Abstract

We demonstrate multi-mode microscopy based on a single femtosecond fiber laser. Coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS) and photothermal images can be obtained simultaneously with this simplified setup. Distributions of lipid and hemoglobin in sliced mouse brain samples and blood cells are imaged. The dependency of signal amplitude on the pump power and pump modulation frequency is characterized, which allows to isolate the impact from different contributions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011).
    [CrossRef] [PubMed]
  2. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  3. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
    [CrossRef]
  4. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B105(7), 1277–1280 (2001).
    [CrossRef]
  5. W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging Chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
    [CrossRef] [PubMed]
  6. E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express15(8), 4848–4856 (2007).
    [CrossRef] [PubMed]
  7. K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett.34(13), 2051–2053 (2009).
    [CrossRef] [PubMed]
  8. G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett.34(18), 2847–2849 (2009).
    [CrossRef] [PubMed]
  9. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express17(23), 20700–20706 (2009).
    [CrossRef] [PubMed]
  10. A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett.35(2), 226–228 (2010).
    [CrossRef] [PubMed]
  11. P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser,” Appl. Phys. Lett.99(18), 181112 (2011).
    [CrossRef] [PubMed]
  12. E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett.36(13), 2387–2389 (2011).
    [CrossRef] [PubMed]
  13. S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Opt. Express2(5), 1296 (2011).
    [CrossRef]
  14. Y.-H. Zhai, C. Goulart, J.E. Sharping, H. Wei, S. Chen, W. Tong, M.N. Slipchenko, D. Zhang, and J.-X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett.98, 191106 (2011).
  15. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. Sunney Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.37(10), 1652–1654 (2012).
    [CrossRef] [PubMed]
  16. K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, and K. Itoh, “Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique,” Opt. Express20(13), 13958–13965 (2012).
    [CrossRef] [PubMed]
  17. E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.38(20), 4154–4157 (2013).
    [CrossRef] [PubMed]
  18. J. Su, R. Xie, C. K. Johnson, and R. Hui, “Single fiber laser based wavelength tunable excitation for coherent Raman spectroscopy,” J. Opt. Soc. Am. B30(6), 1671–1682 (2013).
    [CrossRef] [PubMed]
  19. C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics8(2), 153–159 (2014).
    [CrossRef]
  20. J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two-Photon Microscopy with Wavelength Switchable Fiber Laser Excitation,” Opt. Express14(21), 9825–9831 (2006).
    [CrossRef] [PubMed]
  21. K. Tada and N. Karasawa, “Broadband coherent anti-stokes raman scattering spectroscopy using soliton pulse trains from a photonic crystal fiber,” Opt. Commun.282(19), 3948–3952 (2009).
    [CrossRef]
  22. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express20(4), 4484–4493 (2012).
    [CrossRef] [PubMed]
  23. P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum.80(3), 033107 (2009).
    [CrossRef] [PubMed]
  24. M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem.73(9), 2112–2116 (2001).
    [CrossRef] [PubMed]
  25. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science297(5584), 1160–1163 (2002).
    [CrossRef] [PubMed]
  26. A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics3(12), 791–806 (2010).
    [CrossRef] [PubMed]
  27. S.-J. Lu, W. Min, S.-S. Chong, G.R. Holtom, and X.S. Xie, “Label-free imaging of heme proteins with two-photon excited lens microscopy,” Appl. Phys. Lett.96, 113701 (2010).
  28. J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc.43(5), 668–674 (2012).
    [CrossRef]
  29. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25 (2004).
    [CrossRef]
  30. C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express15(19), 12076–12087 (2007).
    [CrossRef] [PubMed]
  31. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996).
  32. W. A. Eaton and J. Hofrichter, “Polarized absorption and linear dichroism spectroscopy of hemoglobin,” Methods Enzymol.76, 175–261 (1981).
    [CrossRef] [PubMed]
  33. G. O. Clay, C. B. Schaffer, and D. Kleinfeld, “Large two-photon absorptivity of hemoglobin in the infrared range of 780-880 nm,” J. Chem. Phys.126(2), 025102 (2007).
    [CrossRef] [PubMed]

2014 (1)

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics8(2), 153–159 (2014).
[CrossRef]

2013 (2)

2012 (4)

2011 (5)

S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Opt. Express2(5), 1296 (2011).
[CrossRef]

Y.-H. Zhai, C. Goulart, J.E. Sharping, H. Wei, S. Chen, W. Tong, M.N. Slipchenko, D. Zhang, and J.-X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett.98, 191106 (2011).

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser,” Appl. Phys. Lett.99(18), 181112 (2011).
[CrossRef] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011).
[CrossRef] [PubMed]

E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett.36(13), 2387–2389 (2011).
[CrossRef] [PubMed]

2010 (3)

A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett.35(2), 226–228 (2010).
[CrossRef] [PubMed]

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics3(12), 791–806 (2010).
[CrossRef] [PubMed]

S.-J. Lu, W. Min, S.-S. Chong, G.R. Holtom, and X.S. Xie, “Label-free imaging of heme proteins with two-photon excited lens microscopy,” Appl. Phys. Lett.96, 113701 (2010).

