Abstract

Mid-infrared quantum cascade laser spectroscopy is used to noninvasively predict blood glucose concentrations of three healthy human subjects in vivo. We utilize a hollow-core fiber based optical setup for light delivery and collection along with a broadly tunable quantum cascade laser to obtain spectra from human subjects and use standard chemo-metric techniques (namely partial least squares regression) for prediction analysis. Throughout a glucose concentration range of 80-160 mg/dL, we achieve clinically accurate predictions 84% of the time, on average. This work opens a new path to a noninvasive in vivo glucose sensor that would benefit the lives of hundreds of millions of diabetics worldwide.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
    [CrossRef] [PubMed]
  2. V. Tuchin, Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC, 2009).
  3. O. S. Khalil, “Non-invasive Glucose Measurement Technologies: An Update from 1999 to the Dawn of the New Millennium,” Diabetes Technol. Ther.6(5), 660–697 (2004).
    [CrossRef] [PubMed]
  4. S. Liakat, K. A. Bors, T. Y. Huang, A. P. Michel, E. Zanghi, and C. F. Gmachl, “In vitro measurements of physiological glucose concentrations in biological fluids using mid-infrared light,” Biomed. Opt. Express4(7), 1083–1090 (2013).
    [CrossRef] [PubMed]
  5. T. M. Greve, S. Kamp, and G. B. Jemec, “Disease quantification in dermatology: in vivo near-infrared spectroscopy measures correlate strongly with the clinical assessment of psoriasis severity,” J. Biomed. Opt.18(3), 037006 (2013).
    [CrossRef] [PubMed]
  6. R. P. Smith, S. J. Riesenfeld, A. K. Holloway, Q. Li, K. K. Murphy, N. M. Feliciano, L. Orecchia, N. Oksenberg, K. S. Pollard, and N. Ahituv, “A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design,” Genome Biol.14(7), R72 (2013).
    [CrossRef] [PubMed]
  7. G. Nir, R. S. Sahebjavaher, P. Kozlowski, S. D. Chang, R. Sinkus, S. L. Goldenberg, and S. E. Salcudean, “Model-based registration of ex vivo and in vivo MRI of the prostate using elastography,” IEEE Trans. Med. Imaging32(6), 1068–1080 (2013).
    [CrossRef] [PubMed]
  8. K. Maruo, M. Tsurugi, M. Tamura, and Y. Ozaki, “In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy,” Appl. Spectrosc.57(10), 1236–1244 (2003).
    [CrossRef] [PubMed]
  9. N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
    [CrossRef] [PubMed]
  10. H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys.22(4), 797–804 (2012).
    [CrossRef]
  11. Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, “Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography,” Laser Phys. Lett.8(1), 71–77 (2011).
    [CrossRef]
  12. K. Maruo, T. Oota, M. Tsurugi, T. Nakagawa, H. Arimoto, M. Tamura, Y. Ozaki, and Y. Yamada, “New Methodology to Obtain a Calibration Model for Noninvasive Near-Infrared Blood Glucose Monitoring,” Appl. Spectrosc.60(4), 441–449 (2006).
    [CrossRef] [PubMed]
  13. M. K. Chowdhury, A. Srivastava, N. Sharma, and S. Sharma, “Challenges and countermeasures in optical noninvasive blood glucose detection,” Int. J. Innovative Res. Sci. Eng. Technol.2(1), 329–334 (2013).
  14. M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo Noninvasive Monitoring of Glucose Concentration in Human Epidermis by Mid-Infrared Pulsed Photoacoustic Spectroscopy,” Anal. Chem.85(2), 1013–1020 (2013).
    [CrossRef] [PubMed]
  15. A. Seddon, “Mid-infrared (IR) – A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi, B Basic Res.250(5), 1020–1027 (2013).
    [CrossRef]
  16. S. Liakat, A. P. Michel, K. A. Bors, and C. Gmachl, “Mid-infrared (λ=8.4-9.9 μm) light scattering from porcine tissue,” Appl. Phys. Lett.101(9), 093705 (2012).
    [CrossRef]
  17. A. P. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Biomed. Opt. Express4(4), 520–530 (2013).
    [CrossRef] [PubMed]
  18. S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of Glucose Concentration in Interstitial Fluid, and Capillary and Venous Blood During Rapid Changes in Blood Glucose Levels,” Diabetes Technol. Ther.3(3), 357–365 (2001).
    [CrossRef] [PubMed]
  19. J. S. Li, W. Chen, and H. Fischer, “Quantum Cascade Laser Spectrometry Techniques: A New Trend in Atmospheric Chemistry,” Appl. Spectrosc. Rev.48(7), 523–559 (2013).
    [CrossRef]
  20. M. E. Lamar, T. J. Kuehl, A. T. Cooney, L. J. Gayle, S. Holleman, and S. R. Allen, “Jelly beans as an alternative to a fifty-gram glucose beverage for gestational diabetes screening,” Am. J. Obstet. Gynecol.181(5), 1154–1157 (1999).
    [CrossRef] [PubMed]
  21. J. Jun, J. Harris, J. Humphrey, and S. Rastegar, “Effect of Thermal Damage and Biaxial Loading on the Optical Properties of a Collagenous Tissue,” Transactions of the ASME,125,540-548 (2003).
    [CrossRef]
  22. S. de Jong, “SIMPLS: an alternative approach to partial least squares regression,” Chemom. Intell. Lab. Syst.18(3), 251–263 (1993).
    [CrossRef]
  23. W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
    [CrossRef] [PubMed]

