Abstract

Conventional optical trapping using a tightly focused beam is not suitable for trapping particles that are smaller than the diffraction limit because of the increasing need of the incident laser power that could produce permanent thermal damages. One of the current solutions to this problem is to intensify the local field enhancement by using nanoplasmonic structures without increasing the laser power. Nanoplasmonic tweezers have been used for various small molecules but there is no known report of trapping a single DNA molecule. In this paper, we present the trapping of a single DNA molecule using a nanohole created on a gold substrate. Furthermore, we show that the DNA of different lengths can be differentiated through the measurement of scattering signals leading to possible new DNA sensor applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  2. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
    [CrossRef] [PubMed]
  3. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett.19(13), 930–932 (1994).
    [CrossRef] [PubMed]
  4. L. Huang and O. J. F. Martin, “Reversal of the optical force in a plasmonic trap,” Opt. Lett.33(24), 3001–3003 (2008).
    [CrossRef] [PubMed]
  5. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos. Trans. A Math Phys. Eng. Sci.362(1817), 719–737 (2004).
    [CrossRef] [PubMed]
  6. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999).
    [CrossRef]
  7. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev.106(5), 874–881 (1957).
    [CrossRef]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  9. F. J. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express10(25), 1475–1484 (2002).
    [CrossRef] [PubMed]
  10. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005).
    [CrossRef] [PubMed]
  11. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
    [CrossRef]
  12. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
    [CrossRef]
  13. Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett.11(9), 3763–3767 (2011).
    [CrossRef] [PubMed]
  14. A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip13(13), 2563–2568 (2013).
    [CrossRef] [PubMed]
  15. Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett.12(1), 402–406 (2012).
    [CrossRef] [PubMed]
  16. A. Kotnala, D. DePaoli, and R. Gordon, “Sensing nanoparticles using a double nanohole optical trap,” Lab Chip13(20), 4142–4146 (2013).
    [CrossRef] [PubMed]
  17. T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, and Y. Tsuboi, “Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light,” J. Am. Chem. Soc.135(17), 6643–6648 (2013).
    [CrossRef] [PubMed]
  18. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
    [CrossRef] [PubMed]
  19. Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett.12(3), 1633–1637 (2012).
    [CrossRef] [PubMed]
  20. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
    [CrossRef]
  21. C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett.12(1), 125–132 (2012).
    [CrossRef] [PubMed]
  22. C. M. Galloway, M. P. Kreuzer, S. S. Aćimović, G. Volpe, M. Correia, S. B. Petersen, M. T. Neves-Petersen, and R. Quidant, “Plasmon-assisted delivery of single nano-objects in an optical hot spot,” Nano Lett.13(9), 4299–4304 (2013).
    [CrossRef] [PubMed]
  23. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
    [CrossRef] [PubMed]
  24. A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett.12(11), 5581–5586 (2012).
    [CrossRef] [PubMed]
  25. Y.-T. Chen, Y.-C. Liu, W.-F. Fang, C.-J. Huang, S.-K. Fan, W.-J. Chen, W.-T. Chang, C.-H. Huang, and J.-T. Yang, “DNA diagnosis in a microseparator based on particle aggregation,” Biosens. Bioelectron.50, 8–13 (2013).
    [CrossRef] [PubMed]
  26. D. Wang, G. Chen, H. Wang, W. Tang, W. Pan, N. Li, and F. Liu, “A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation,” Biosens. Bioelectron.48, 276–280 (2013).
    [CrossRef] [PubMed]
  27. A. G. Cherstvy, “Detection of DNA hybridization by field-effect DNA-based biosensors: mechanisms of signal generation and open questions,” Biosens. Bioelectron.46, 162–170 (2013).
    [CrossRef] [PubMed]
  28. X. Zhu, L. Sun, Y. Chen, Z. Ye, Z. Shen, and G. Li, “Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication,” Biosens. Bioelectron.47, 32–37 (2013).
    [CrossRef] [PubMed]
  29. T.-Y. Chen, P. T. K. Loan, C.-L. Hsu, Y.-H. Lee, J. Tse-Wei Wang, K.-H. Wei, C.-T. Lin, and L.-J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron.41, 103–109 (2013).
    [CrossRef] [PubMed]
  30. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
    [CrossRef]
  31. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
    [CrossRef]
  32. A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen,” J. Opt. Soc. Am. A4(10), 1970–1983 (1987).
    [CrossRef]
  33. D. E. Smith, T. T. Perkins, and S. Chu, “Dynamical scaling of DNA diffusion coefficients,” Macromolecules29(4), 1372–1373 (1996).
    [CrossRef]
  34. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons 1998), p. 132.
  35. H. Yamakawa, Helical Wormlike Chains in Polymer Solutions (Springer-Verlag GmbH, 1997), p. 418.