2009 (6)

K. Tada and N. Karasawa, “Broadband coherent anti-stokes raman scattering spectroscopy using soliton pulse trains from a photonic crystal fiber,” Opt. Commun.282(19), 3948–3952 (2009).
[CrossRef]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging Chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum.80(3), 033107 (2009).
[CrossRef] [PubMed]

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett.34(13), 2051–2053 (2009).
[CrossRef] [PubMed]

G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett.34(18), 2847–2849 (2009).
[CrossRef] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express17(23), 20700–20706 (2009).
[CrossRef] [PubMed]

2008 (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (1)

2004 (1)

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25 (2004).
[CrossRef]

2002 (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

2001 (2)

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B105(7), 1277–1280 (2001).
[CrossRef]

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem.73(9), 2112–2116 (2001).
[CrossRef] [PubMed]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

1981 (1)

W. A. Eaton and J. Hofrichter, “Polarized absorption and linear dichroism spectroscopy of hemoglobin,” Methods Enzymol.76, 175–261 (1981).
[CrossRef] [PubMed]

Adany, P.

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser,” Appl. Phys. Lett.99(18), 181112 (2011).
[CrossRef] [PubMed]

P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum.80(3), 033107 (2009).
[CrossRef] [PubMed]

Andresen, E. R.

Arnett, D. C.

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser,” Appl. Phys. Lett.99(18), 181112 (2011).
[CrossRef] [PubMed]

Baumgartl, M.

Bégin, S.

S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Opt. Express2(5), 1296 (2011).
[CrossRef]

Begley, D.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc.43(5), 668–674 (2012).
[CrossRef]

Berto, P.

Book, L. D.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B105(7), 1277–1280 (2001).
[CrossRef]

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Brusnichkin, A. V.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics3(12), 791–806 (2010).
[CrossRef] [PubMed]

Burgoyne, B.

S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Opt. Express2(5), 1296 (2011).
[CrossRef]

Cerullo, G.

Chemnitz, M.

Chen, S.

Y.-H. Zhai, C. Goulart, J.E. Sharping, H. Wei, S. Chen, W. Tong, M.N. Slipchenko, D. Zhang, and J.-X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett.98, 191106 (2011).

Cheng, J.-X.

Y.-H. Zhai, C. Goulart, J.E. Sharping, H. Wei, S. Chen, W. Tong, M.N. Slipchenko, D. Zhang, and J.-X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett.98, 191106 (2011).

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B105(7), 1277–1280 (2001).
[CrossRef]

Chong, S.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging Chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

Chong, S.-S.

S.-J. Lu, W. Min, S.-S. Chong, G.R. Holtom, and X.S. Xie, “Label-free imaging of heme proteins with two-photon excited lens microscopy,” Appl. Phys. Lett.96, 113701 (2010).

Clay, G. O.

G. O. Clay, C. B. Schaffer, and D. Kleinfeld, “Large two-photon absorptivity of hemoglobin in the infrared range of 780-880 nm,” J. Chem. Phys.126(2), 025102 (2007).
[CrossRef] [PubMed]

Côté, D.

S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Opt. Express2(5), 1296 (2011).
[CrossRef]

Dietzek, B.

Dong, L.

Eaton, W. A.

W. A. Eaton and J. Hofrichter, “Polarized absorption and linear dichroism spectroscopy of hemoglobin,” Methods Enzymol.76, 175–261 (1981).
[CrossRef] [PubMed]

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25 (2004).
[CrossRef]

Evans, C. L.

Fermann, M. E.

Freudiger, C. W.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics8(2), 153–159 (2014).
[CrossRef]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Fu, D.

Fu, L.

Fukui, K.

Galanzha, E. I.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics3(12), 791–806 (2010).
[CrossRef] [PubMed]

Gambetta, A.

Garrett, N. L.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc.43(5), 668–674 (2012).
[CrossRef]

Goulart, C.

Y.-H. Zhai, C. Goulart, J.E. Sharping, H. Wei, S. Chen, W. Tong, M.N. Slipchenko, D. Zhang, and J.-X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett.98, 191106 (2011).

Grancini, G.

Hanke, T.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25 (2004).
[CrossRef]

Herda, R.

Hibara, A.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem.73(9), 2112–2116 (2001).
[CrossRef] [PubMed]

Hofrichter, J.

W. A. Eaton and J. Hofrichter, “Polarized absorption and linear dichroism spectroscopy of hemoglobin,” Methods Enzymol.76, 175–261 (1981).
[CrossRef] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics8(2), 153–159 (2014).
[CrossRef]

S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. Sunney Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.37(10), 1652–1654 (2012).
[CrossRef] [PubMed]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging Chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett.34(13), 2051–2053 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Holtom, G.R.

