Abstract

A plasmon waveguide resonance (PWR) sensor is designed, fabricated, and tested for self-referenced biosensing. The PWR sensor is able to support two different polarizations, TM and TE. The TM polarization has a large sensitivity to variations in the background refractive index while the TE polarization is more sensitive to the surface properties. The ability of the PWR sensor to simultaneously operate in both TM and TE modes is used to decouple the background index variations (bulk effects) from the changes in adlayer thickness (surface effects) via multimode spectroscopy. To benchmark the performance of the PWR, a conventional surface plasmon resonance (SPR) sensor is fabricated and tested under the same conditions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  2. G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1-3), 38–45 (1998).
    [CrossRef]
  3. S. Nizamov and V. M. Mirsky, “Self-referencing SPR-biosensors based on penetration difference of evanescent waves,” Biosens. Bioelectron. 28(1), 263–269 (2011).
    [CrossRef] [PubMed]
  4. J. Guo, P. D. Keathley, and J. T. Hastings, “Dual-mode surface-plasmon-resonance sensors using angular interrogation,” Opt. Lett. 33(5), 512–514 (2008).
    [CrossRef] [PubMed]
  5. M. Maisonneuve, I. H. Song, S. Patskovsky, and M. Meunier, “Polarimetric total internal reflection biosensing,” Opt. Express 19(8), 7410–7416 (2011).
    [CrossRef] [PubMed]
  6. F. Bahrami, M. Maisonneuve, M. Meunier, J. S. Aitchison, and M. Mojahedi, “An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance,” Opt. Express 21(18), 20863–20872 (2013).
    [CrossRef] [PubMed]
  7. D. P. Edward, Handbook of optical constants of solids (Academic Press, 1997).
  8. F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Dual Polarization Measurements in the Hybrid Plasmonic Biosensors,” Plasmonics 8(2), 465–473 (2013).
    [CrossRef]
  9. S. Ltd, http://www.ssens.nl/ .
  10. M. Inc, http://www.proteinslides.com/
  11. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: Approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
    [CrossRef] [PubMed]
  12. S. Janz, A. Densmore, D. X. Xu, W. Sinclair, J. H. Schmid, R. Ma, M. Vachon, J. Lapointe, A. Delâge, E. Post, Y. Li, T. Mischki, G. Lopinski, P. Cheben, and B. Lamontagne, “Silicon photonic wire evanescent field sensors: From sensor to biochip array,” 6th IEEE International Conference on Group IV Photonics, (2009).
    [CrossRef]
  13. J. Spinke, M. Liley, F. J. Schmitt, H. J. Guder, L. Angermaier, and W. Knoll, “Molecular recognition at self-assembled monolayers: Optimization of surface functionalization,” J. Chem. Phys. 99(9), 7012–7019 (1993).
    [CrossRef]

2013 (2)

F. Bahrami, M. Maisonneuve, M. Meunier, J. S. Aitchison, and M. Mojahedi, “An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance,” Opt. Express 21(18), 20863–20872 (2013).
[CrossRef] [PubMed]

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Dual Polarization Measurements in the Hybrid Plasmonic Biosensors,” Plasmonics 8(2), 465–473 (2013).
[CrossRef]

2011 (2)

S. Nizamov and V. M. Mirsky, “Self-referencing SPR-biosensors based on penetration difference of evanescent waves,” Biosens. Bioelectron. 28(1), 263–269 (2011).
[CrossRef] [PubMed]

M. Maisonneuve, I. H. Song, S. Patskovsky, and M. Meunier, “Polarimetric total internal reflection biosensing,” Opt. Express 19(8), 7410–7416 (2011).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1998 (1)

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1-3), 38–45 (1998).
[CrossRef]

1993 (1)

J. Spinke, M. Liley, F. J. Schmitt, H. J. Guder, L. Angermaier, and W. Knoll, “Molecular recognition at self-assembled monolayers: Optimization of surface functionalization,” J. Chem. Phys. 99(9), 7012–7019 (1993).
[CrossRef]

Aitchison, J. S.

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Dual Polarization Measurements in the Hybrid Plasmonic Biosensors,” Plasmonics 8(2), 465–473 (2013).
[CrossRef]

F. Bahrami, M. Maisonneuve, M. Meunier, J. S. Aitchison, and M. Mojahedi, “An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance,” Opt. Express 21(18), 20863–20872 (2013).
[CrossRef] [PubMed]

Alam, M. Z.

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Dual Polarization Measurements in the Hybrid Plasmonic Biosensors,” Plasmonics 8(2), 465–473 (2013).
[CrossRef]

Angermaier, L.

J. Spinke, M. Liley, F. J. Schmitt, H. J. Guder, L. Angermaier, and W. Knoll, “Molecular recognition at self-assembled monolayers: Optimization of surface functionalization,” J. Chem. Phys. 99(9), 7012–7019 (1993).
[CrossRef]

Bahrami, F.

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Dual Polarization Measurements in the Hybrid Plasmonic Biosensors,” Plasmonics 8(2), 465–473 (2013).
[CrossRef]

F. Bahrami, M. Maisonneuve, M. Meunier, J. S. Aitchison, and M. Mojahedi, “An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance,” Opt. Express 21(18), 20863–20872 (2013).
[CrossRef] [PubMed]

Clendenning, J. B.

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1-3), 38–45 (1998).
[CrossRef]

Furlong, C. E.

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1-3), 38–45 (1998).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Guder, H. J.

J. Spinke, M. Liley, F. J. Schmitt, H. J. Guder, L. Angermaier, and W. Knoll, “Molecular recognition at self-assembled monolayers: Optimization of surface functionalization,” J. Chem. Phys. 99(9), 7012–7019 (1993).
[CrossRef]

Guo, J.

Hastings, J. T.