2013 (9)

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip13(13), 2563–2568 (2013).
[CrossRef] [PubMed]

A. Kotnala, D. DePaoli, and R. Gordon, “Sensing nanoparticles using a double nanohole optical trap,” Lab Chip13(20), 4142–4146 (2013).
[CrossRef] [PubMed]

T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, and Y. Tsuboi, “Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light,” J. Am. Chem. Soc.135(17), 6643–6648 (2013).
[CrossRef] [PubMed]

C. M. Galloway, M. P. Kreuzer, S. S. Aćimović, G. Volpe, M. Correia, S. B. Petersen, M. T. Neves-Petersen, and R. Quidant, “Plasmon-assisted delivery of single nano-objects in an optical hot spot,” Nano Lett.13(9), 4299–4304 (2013).
[CrossRef] [PubMed]

Y.-T. Chen, Y.-C. Liu, W.-F. Fang, C.-J. Huang, S.-K. Fan, W.-J. Chen, W.-T. Chang, C.-H. Huang, and J.-T. Yang, “DNA diagnosis in a microseparator based on particle aggregation,” Biosens. Bioelectron.50, 8–13 (2013).
[CrossRef] [PubMed]

D. Wang, G. Chen, H. Wang, W. Tang, W. Pan, N. Li, and F. Liu, “A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation,” Biosens. Bioelectron.48, 276–280 (2013).
[CrossRef] [PubMed]

A. G. Cherstvy, “Detection of DNA hybridization by field-effect DNA-based biosensors: mechanisms of signal generation and open questions,” Biosens. Bioelectron.46, 162–170 (2013).
[CrossRef] [PubMed]

X. Zhu, L. Sun, Y. Chen, Z. Ye, Z. Shen, and G. Li, “Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication,” Biosens. Bioelectron.47, 32–37 (2013).
[CrossRef] [PubMed]

T.-Y. Chen, P. T. K. Loan, C.-L. Hsu, Y.-H. Lee, J. Tse-Wei Wang, K.-H. Wei, C.-T. Lin, and L.-J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron.41, 103–109 (2013).
[CrossRef] [PubMed]

2012 (4)

Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett.12(3), 1633–1637 (2012).
[CrossRef] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett.12(1), 402–406 (2012).
[CrossRef] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett.12(1), 125–132 (2012).
[CrossRef] [PubMed]

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett.12(11), 5581–5586 (2012).
[CrossRef] [PubMed]

2011 (3)

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett.11(9), 3763–3767 (2011).
[CrossRef] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef] [PubMed]

2010 (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

2009 (2)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
[CrossRef]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

2008 (1)

2005 (2)

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005).
[CrossRef] [PubMed]

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

2004 (1)

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos. Trans. A Math Phys. Eng. Sci.362(1817), 719–737 (2004).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

1999 (1)

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999).
[CrossRef]

1996 (1)

D. E. Smith, T. T. Perkins, and S. Chu, “Dynamical scaling of DNA diffusion coefficients,” Macromolecules29(4), 1372–1373 (1996).
[CrossRef]

1994 (1)

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

1987 (1)

1986 (1)

1957 (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev.106(5), 874–881 (1957).
[CrossRef]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
[CrossRef]

Acimovic, S. S.