2013 (9)

S. Liakat, K. A. Bors, T. Y. Huang, A. P. Michel, E. Zanghi, and C. F. Gmachl, “In vitro measurements of physiological glucose concentrations in biological fluids using mid-infrared light,” Biomed. Opt. Express4(7), 1083–1090 (2013).
[CrossRef] [PubMed]

T. M. Greve, S. Kamp, and G. B. Jemec, “Disease quantification in dermatology: in vivo near-infrared spectroscopy measures correlate strongly with the clinical assessment of psoriasis severity,” J. Biomed. Opt.18(3), 037006 (2013).
[CrossRef] [PubMed]

R. P. Smith, S. J. Riesenfeld, A. K. Holloway, Q. Li, K. K. Murphy, N. M. Feliciano, L. Orecchia, N. Oksenberg, K. S. Pollard, and N. Ahituv, “A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design,” Genome Biol.14(7), R72 (2013).
[CrossRef] [PubMed]

G. Nir, R. S. Sahebjavaher, P. Kozlowski, S. D. Chang, R. Sinkus, S. L. Goldenberg, and S. E. Salcudean, “Model-based registration of ex vivo and in vivo MRI of the prostate using elastography,” IEEE Trans. Med. Imaging32(6), 1068–1080 (2013).
[CrossRef] [PubMed]

M. K. Chowdhury, A. Srivastava, N. Sharma, and S. Sharma, “Challenges and countermeasures in optical noninvasive blood glucose detection,” Int. J. Innovative Res. Sci. Eng. Technol.2(1), 329–334 (2013).

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo Noninvasive Monitoring of Glucose Concentration in Human Epidermis by Mid-Infrared Pulsed Photoacoustic Spectroscopy,” Anal. Chem.85(2), 1013–1020 (2013).
[CrossRef] [PubMed]

A. Seddon, “Mid-infrared (IR) – A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi, B Basic Res.250(5), 1020–1027 (2013).
[CrossRef]

J. S. Li, W. Chen, and H. Fischer, “Quantum Cascade Laser Spectrometry Techniques: A New Trend in Atmospheric Chemistry,” Appl. Spectrosc. Rev.48(7), 523–559 (2013).
[CrossRef]

A. P. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Biomed. Opt. Express4(4), 520–530 (2013).
[CrossRef] [PubMed]

2012 (2)

S. Liakat, A. P. Michel, K. A. Bors, and C. Gmachl, “Mid-infrared (λ=8.4-9.9 μm) light scattering from porcine tissue,” Appl. Phys. Lett.101(9), 093705 (2012).
[CrossRef]

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys.22(4), 797–804 (2012).
[CrossRef]

2011 (3)

Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, “Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography,” Laser Phys. Lett.8(1), 71–77 (2011).
[CrossRef]

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

2006 (1)

2004 (1)

O. S. Khalil, “Non-invasive Glucose Measurement Technologies: An Update from 1999 to the Dawn of the New Millennium,” Diabetes Technol. Ther.6(5), 660–697 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of Glucose Concentration in Interstitial Fluid, and Capillary and Venous Blood During Rapid Changes in Blood Glucose Levels,” Diabetes Technol. Ther.3(3), 357–365 (2001).
[CrossRef] [PubMed]