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: Approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Keathley, P. D.

Knoll, W.

J. Spinke, M. Liley, F. J. Schmitt, H. J. Guder, L. Angermaier, and W. Knoll, “Molecular recognition at self-assembled monolayers: Optimization of surface functionalization,” J. Chem. Phys. 99(9), 7012–7019 (1993).
[CrossRef]

Liley, M.

J. Spinke, M. Liley, F. J. Schmitt, H. J. Guder, L. Angermaier, and W. Knoll, “Molecular recognition at self-assembled monolayers: Optimization of surface functionalization,” J. Chem. Phys. 99(9), 7012–7019 (1993).
[CrossRef]

Maisonneuve, M.

Meunier, M.

Mirsky, V. M.

S. Nizamov and V. M. Mirsky, “Self-referencing SPR-biosensors based on penetration difference of evanescent waves,” Biosens. Bioelectron. 28(1), 263–269 (2011).
[CrossRef] [PubMed]

Mojahedi, M.

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Dual Polarization Measurements in the Hybrid Plasmonic Biosensors,” Plasmonics 8(2), 465–473 (2013).
[CrossRef]

F. Bahrami, M. Maisonneuve, M. Meunier, J. S. Aitchison, and M. Mojahedi, “An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance,” Opt. Express 21(18), 20863–20872 (2013).
[CrossRef] [PubMed]

Nenninger, G. G.

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1-3), 38–45 (1998).
[CrossRef]

Nizamov, S.

S. Nizamov and V. M. Mirsky, “Self-referencing SPR-biosensors based on penetration difference of evanescent waves,” Biosens. Bioelectron. 28(1), 263–269 (2011).
[CrossRef] [PubMed]

Patskovsky, S.

Piliarik, M.

Schmitt, F. J.

J. Spinke, M. Liley, F. J. Schmitt, H. J. Guder, L. Angermaier, and W. Knoll, “Molecular recognition at self-assembled monolayers: Optimization of surface functionalization,” J. Chem. Phys. 99(9), 7012–7019 (1993).
[CrossRef]

Song, I. H.

Spinke, J.

J. Spinke, M. Liley, F. J. Schmitt, H. J. Guder, L. Angermaier, and W. Knoll, “Molecular recognition at self-assembled monolayers: Optimization of surface functionalization,” J. Chem. Phys. 99(9), 7012–7019 (1993).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1-3), 38–45 (1998).
[CrossRef]

Biosens. Bioelectron. (1)

S. Nizamov and V. M. Mirsky, “Self-referencing SPR-biosensors based on penetration difference of evanescent waves,” Biosens. Bioelectron. 28(1), 263–269 (2011).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

J. Spinke, M. Liley, F. J. Schmitt, H. J. Guder, L. Angermaier, and W. Knoll, “Molecular recognition at self-assembled monolayers: Optimization of surface functionalization,” J. Chem. Phys. 99(9), 7012–7019 (1993).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Plasmonics (1)

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Dual Polarization Measurements in the Hybrid Plasmonic Biosensors,” Plasmonics 8(2), 465–473 (2013).
[CrossRef]

Sens. Actuators B Chem. (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1-3), 38–45 (1998).
[CrossRef]

Other (4)

S. Ltd, http://www.ssens.nl/ .

M. Inc, http://www.proteinslides.com/

D. P. Edward, Handbook of optical constants of solids (Academic Press, 1997).

S. Janz, A. Densmore, D. X. Xu, W. Sinclair, J. H. Schmid, R. Ma, M. Vachon, J. Lapointe, A. Delâge, E. Post, Y. Li, T. Mischki, G. Lopinski, P. Cheben, and B. Lamontagne, “Silicon photonic wire evanescent field sensors: From sensor to biochip array,” 6th IEEE International Conference on Group IV Photonics, (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of the PWR sensor. (b) z-component of the Poynting vector for both TM and TE polarizations in the optimized PWR sensor with h = 545nm and d = 49nm at the wavelength of 780nm. (c) Reflectance spectrum for the optimized PWR-TM, PWR-TE in black and red lines, respectively.

Fig. 2
Fig. 2

(a) Optical setup used to detect the resonance angle. (b) The experimental (black line) and theoretical (red line) normalized reflectance spectrum of the PWR sensor.

Fig. 3
Fig. 3

(a) Angular positions of the resonance dip vs. time for the SPR sensor. (b) Angular positions of the resonance dip vs. time for the PWR sensor, TM and TE modes. (c) Surface binding thickness and bulk refractive index change calculated from (b). Solutions are (1) PBS, (2) 1μg/mL Streptavidin, (3) PBS, (4) 10 μg/mL Streptavidin, (5) PBS, (6) DI water, (7) 0.01M salted water, (8) DI water, (9) 1% ethanol, and (10) DI water.

Tables (2)

Tables Icon

Table 1 Comparison of the optimized PWR and SPR sensors’ characteristics

Tables Icon

Table 2 Experimental sensor’ characteristics calculated from the sensograms shown in Fig. 3.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ θ TM =S F TM bulk Δ n B +S F TM surf Δ d a ,
Δ θ TE =S F TE bulk Δ n B +S F TE surf Δ d a ,
Δ n B = S F TM bulk ×Δ θ TE S F TE bulk ×Δ θ TM S F TM bulk ×S F TE surf S F TM surf ×S F TE bulk ,
Δ d a = S F TE surf ×Δ θ TM S F TM surf ×Δ θ TE S F TM bulk ×S F TE surf S F TM surf ×S F TE bulk ,
CS F bulk =S F bulk ×SM= θ res n B × R max R min FWHM ,
CS F surf =S F surf ×SM= θ res d a × R max R min FWHM .
Fo M PWR =CS F bulk TM ×CS F surf TE .

Metrics