C. M. Galloway, M. P. Kreuzer, S. S. Aćimović, G. Volpe, M. Correia, S. B. Petersen, M. T. Neves-Petersen, and R. Quidant, “Plasmon-assisted delivery of single nano-objects in an optical hot spot,” Nano Lett.13(9), 4299–4304 (2013).
[CrossRef] [PubMed]

Al-Balushi, A. A.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip13(13), 2563–2568 (2013).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).
[CrossRef] [PubMed]

Baba, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

Borghs, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett.12(1), 125–132 (2012).
[CrossRef] [PubMed]

Chang, W.-T.

Y.-T. Chen, Y.-C. Liu, W.-F. Fang, C.-J. Huang, S.-K. Fan, W.-J. Chen, W.-T. Chang, C.-H. Huang, and J.-T. Yang, “DNA diagnosis in a microseparator based on particle aggregation,” Biosens. Bioelectron.50, 8–13 (2013).
[CrossRef] [PubMed]

Chaumet, P. C.

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos. Trans. A Math Phys. Eng. Sci.362(1817), 719–737 (2004).
[CrossRef] [PubMed]

Chen, C.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett.12(1), 125–132 (2012).
[CrossRef] [PubMed]

Chen, G.

D. Wang, G. Chen, H. Wang, W. Tang, W. Pan, N. Li, and F. Liu, “A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation,” Biosens. Bioelectron.48, 276–280 (2013).
[CrossRef] [PubMed]

Chen, P.

Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett.12(3), 1633–1637 (2012).
[CrossRef] [PubMed]

Chen, T.-Y.

T.-Y. Chen, P. T. K. Loan, C.-L. Hsu, Y.-H. Lee, J. Tse-Wei Wang, K.-H. Wei, C.-T. Lin, and L.-J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron.41, 103–109 (2013).
[CrossRef] [PubMed]

Chen, W.-J.

Y.-T. Chen, Y.-C. Liu, W.-F. Fang, C.-J. Huang, S.-K. Fan, W.-J. Chen, W.-T. Chang, C.-H. Huang, and J.-T. Yang, “DNA diagnosis in a microseparator based on particle aggregation,” Biosens. Bioelectron.50, 8–13 (2013).
[CrossRef] [PubMed]

Chen, Y.

X. Zhu, L. Sun, Y. Chen, Z. Ye, Z. Shen, and G. Li, “Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication,” Biosens. Bioelectron.47, 32–37 (2013).
[CrossRef] [PubMed]

Chen, Y.-F.

Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett.12(3), 1633–1637 (2012).
[CrossRef] [PubMed]

Chen, Y.-T.

Y.-T. Chen, Y.-C. Liu, W.-F. Fang, C.-J. Huang, S.-K. Fan, W.-J. Chen, W.-T. Chang, C.-H. Huang, and J.-T. Yang, “DNA diagnosis in a microseparator based on particle aggregation,” Biosens. Bioelectron.50, 8–13 (2013).
[CrossRef] [PubMed]

Cherstvy, A. G.

A. G. Cherstvy, “Detection of DNA hybridization by field-effect DNA-based biosensors: mechanisms of signal generation and open questions,” Biosens. Bioelectron.46, 162–170 (2013).
[CrossRef] [PubMed]

Chu, S.

Correia, M.

C. M. Galloway, M. P. Kreuzer, S. S. Aćimović, G. Volpe, M. Correia, S. B. Petersen, M. T. Neves-Petersen, and R. Quidant, “Plasmon-assisted delivery of single nano-objects in an optical hot spot,” Nano Lett.13(9), 4299–4304 (2013).
[CrossRef] [PubMed]

Crozier, K. B.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef] [PubMed]

Cyr, B. R.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip13(13), 2563–2568 (2013).
[CrossRef] [PubMed]

DePaoli, D.

A. Kotnala, D. DePaoli, and R. Gordon, “Sensing nanoparticles using a double nanohole optical trap,” Lab Chip13(20), 4142–4146 (2013).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dionne, J. A.