1999 (1)

M. E. Lamar, T. J. Kuehl, A. T. Cooney, L. J. Gayle, S. Holleman, and S. R. Allen, “Jelly beans as an alternative to a fifty-gram glucose beverage for gestational diabetes screening,” Am. J. Obstet. Gynecol.181(5), 1154–1157 (1999).
[CrossRef] [PubMed]

1993 (1)

S. de Jong, “SIMPLS: an alternative approach to partial least squares regression,” Chemom. Intell. Lab. Syst.18(3), 251–263 (1993).
[CrossRef]

1987 (1)

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
[CrossRef] [PubMed]

Ahituv, N.

R. P. Smith, S. J. Riesenfeld, A. K. Holloway, Q. Li, K. K. Murphy, N. M. Feliciano, L. Orecchia, N. Oksenberg, K. S. Pollard, and N. Ahituv, “A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design,” Genome Biol.14(7), R72 (2013).
[CrossRef] [PubMed]

Ali, M. K.

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Allen, S. R.

M. E. Lamar, T. J. Kuehl, A. T. Cooney, L. J. Gayle, S. Holleman, and S. R. Allen, “Jelly beans as an alternative to a fifty-gram glucose beverage for gestational diabetes screening,” Am. J. Obstet. Gynecol.181(5), 1154–1157 (1999).
[CrossRef] [PubMed]

Arimoto, H.

Barman, I.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Bauer, A.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo Noninvasive Monitoring of Glucose Concentration in Human Epidermis by Mid-Infrared Pulsed Photoacoustic Spectroscopy,” Anal. Chem.85(2), 1013–1020 (2013).
[CrossRef] [PubMed]

Block, M. B.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of Glucose Concentration in Interstitial Fluid, and Capillary and Venous Blood During Rapid Changes in Blood Glucose Levels,” Diabetes Technol. Ther.3(3), 357–365 (2001).
[CrossRef] [PubMed]

Bors, K.

Bors, K. A.

Carter, W.

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
[CrossRef] [PubMed]

Chang, S. D.

G. Nir, R. S. Sahebjavaher, P. Kozlowski, S. D. Chang, R. Sinkus, S. L. Goldenberg, and S. E. Salcudean, “Model-based registration of ex vivo and in vivo MRI of the prostate using elastography,” IEEE Trans. Med. Imaging32(6), 1068–1080 (2013).
[CrossRef] [PubMed]

Chen, W.

J. S. Li, W. Chen, and H. Fischer, “Quantum Cascade Laser Spectrometry Techniques: A New Trend in Atmospheric Chemistry,” Appl. Spectrosc. Rev.48(7), 523–559 (2013).
[CrossRef]

Chowdhury, M. K.

M. K. Chowdhury, A. Srivastava, N. Sharma, and S. Sharma, “Challenges and countermeasures in optical noninvasive blood glucose detection,” Int. J. Innovative Res. Sci. Eng. Technol.2(1), 329–334 (2013).

Clarke, W. L.

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
[CrossRef] [PubMed]

Cooney, A. T.

M. E. Lamar, T. J. Kuehl, A. T. Cooney, L. J. Gayle, S. Holleman, and S. R. Allen, “Jelly beans as an alternative to a fifty-gram glucose beverage for gestational diabetes screening,” Am. J. Obstet. Gynecol.181(5), 1154–1157 (1999).
[CrossRef] [PubMed]

Cowan, M. J.

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Cox, D.

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
[CrossRef] [PubMed]

Danaei, G.

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Dasari, R. R.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Davoudi, B.

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys.22(4), 797–804 (2012).
[CrossRef]

de Jong, S.

S. de Jong, “SIMPLS: an alternative approach to partial least squares regression,” Chemom. Intell. Lab. Syst.18(3), 251–263 (1993).
[CrossRef]

Dingari, N. C.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Ezzati, M.

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Farzadfar, F.

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Feld, M. S.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Feliciano, N. M.

R. P. Smith, S. J. Riesenfeld, A. K. Holloway, Q. Li, K. K. Murphy, N. M. Feliciano, L. Orecchia, N. Oksenberg, K. S. Pollard, and N. Ahituv, “A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design,” Genome Biol.14(7), R72 (2013).
[CrossRef] [PubMed]

Finucane, M. M.

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Fischer, H.

J. S. Li, W. Chen, and H. Fischer, “Quantum Cascade Laser Spectrometry Techniques: A New Trend in Atmospheric Chemistry,” Appl. Spectrosc. Rev.48(7), 523–559 (2013).
[CrossRef]

Gayle, L. J.

M. E. Lamar, T. J. Kuehl, A. T. Cooney, L. J. Gayle, S. Holleman, and S. R. Allen, “Jelly beans as an alternative to a fifty-gram glucose beverage for gestational diabetes screening,” Am. J. Obstet. Gynecol.181(5), 1154–1157 (1999).
[CrossRef] [PubMed]

Gmachl, C.

S. Liakat, A. P. Michel, K. A. Bors, and C. Gmachl, “Mid-infrared (λ=8.4-9.9 μm) light scattering from porcine tissue,” Appl. Phys. Lett.101(9), 093705 (2012).
[CrossRef]

Gmachl, C. F.

Goldenberg, S. L.

G. Nir, R. S. Sahebjavaher, P. Kozlowski, S. D. Chang, R. Sinkus, S. L. Goldenberg, and S. E. Salcudean, “Model-based registration of ex vivo and in vivo MRI of the prostate using elastography,” IEEE Trans. Med. Imaging32(6), 1068–1080 (2013).
[CrossRef] [PubMed]

Gonder-Frederick, L. A.

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
[CrossRef] [PubMed]

Greve, T. M.

T. M. Greve, S. Kamp, and G. B. Jemec, “Disease quantification in dermatology: in vivo near-infrared spectroscopy measures correlate strongly with the clinical assessment of psoriasis severity,” J. Biomed. Opt.18(3), 037006 (2013).
[CrossRef] [PubMed]

Guo, X.

Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, “Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography,” Laser Phys. Lett.8(1), 71–77 (2011).
[CrossRef]

Guo, Z. Y.

Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, “Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography,” Laser Phys. Lett.8(1), 71–77 (2011).
[CrossRef]

Harris, J.

J. Jun, J. Harris, J. Humphrey, and S. Rastegar, “Effect of Thermal Damage and Biaxial Loading on the Optical Properties of a Collagenous Tissue,” Transactions of the ASME,125,540-548 (2003).
[CrossRef]

Hazen, K. H.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of Glucose Concentration in Interstitial Fluid, and Capillary and Venous Blood During Rapid Changes in Blood Glucose Levels,” Diabetes Technol. Ther.3(3), 357–365 (2001).
[CrossRef] [PubMed]

Hertzberg, O.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo Noninvasive Monitoring of Glucose Concentration in Human Epidermis by Mid-Infrared Pulsed Photoacoustic Spectroscopy,” Anal. Chem.85(2), 1013–1020 (2013).
[CrossRef] [PubMed]

Holleman, S.

M. E. Lamar, T. J. Kuehl, A. T. Cooney, L. J. Gayle, S. Holleman, and S. R. Allen, “Jelly beans as an alternative to a fifty-gram glucose beverage for gestational diabetes screening,” Am. J. Obstet. Gynecol.181(5), 1154–1157 (1999).
[CrossRef] [PubMed]

Holloway, A. K.

R. P. Smith, S. J. Riesenfeld, A. K. Holloway, Q. Li, K. K. Murphy, N. M. Feliciano, L. Orecchia, N. Oksenberg, K. S. Pollard, and N. Ahituv, “A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design,” Genome Biol.14(7), R72 (2013).
[CrossRef] [PubMed]

Huang, T. Y.

Humphrey, J.

J. Jun, J. Harris, J. Humphrey, and S. Rastegar, “Effect of Thermal Damage and Biaxial Loading on the Optical Properties of a Collagenous Tissue,” Transactions of the ASME,125,540-548 (2003).
[CrossRef]

Hussain, G.

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys.22(4), 797–804 (2012).
[CrossRef]

Ikram, M.

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys.22(4), 797–804 (2012).
[CrossRef]

Jemec, G. B.

T. M. Greve, S. Kamp, and G. B. Jemec, “Disease quantification in dermatology: in vivo near-infrared spectroscopy measures correlate strongly with the clinical assessment of psoriasis severity,” J. Biomed. Opt.18(3), 037006 (2013).
[CrossRef] [PubMed]

Jun, J.