S.-J. Lu, W. Min, S.-S. Chong, G.R. Holtom, and X.S. Xie, “Label-free imaging of heme proteins with two-photon excited lens microscopy,” Appl. Phys. Lett.96, 113701 (2010).

Hui, R.

J. Su, R. Xie, C. K. Johnson, and R. Hui, “Single fiber laser based wavelength tunable excitation for coherent Raman spectroscopy,” J. Opt. Soc. Am. B30(6), 1671–1682 (2013).
[CrossRef] [PubMed]

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser,” Appl. Phys. Lett.99(18), 181112 (2011).
[CrossRef] [PubMed]

P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum.80(3), 033107 (2009).
[CrossRef] [PubMed]

J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two-Photon Microscopy with Wavelength Switchable Fiber Laser Excitation,” Opt. Express14(21), 9825–9831 (2006).
[CrossRef] [PubMed]

Itoh, K.

Jauregui, C.

Ji, M.

Johnson, C. K.

J. Su, R. Xie, C. K. Johnson, and R. Hui, “Single fiber laser based wavelength tunable excitation for coherent Raman spectroscopy,” J. Opt. Soc. Am. B30(6), 1671–1682 (2013).
[CrossRef] [PubMed]

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser,” Appl. Phys. Lett.99(18), 181112 (2011).
[CrossRef] [PubMed]

P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum.80(3), 033107 (2009).
[CrossRef] [PubMed]

J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two-Photon Microscopy with Wavelength Switchable Fiber Laser Excitation,” Opt. Express14(21), 9825–9831 (2006).
[CrossRef] [PubMed]

Kanematsu, Y.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Karasawa, N.

K. Tada and N. Karasawa, “Broadband coherent anti-stokes raman scattering spectroscopy using soliton pulse trains from a photonic crystal fiber,” Opt. Commun.282(19), 3948–3952 (2009).
[CrossRef]

Keiding, S. R.

Kesari, S.

Kieu, K.

Kieu, K. Q.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics8(2), 153–159 (2014).
[CrossRef]

Kishi, T.

Kitamori, T.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem.73(9), 2112–2116 (2001).
[CrossRef] [PubMed]

Kleinfeld, D.

G. O. Clay, C. B. Schaffer, and D. Kleinfeld, “Large two-photon absorptivity of hemoglobin in the infrared range of 780-880 nm,” J. Chem. Phys.126(2), 025102 (2007).
[CrossRef] [PubMed]

Kong, L.

Krauss, G.

Kumar, V.

Lalatsa, A.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc.43(5), 668–674 (2012).
[CrossRef]

Lamb, E. S.

Lefrancois, S.

Leitenstorfer, A.

Limpert, J.

Lounis, B.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Lozano, M. V.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc.43(5), 668–674 (2012).
[CrossRef]

Lu, S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011).
[CrossRef] [PubMed]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging Chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Lu, S.-J.

S.-J. Lu, W. Min, S.-S. Chong, G.R. Holtom, and X.S. Xie, “Label-free imaging of heme proteins with two-photon excited lens microscopy,” Appl. Phys. Lett.96, 113701 (2010).

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Marangoni, M.

Mazza, M.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc.43(5), 668–674 (2012).
[CrossRef]

Mercier, V.

S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Opt. Express2(5), 1296 (2011).
[CrossRef]

Meyer, T.

Mihoreanu, L.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc.43(5), 668–674 (2012).
[CrossRef]

Min, W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011).
[CrossRef] [PubMed]

S.-J. Lu, W. Min, S.-S. Chong, G.R. Holtom, and X.S. Xie, “Label-free imaging of heme proteins with two-photon excited lens microscopy,” Appl. Phys. Lett.96, 113701 (2010).

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging Chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Moffatt, D. J.

Moger, J.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc.43(5), 668–674 (2012).
[CrossRef]

Molla, R. G.

Nedosekin, D. A.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics3(12), 791–806 (2010).
[CrossRef] [PubMed]

Nielsen, C. K.

Nishizawa, N.

Nose, K.

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Ozeki, Y.

Pegoraro, A. F.

Peyghambarian, N.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics8(2), 153–159 (2014).
[CrossRef]

Pezacki, J. P.

Polli, D.

Popp, J.

Price, E. S.

P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum.80(3), 033107 (2009).
[CrossRef] [PubMed]

J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two-Photon Microscopy with Wavelength Switchable Fiber Laser Excitation,” Opt. Express14(21), 9825–9831 (2006).
[CrossRef] [PubMed]

Proskurnin, M. A.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics3(12), 791–806 (2010).
[CrossRef] [PubMed]

Ramponi, R.

Ridsdale, A.

Rigneault, H.

Roy, R.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging