the sample cross-section. Goat blood was injected in the trabecular network for better resemblance with living bone conditions. (B) Tomogram aligned with the plane of A. Here S, C’ and T represent the soft-tissue, cortical layer and trabecular network, respectively. (C) B rotated through 25° counterclockwise in the X-Z plane. (D) B rotated through 25° clockwise in the X-Z plane. (E) D with image transparency increased to 50% to visualize the interior. Tomograms B-D are set to 0% transparency.

Fig. 10
Fig. 10

(a) and (b) PAM images obtained at 50 and 20 MHz, respectively, for the goat rib sample in (c). All the images share the same coordinate system shown in (c).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S(t)=C μ a μ IR ρc ( A μ IR 2 μ eff 2 [ μ IR f( μ eff 2 αt )+ μ eff f( μ IR 2 αt ) ]+ B μ IR 2 μ eff 2 [ μ IR f( μ tr 2 αt )+ μ tr f( μ IR 2 αt ) ] )
A( t )= R * ( τ )S( t+τ ) dτ
y(t)= 1 2π | H( ω ) | 2 e iωt dω
TWOI=u/V

Metrics