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett.12(11), 5581–5586 (2012).
[CrossRef] [PubMed]

Dziedzic, J. M.

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
[CrossRef]

Erickson, D.

Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett.12(3), 1633–1637 (2012).
[CrossRef] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Fan, S.-K.

Y.-T. Chen, Y.-C. Liu, W.-F. Fang, C.-J. Huang, S.-K. Fan, W.-J. Chen, W.-T. Chang, C.-H. Huang, and J.-T. Yang, “DNA diagnosis in a microseparator based on particle aggregation,” Biosens. Bioelectron.50, 8–13 (2013).
[CrossRef] [PubMed]

Fang, W.-F.

Y.-T. Chen, Y.-C. Liu, W.-F. Fang, C.-J. Huang, S.-K. Fan, W.-J. Chen, W.-T. Chang, C.-H. Huang, and J.-T. Yang, “DNA diagnosis in a microseparator based on particle aggregation,” Biosens. Bioelectron.50, 8–13 (2013).
[CrossRef] [PubMed]

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Galloway, C. M.

C. M. Galloway, M. P. Kreuzer, S. S. Aćimović, G. Volpe, M. Correia, S. B. Petersen, M. T. Neves-Petersen, and R. Quidant, “Plasmon-assisted delivery of single nano-objects in an optical hot spot,” Nano Lett.13(9), 4299–4304 (2013).
[CrossRef] [PubMed]

Garcia de Abajo, F. J.

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005).
[CrossRef] [PubMed]

Gordon, R.

A. Kotnala, D. DePaoli, and R. Gordon, “Sensing nanoparticles using a double nanohole optical trap,” Lab Chip13(20), 4142–4146 (2013).
[CrossRef] [PubMed]

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip13(13), 2563–2568 (2013).
[CrossRef] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett.12(1), 402–406 (2012).
[CrossRef] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett.11(9), 3763–3767 (2011).
[CrossRef] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
[CrossRef]

Hsu, C.-L.

T.-Y. Chen, P. T. K. Loan, C.-L. Hsu, Y.-H. Lee, J. Tse-Wei Wang, K.-H. Wei, C.-T. Lin, and L.-J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron.41, 103–109 (2013).
[CrossRef] [PubMed]

Huang, C.-H.

Y.-T. Chen, Y.-C. Liu, W.-F. Fang, C.-J. Huang, S.-K. Fan, W.-J. Chen, W.-T. Chang, C.-H. Huang, and J.-T. Yang, “DNA diagnosis in a microseparator based on particle aggregation,” Biosens. Bioelectron.50, 8–13 (2013).
[CrossRef] [PubMed]

Huang, C.-J.

Y.-T. Chen, Y.-C. Liu, W.-F. Fang, C.-J. Huang, S.-K. Fan, W.-J. Chen, W.-T. Chang, C.-H. Huang, and J.-T. Yang, “DNA diagnosis in a microseparator based on particle aggregation,” Biosens. Bioelectron.50, 8–13 (2013).
[CrossRef] [PubMed]

Huang, L.

Ishi, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Ishihara, H.

T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, and Y. Tsuboi, “Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light,” J. Am. Chem. Soc.135(17), 6643–6648 (2013).
[CrossRef] [PubMed]

Ito, S.

T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, and Y. Tsuboi, “Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light,” J. Am. Chem. Soc.135(17), 6643–6648 (2013).
[CrossRef] [PubMed]

Jiang, H.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip13(13), 2563–2568 (2013).
[CrossRef] [PubMed]

Juan, M. L.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett.12(1), 125–132 (2012).
[CrossRef] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
[CrossRef]

Kawata, S.

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999).
[CrossRef]

Kitamura, N.

T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, and Y. Tsuboi, “Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light,” J. Am. Chem. Soc.135(17), 6643–6648 (2013).
[CrossRef] [PubMed]

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Kotnala, A.