J. Jun, J. Harris, J. Humphrey, and S. Rastegar, “Effect of Thermal Damage and Biaxial Loading on the Optical Properties of a Collagenous Tissue,” Transactions of the ASME,125,540-548 (2003).
[CrossRef]

Kamp, S.

T. M. Greve, S. Kamp, and G. B. Jemec, “Disease quantification in dermatology: in vivo near-infrared spectroscopy measures correlate strongly with the clinical assessment of psoriasis severity,” J. Biomed. Opt.18(3), 037006 (2013).
[CrossRef] [PubMed]

Kang, J. W.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Khalil, O. S.

O. S. Khalil, “Non-invasive Glucose Measurement Technologies: An Update from 1999 to the Dawn of the New Millennium,” Diabetes Technol. Ther.6(5), 660–697 (2004).
[CrossRef] [PubMed]

Khang, Y. H.

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Kozlowski, P.

G. Nir, R. S. Sahebjavaher, P. Kozlowski, S. D. Chang, R. Sinkus, S. L. Goldenberg, and S. E. Salcudean, “Model-based registration of ex vivo and in vivo MRI of the prostate using elastography,” IEEE Trans. Med. Imaging32(6), 1068–1080 (2013).
[CrossRef] [PubMed]

Kuehl, T. J.

M. E. Lamar, T. J. Kuehl, A. T. Cooney, L. J. Gayle, S. Holleman, and S. R. Allen, “Jelly beans as an alternative to a fifty-gram glucose beverage for gestational diabetes screening,” Am. J. Obstet. Gynecol.181(5), 1154–1157 (1999).
[CrossRef] [PubMed]

Lamar, M. E.

M. E. Lamar, T. J. Kuehl, A. T. Cooney, L. J. Gayle, S. Holleman, and S. R. Allen, “Jelly beans as an alternative to a fifty-gram glucose beverage for gestational diabetes screening,” Am. J. Obstet. Gynecol.181(5), 1154–1157 (1999).
[CrossRef] [PubMed]

Li, J. S.

J. S. Li, W. Chen, and H. Fischer, “Quantum Cascade Laser Spectrometry Techniques: A New Trend in Atmospheric Chemistry,” Appl. Spectrosc. Rev.48(7), 523–559 (2013).
[CrossRef]

Li, L. Q.

Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, “Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography,” Laser Phys. Lett.8(1), 71–77 (2011).
[CrossRef]

Li, Q.

R. P. Smith, S. J. Riesenfeld, A. K. Holloway, Q. Li, K. K. Murphy, N. M. Feliciano, L. Orecchia, N. Oksenberg, K. S. Pollard, and N. Ahituv, “A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design,” Genome Biol.14(7), R72 (2013).
[CrossRef] [PubMed]

Li, X. Y.

Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, “Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography,” Laser Phys. Lett.8(1), 71–77 (2011).
[CrossRef]

Liakat, S.

Lieblein, T.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo Noninvasive Monitoring of Glucose Concentration in Human Epidermis by Mid-Infrared Pulsed Photoacoustic Spectroscopy,” Anal. Chem.85(2), 1013–1020 (2013).
[CrossRef] [PubMed]

Lin, J. K.

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Lu, Y.

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Mäntele, W.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo Noninvasive Monitoring of Glucose Concentration in Human Epidermis by Mid-Infrared Pulsed Photoacoustic Spectroscopy,” Anal. Chem.85(2), 1013–1020 (2013).
[CrossRef] [PubMed]

Mariampillai, A.

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys.22(4), 797–804 (2012).
[CrossRef]

Maruo, K.

Michel, A. P.

Murphy, K. K.

R. P. Smith, S. J. Riesenfeld, A. K. Holloway, Q. Li, K. K. Murphy, N. M. Feliciano, L. Orecchia, N. Oksenberg, K. S. Pollard, and N. Ahituv, “A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design,” Genome Biol.14(7), R72 (2013).
[CrossRef] [PubMed]

Nakagawa, T.

Nir, G.

G. Nir, R. S. Sahebjavaher, P. Kozlowski, S. D. Chang, R. Sinkus, S. L. Goldenberg, and S. E. Salcudean, “Model-based registration of ex vivo and in vivo MRI of the prostate using elastography,” IEEE Trans. Med. Imaging32(6), 1068–1080 (2013).
[CrossRef] [PubMed]

Oksenberg, N.