A. Kotnala, D. DePaoli, and R. Gordon, “Sensing nanoparticles using a double nanohole optical trap,” Lab Chip13(20), 4142–4146 (2013).
[CrossRef] [PubMed]

Kreuzer, M. P.

C. M. Galloway, M. P. Kreuzer, S. S. Aćimović, G. Volpe, M. Correia, S. B. Petersen, M. T. Neves-Petersen, and R. Quidant, “Plasmon-assisted delivery of single nano-objects in an optical hot spot,” Nano Lett.13(9), 4299–4304 (2013).
[CrossRef] [PubMed]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Lee, Y.-H.

T.-Y. Chen, P. T. K. Loan, C.-L. Hsu, Y.-H. Lee, J. Tse-Wei Wang, K.-H. Wei, C.-T. Lin, and L.-J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron.41, 103–109 (2013).
[CrossRef] [PubMed]

Li, G.

X. Zhu, L. Sun, Y. Chen, Z. Ye, Z. Shen, and G. Li, “Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication,” Biosens. Bioelectron.47, 32–37 (2013).
[CrossRef] [PubMed]

Li, L.-J.

T.-Y. Chen, P. T. K. Loan, C.-L. Hsu, Y.-H. Lee, J. Tse-Wei Wang, K.-H. Wei, C.-T. Lin, and L.-J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron.41, 103–109 (2013).
[CrossRef] [PubMed]

Li, N.

D. Wang, G. Chen, H. Wang, W. Tang, W. Pan, N. Li, and F. Liu, “A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation,” Biosens. Bioelectron.48, 276–280 (2013).
[CrossRef] [PubMed]

Li, Y.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett.12(1), 125–132 (2012).
[CrossRef] [PubMed]

Lin, C.-T.

T.-Y. Chen, P. T. K. Loan, C.-L. Hsu, Y.-H. Lee, J. Tse-Wei Wang, K.-H. Wei, C.-T. Lin, and L.-J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron.41, 103–109 (2013).
[CrossRef] [PubMed]

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Liu, F.

D. Wang, G. Chen, H. Wang, W. Tang, W. Pan, N. Li, and F. Liu, “A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation,” Biosens. Bioelectron.48, 276–280 (2013).
[CrossRef] [PubMed]

Liu, Y.-C.

Y.-T. Chen, Y.-C. Liu, W.-F. Fang, C.-J. Huang, S.-K. Fan, W.-J. Chen, W.-T. Chang, C.-H. Huang, and J.-T. Yang, “DNA diagnosis in a microseparator based on particle aggregation,” Biosens. Bioelectron.50, 8–13 (2013).
[CrossRef] [PubMed]

Loan, P. T. K.

T.-Y. Chen, P. T. K. Loan, C.-L. Hsu, Y.-H. Lee, J. Tse-Wei Wang, K.-H. Wei, C.-T. Lin, and L.-J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron.41, 103–109 (2013).
[CrossRef] [PubMed]

Maes, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett.12(1), 125–132 (2012).
[CrossRef] [PubMed]

Makita, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Martin, O. J. F.

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Martín-Moreno, L.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005).
[CrossRef] [PubMed]

Miyasaka, H.

T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, and Y. Tsuboi, “Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light,” J. Am. Chem. Soc.135(17), 6643–6648 (2013).
[CrossRef] [PubMed]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Moreno, E.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005).
[CrossRef] [PubMed]

Murakoshi, K.

T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, and Y. Tsuboi, “Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light,” J. Am. Chem. Soc.135(17), 6643–6648 (2013).
[CrossRef] [PubMed]

Nagasawa, F.

T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, and Y. Tsuboi, “Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light,” J. Am. Chem. Soc.135(17), 6643–6648 (2013).
[CrossRef] [PubMed]

Neves-Petersen, M. T.

C. M. Galloway, M. P. Kreuzer, S. S. Aćimović, G. Volpe, M. Correia, S. B. Petersen, M. T. Neves-Petersen, and R. Quidant, “Plasmon-assisted delivery of single nano-objects in an optical hot spot,” Nano Lett.13(9), 4299–4304 (2013).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos. Trans. A Math Phys. Eng. Sci.362(1817), 719–737 (2004).
[CrossRef] [PubMed]

Ohashi, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Okamoto, K.

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999).
[CrossRef]

Pan, W.

D. Wang, G. Chen, H. Wang, W. Tang, W. Pan, N. Li, and F. Liu, “A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation,” Biosens. Bioelectron.48, 276–280 (2013).
[CrossRef] [PubMed]

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett.12(1), 402–406 (2012).
[CrossRef] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett.11(9), 3763–3767 (2011).
[CrossRef] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
[CrossRef]

Perkins, T. T.

D. E. Smith, T. T. Perkins, and S. Chu, “Dynamical scaling of DNA diffusion coefficients,” Macromolecules29(4), 1372–1373 (1996).
[CrossRef]

Petersen, S. B.

C. M. Galloway, M. P. Kreuzer, S. S. Aćimović, G. Volpe, M. Correia, S. B. Petersen, M. T. Neves-Petersen, and R. Quidant, “Plasmon-assisted delivery of single nano-objects in an optical hot spot,” Nano Lett.13(9), 4299–4304 (2013).
[CrossRef] [PubMed]

Porto, J. A.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005).
[CrossRef] [PubMed]

Quidant, R.

C. M. Galloway, M. P. Kreuzer, S. S. Aćimović, G. Volpe, M. Correia, S. B. Petersen, M. T. Neves-Petersen, and R. Quidant, “Plasmon-assisted delivery of single nano-objects in an optical hot spot,” Nano Lett.13(9), 4299–4304 (2013).
[CrossRef] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett.12(1), 125–132 (2012).
[CrossRef] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
[CrossRef]

Rahmani, A.

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos. Trans. A Math Phys. Eng. Sci.362(1817), 719–737 (2004).
[CrossRef] [PubMed]

Rennehan, D. W.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip13(13), 2563–2568 (2013).
[CrossRef] [PubMed]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev.106(5), 874–881 (1957).
[CrossRef]

Roberts, A.

Saitoh, J.

T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, and Y. Tsuboi, “Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light,” J. Am. Chem. Soc.135(17), 6643–6648 (2013).
[CrossRef] [PubMed]

Saleh, A. A. E.

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett.12(11), 5581–5586 (2012).
[CrossRef] [PubMed]

Sarkar, R.

Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett.12(3), 1633–1637 (2012).
[CrossRef] [PubMed]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef] [PubMed]

Serey, X.

Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett.12(3), 1633–1637 (2012).
[CrossRef] [PubMed]

Shen, Z.

X. Zhu, L. Sun, Y. Chen, Z. Ye, Z. Shen, and G. Li, “Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication,” Biosens. Bioelectron.47, 32–37 (2013).
[CrossRef] [PubMed]

Shoji, T.

T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, and Y. Tsuboi, “Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light,” J. Am. Chem. Soc.135(17), 6643–6648 (2013).
[CrossRef] [PubMed]

Smith, D. E.

D. E. Smith, T. T. Perkins, and S. Chu, “Dynamical scaling of DNA diffusion coefficients,” Macromolecules29(4), 1372–1373 (1996).
[CrossRef]

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef] [PubMed]

Sun, L.

X. Zhu, L. Sun, Y. Chen, Z. Ye, Z. Shen, and G. Li, “Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication,” Biosens. Bioelectron.47, 32–37 (2013).
[CrossRef] [PubMed]

Svoboda, K.

Tang, W.

D. Wang, G. Chen, H. Wang, W. Tang, W. Pan, N. Li, and F. Liu, “A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation,” Biosens. Bioelectron.48, 276–280 (2013).
[CrossRef] [PubMed]

Tse-Wei Wang, J.

T.-Y. Chen, P. T. K. Loan, C.-L. Hsu, Y.-H. Lee, J. Tse-Wei Wang, K.-H. Wei, C.-T. Lin, and L.-J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron.41, 103–109 (2013).
[CrossRef] [PubMed]

Tsuboi, Y.