R. P. Smith, S. J. Riesenfeld, A. K. Holloway, Q. Li, K. K. Murphy, N. M. Feliciano, L. Orecchia, N. Oksenberg, K. S. Pollard, and N. Ahituv, “A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design,” Genome Biol.14(7), R72 (2013).
[CrossRef] [PubMed]

Oota, T.

Orecchia, L.

R. P. Smith, S. J. Riesenfeld, A. K. Holloway, Q. Li, K. K. Murphy, N. M. Feliciano, L. Orecchia, N. Oksenberg, K. S. Pollard, and N. Ahituv, “A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design,” Genome Biol.14(7), R72 (2013).
[CrossRef] [PubMed]

Ozaki, Y.

Paciorek, C. J.

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Pleitez, M. A.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo Noninvasive Monitoring of Glucose Concentration in Human Epidermis by Mid-Infrared Pulsed Photoacoustic Spectroscopy,” Anal. Chem.85(2), 1013–1020 (2013).
[CrossRef] [PubMed]

Pohl, S. L.

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
[CrossRef] [PubMed]

Pollard, K. S.

R. P. Smith, S. J. Riesenfeld, A. K. Holloway, Q. Li, K. K. Murphy, N. M. Feliciano, L. Orecchia, N. Oksenberg, K. S. Pollard, and N. Ahituv, “A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design,” Genome Biol.14(7), R72 (2013).
[CrossRef] [PubMed]

Rao, M.

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Rastegar, S.

J. Jun, J. Harris, J. Humphrey, and S. Rastegar, “Effect of Thermal Damage and Biaxial Loading on the Optical Properties of a Collagenous Tissue,” Transactions of the ASME,125,540-548 (2003).
[CrossRef]

Rennert, J. L.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of Glucose Concentration in Interstitial Fluid, and Capillary and Venous Blood During Rapid Changes in Blood Glucose Levels,” Diabetes Technol. Ther.3(3), 357–365 (2001).
[CrossRef] [PubMed]

Riesenfeld, S. J.

R. P. Smith, S. J. Riesenfeld, A. K. Holloway, Q. Li, K. K. Murphy, N. M. Feliciano, L. Orecchia, N. Oksenberg, K. S. Pollard, and N. Ahituv, “A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design,” Genome Biol.14(7), R72 (2013).
[CrossRef] [PubMed]

Riley, L. M.

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Robinson, C. A.

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Ruchti, T. L.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of Glucose Concentration in Interstitial Fluid, and Capillary and Venous Blood During Rapid Changes in Blood Glucose Levels,” Diabetes Technol. Ther.3(3), 357–365 (2001).
[CrossRef] [PubMed]

Sahebjavaher, R. S.

G. Nir, R. S. Sahebjavaher, P. Kozlowski, S. D. Chang, R. Sinkus, S. L. Goldenberg, and S. E. Salcudean, “Model-based registration of ex vivo and in vivo MRI of the prostate using elastography,” IEEE Trans. Med. Imaging32(6), 1068–1080 (2013).
[CrossRef] [PubMed]

Salcudean, S. E.

G. Nir, R. S. Sahebjavaher, P. Kozlowski, S. D. Chang, R. Sinkus, S. L. Goldenberg, and S. E. Salcudean, “Model-based registration of ex vivo and in vivo MRI of the prostate using elastography,” IEEE Trans. Med. Imaging32(6), 1068–1080 (2013).
[CrossRef] [PubMed]

Seddon, A.

A. Seddon, “Mid-infrared (IR) – A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi, B Basic Res.250(5), 1020–1027 (2013).
[CrossRef]

Sharma, N.

M. K. Chowdhury, A. Srivastava, N. Sharma, and S. Sharma, “Challenges and countermeasures in optical noninvasive blood glucose detection,” Int. J. Innovative Res. Sci. Eng. Technol.2(1), 329–334 (2013).

Sharma, S.

M. K. Chowdhury, A. Srivastava, N. Sharma, and S. Sharma, “Challenges and countermeasures in optical noninvasive blood glucose detection,” Int. J. Innovative Res. Sci. Eng. Technol.2(1), 329–334 (2013).

Si, J. L.

Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, “Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography,” Laser Phys. Lett.8(1), 71–77 (2011).
[CrossRef]

Singh, G. M.

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Singh, G. P.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Sinkus, R.