T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, and Y. Tsuboi, “Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light,” J. Am. Chem. Soc.135(17), 6643–6648 (2013).
[CrossRef] [PubMed]

Van Dorpe, P.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett.12(1), 125–132 (2012).
[CrossRef] [PubMed]

Volpe, G.

C. M. Galloway, M. P. Kreuzer, S. S. Aćimović, G. Volpe, M. Correia, S. B. Petersen, M. T. Neves-Petersen, and R. Quidant, “Plasmon-assisted delivery of single nano-objects in an optical hot spot,” Nano Lett.13(9), 4299–4304 (2013).
[CrossRef] [PubMed]

Wang, D.

D. Wang, G. Chen, H. Wang, W. Tang, W. Pan, N. Li, and F. Liu, “A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation,” Biosens. Bioelectron.48, 276–280 (2013).
[CrossRef] [PubMed]

Wang, H.

D. Wang, G. Chen, H. Wang, W. Tang, W. Pan, N. Li, and F. Liu, “A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation,” Biosens. Bioelectron.48, 276–280 (2013).
[CrossRef] [PubMed]

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef] [PubMed]

Wei, K.-H.

T.-Y. Chen, P. T. K. Loan, C.-L. Hsu, Y.-H. Lee, J. Tse-Wei Wang, K.-H. Wei, C.-T. Lin, and L.-J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron.41, 103–109 (2013).
[CrossRef] [PubMed]

Yamauchi, H.

T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, and Y. Tsuboi, “Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light,” J. Am. Chem. Soc.135(17), 6643–6648 (2013).
[CrossRef] [PubMed]

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Yang, J.-T.

Y.-T. Chen, Y.-C. Liu, W.-F. Fang, C.-J. Huang, S.-K. Fan, W.-J. Chen, W.-T. Chang, C.-H. Huang, and J.-T. Yang, “DNA diagnosis in a microseparator based on particle aggregation,” Biosens. Bioelectron.50, 8–13 (2013).
[CrossRef] [PubMed]

Ye, Z.

X. Zhu, L. Sun, Y. Chen, Z. Ye, Z. Shen, and G. Li, “Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication,” Biosens. Bioelectron.47, 32–37 (2013).
[CrossRef] [PubMed]

Zehtabi-Oskuie, A.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip13(13), 2563–2568 (2013).
[CrossRef] [PubMed]

Zhu, X.

X. Zhu, L. Sun, Y. Chen, Z. Ye, Z. Shen, and G. Li, “Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication,” Biosens. Bioelectron.47, 32–37 (2013).
[CrossRef] [PubMed]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

Biosens. Bioelectron. (5)

Y.-T. Chen, Y.-C. Liu, W.-F. Fang, C.-J. Huang, S.-K. Fan, W.-J. Chen, W.-T. Chang, C.-H. Huang, and J.-T. Yang, “DNA diagnosis in a microseparator based on particle aggregation,” Biosens. Bioelectron.50, 8–13 (2013).
[CrossRef] [PubMed]

D. Wang, G. Chen, H. Wang, W. Tang, W. Pan, N. Li, and F. Liu, “A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation,” Biosens. Bioelectron.48, 276–280 (2013).
[CrossRef] [PubMed]

A. G. Cherstvy, “Detection of DNA hybridization by field-effect DNA-based biosensors: mechanisms of signal generation and open questions,” Biosens. Bioelectron.46, 162–170 (2013).
[CrossRef] [PubMed]

X. Zhu, L. Sun, Y. Chen, Z. Ye, Z. Shen, and G. Li, “Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication,” Biosens. Bioelectron.47, 32–37 (2013).
[CrossRef] [PubMed]

T.-Y. Chen, P. T. K. Loan, C.-L. Hsu, Y.-H. Lee, J. Tse-Wei Wang, K.-H. Wei, C.-T. Lin, and L.-J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron.41, 103–109 (2013).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, and Y. Tsuboi, “Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light,” J. Am. Chem. Soc.135(17), 6643–6648 (2013).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Lab Chip (2)