G. Nir, R. S. Sahebjavaher, P. Kozlowski, S. D. Chang, R. Sinkus, S. L. Goldenberg, and S. E. Salcudean, “Model-based registration of ex vivo and in vivo MRI of the prostate using elastography,” IEEE Trans. Med. Imaging32(6), 1068–1080 (2013).
[CrossRef] [PubMed]

Smith, R. P.

R. P. Smith, S. J. Riesenfeld, A. K. Holloway, Q. Li, K. K. Murphy, N. M. Feliciano, L. Orecchia, N. Oksenberg, K. S. Pollard, and N. Ahituv, “A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design,” Genome Biol.14(7), R72 (2013).
[CrossRef] [PubMed]

Srivastava, A.

M. K. Chowdhury, A. Srivastava, N. Sharma, and S. Sharma, “Challenges and countermeasures in optical noninvasive blood glucose detection,” Int. J. Innovative Res. Sci. Eng. Technol.2(1), 329–334 (2013).

Stevens, G. A.

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Tamura, M.

Thennadil, S. N.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of Glucose Concentration in Interstitial Fluid, and Capillary and Venous Blood During Rapid Changes in Blood Glucose Levels,” Diabetes Technol. Ther.3(3), 357–365 (2001).
[CrossRef] [PubMed]

Tsurugi, M.

Ullah, H.

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys.22(4), 797–804 (2012).
[CrossRef]

Vitkin, I. A.

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys.22(4), 797–804 (2012).
[CrossRef]

von Lilienfeld-Toal, H.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo Noninvasive Monitoring of Glucose Concentration in Human Epidermis by Mid-Infrared Pulsed Photoacoustic Spectroscopy,” Anal. Chem.85(2), 1013–1020 (2013).
[CrossRef] [PubMed]

Wei, H. J.

Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, “Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography,” Laser Phys. Lett.8(1), 71–77 (2011).
[CrossRef]

Wenzel, B. J.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of Glucose Concentration in Interstitial Fluid, and Capillary and Venous Blood During Rapid Changes in Blood Glucose Levels,” Diabetes Technol. Ther.3(3), 357–365 (2001).
[CrossRef] [PubMed]

Wu, G. Y.

Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, “Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography,” Laser Phys. Lett.8(1), 71–77 (2011).
[CrossRef]

Xie, S. S.

Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, “Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography,” Laser Phys. Lett.8(1), 71–77 (2011).
[CrossRef]

Yamada, Y.

Yang, H. Q.

Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, “Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography,” Laser Phys. Lett.8(1), 71–77 (2011).
[CrossRef]

Zanghi, E.

Zhao, Q. L.

Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, “Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography,” Laser Phys. Lett.8(1), 71–77 (2011).
[CrossRef]

Zhong, H. Q.

Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, “Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography,” Laser Phys. Lett.8(1), 71–77 (2011).
[CrossRef]

Am. J. Obstet. Gynecol. (1)

M. E. Lamar, T. J. Kuehl, A. T. Cooney, L. J. Gayle, S. Holleman, and S. R. Allen, “Jelly beans as an alternative to a fifty-gram glucose beverage for gestational diabetes screening,” Am. J. Obstet. Gynecol.181(5), 1154–1157 (1999).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Anal. Chem. (1)

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo Noninvasive Monitoring of Glucose Concentration in Human Epidermis by Mid-Infrared Pulsed Photoacoustic Spectroscopy,” Anal. Chem.85(2), 1013–1020 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Liakat, A. P. Michel, K. A. Bors, and C. Gmachl, “Mid-infrared (λ=8.4-9.9 μm) light scattering from porcine tissue,” Appl. Phys. Lett.101(9), 093705 (2012).
[CrossRef]

Appl. Spectrosc. (2)

Appl. Spectrosc. Rev. (1)

J. S. Li, W. Chen, and H. Fischer, “Quantum Cascade Laser Spectrometry Techniques: A New Trend in Atmospheric Chemistry,” Appl. Spectrosc. Rev.48(7), 523–559 (2013).
[CrossRef]

Biomed. Opt. Express (2)

Chemom. Intell. Lab. Syst. (1)

S. de Jong, “SIMPLS: an alternative approach to partial least squares regression,” Chemom. Intell. Lab. Syst.18(3), 251–263 (1993).
[CrossRef]

Diabetes Care (1)

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
[CrossRef] [PubMed]

Diabetes Technol. Ther. (2)

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of Glucose Concentration in Interstitial Fluid, and Capillary and Venous Blood During Rapid Changes in Blood Glucose Levels,” Diabetes Technol. Ther.3(3), 357–365 (2001).
[CrossRef] [PubMed]

O. S. Khalil, “Non-invasive Glucose Measurement Technologies: An Update from 1999 to the Dawn of the New Millennium,” Diabetes Technol. Ther.6(5), 660–697 (2004).
[CrossRef] [PubMed]

Genome Biol. (1)

R. P. Smith, S. J. Riesenfeld, A. K. Holloway, Q. Li, K. K. Murphy, N. M. Feliciano, L. Orecchia, N. Oksenberg, K. S. Pollard, and N. Ahituv, “A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design,” Genome Biol.14(7), R72 (2013).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

G. Nir, R. S. Sahebjavaher, P. Kozlowski, S. D. Chang, R. Sinkus, S. L. Goldenberg, and S. E. Salcudean, “Model-based registration of ex vivo and in vivo MRI of the prostate using elastography,” IEEE Trans. Med. Imaging32(6), 1068–1080 (2013).
[CrossRef] [PubMed]

Int. J. Innovative Res. Sci. Eng. Technol. (1)

M. K. Chowdhury, A. Srivastava, N. Sharma, and S. Sharma, “Challenges and countermeasures in optical noninvasive blood glucose detection,” Int. J. Innovative Res. Sci. Eng. Technol.2(1), 329–334 (2013).

J. Biomed. Opt. (1)

T. M. Greve, S. Kamp, and G. B. Jemec, “Disease quantification in dermatology: in vivo near-infrared spectroscopy measures correlate strongly with the clinical assessment of psoriasis severity,” J. Biomed. Opt.18(3), 037006 (2013).
[CrossRef] [PubMed]

Lancet (1)

G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011).
[CrossRef] [PubMed]

Laser Phys. (1)

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys.22(4), 797–804 (2012).
[CrossRef]

Laser Phys. Lett. (1)

Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, “Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography,” Laser Phys. Lett.8(1), 71–77 (2011).
[CrossRef]

Phys. Status Solidi, B Basic Res. (1)

A. Seddon, “Mid-infrared (IR) – A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi, B Basic Res.250(5), 1020–1027 (2013).
[CrossRef]

Other (2)

V. Tuchin, Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC, 2009).

J. Jun, J. Harris, J. Humphrey, and S. Rastegar, “Effect of Thermal Damage and Biaxial Loading on the Optical Properties of a Collagenous Tissue,” Transactions of the ASME,125,540-548 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup used to collect mid-IR spectra from human skin. Delivery of QC laser light as well as collection of light backscattered from within the skin are both done through utilization of hollow core fibers coated for optimal transmission of wavelengths from 8 – 10 μm.

Fig. 2
Fig. 2

Comparison of backscattered mid-IR human spectra containing a glucose concentration of 112 mg/dL (blue) with transmission spectra of aqueous glucose solution at a concentration of 105 mg/dL (red). The strongest glucose feature represented by skin spectra occurs around 1080 cm−1 and is still directly visible in the scattering spectra from skin.

Fig. 3
Fig. 3

(Top) General depiction of a Clarke error grid, denoting varying regions of prediction accuracy. (Bottom) Clarke error grid plots of predicted versus expected glucose concentrations versus for three different human subjects. Predictions in the green region indicate clinical accuracy, and predictions in the yellow region indicate benign inaccuracies. For an individual subject, clinical accuracy was achieved over 70% of the time, and with results aggregated, clinical accuracy was achieved 84% of the time.

Fig. 4
Fig. 4

(Top): Ten mid-IR human spectra, each representing 86 mg/dL glucose concentration (blue) and 112 mg/dL glucose concentration (red). (Bottom): Average values for spectra of both concentrations at three specific wavenumbers: 1080, 1130, and 1165 cm−1. At 1080 cm−1, where glucose is expected to absorb, a correlation between attenuation in scattered signal versus increased glucose concentration is observed to beyond a standard deviation. At the other two non glucose-specific wavenumbers, such a correlation was not observed.

Fig. 5
Fig. 5

(a): Spectra of backscattered light from a human subject’s palm recorded at equidistant time intervals during a fluctuation of glucose concentration, caused by the consumption of jellybeans. Numerical concentration values were obtained using a commercial monitor. (b): Glucose concentrations predicted from the spectra seen on top plotted versus time, and compared to the curve of measured concentration versus time.

Metrics