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip13(13), 2563–2568 (2013).
[CrossRef] [PubMed]

A. Kotnala, D. DePaoli, and R. Gordon, “Sensing nanoparticles using a double nanohole optical trap,” Lab Chip13(20), 4142–4146 (2013).
[CrossRef] [PubMed]

Macromolecules (1)

D. E. Smith, T. T. Perkins, and S. Chu, “Dynamical scaling of DNA diffusion coefficients,” Macromolecules29(4), 1372–1373 (1996).
[CrossRef]

Nano Lett. (6)

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett.12(11), 5581–5586 (2012).
[CrossRef] [PubMed]

Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett.12(3), 1633–1637 (2012).
[CrossRef] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett.12(1), 125–132 (2012).
[CrossRef] [PubMed]

C. M. Galloway, M. P. Kreuzer, S. S. Aćimović, G. Volpe, M. Correia, S. B. Petersen, M. T. Neves-Petersen, and R. Quidant, “Plasmon-assisted delivery of single nano-objects in an optical hot spot,” Nano Lett.13(9), 4299–4304 (2013).
[CrossRef] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett.11(9), 3763–3767 (2011).
[CrossRef] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett.12(1), 402–406 (2012).
[CrossRef] [PubMed]

Nat. Commun. (1)

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

Nat. Phys. (1)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
[CrossRef]

Nature (2)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Philos. Trans. A Math Phys. Eng. Sci. (1)

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos. Trans. A Math Phys. Eng. Sci.362(1817), 719–737 (2004).
[CrossRef] [PubMed]

Phys. Rev. (2)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev.106(5), 874–881 (1957).
[CrossRef]

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
[CrossRef]

Phys. Rev. Lett. (2)

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005).
[CrossRef] [PubMed]

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons 1998), p. 132.

H. Yamakawa, Helical Wormlike Chains in Polymer Solutions (Springer-Verlag GmbH, 1997), p. 418.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the nanoplasmonic system; Lens: L, Mirror: M, Dichroic mirror: DM, Neutral density: ND.

Fig. 2
Fig. 2

Process of sample preparation for experiment.

Fig. 3
Fig. 3

Transmission intensity vs. nanohole size drilled on 100 nm thick gold substrate.

Fig. 4
Fig. 4

Microscope and SEM images of nanoholes fabricated on the gold substrate.

Fig. 5
Fig. 5

Measurement of transmission intensity by trapping of a plasmid DNA using laser power of (a) 7.8 mW and (b) 13.2 mW, all intensity values are normalized by the original intensity value of B and this is why B is 1.0.

Fig. 6
Fig. 6

Measurement of transmission intensity by trapping of lambda DNA using laser power of (a) 7.8 mW and (b) 13.2 mW, all intensity values are normalized by the original intensity value of B and this is why B is 1.0.

Fig. 7
Fig. 7

Transmission intensity as a function of medium height that decreases as time increases.

Fig. 8
Fig. 8

Difference between average intensity value of line A and B. (a) Trapping delta value of plasmid DNA, (b) Trapping delta value of lambda DNA.

Fig. 9
Fig. 9

Trapping duration of (a) plasmid DNA and (b) lambda DNA during 90 seconds.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = 128 π 5 r G 4 3 λ 4 | ε r 1 ε r + 2 | 2 ,
r G , l i n e a r = a [ L 3 a 1 + 2 a L 2 ( a L ) 2 ( 1 e L a ) ] 1 2 ,
r G , c i r c u l a r = [ ( 2 a + 22 a 2 3 L ) ( L 12 2 α 2 a 2 L + 8 α 3 a 3 3 L 2 ) a 2 + 4 α a 3 L + 8 α 3 a 3 L ( 1 3 α 6 + k 2 α 2 5 + k 3 α 3 6 ) ] 1 2 ,

Metrics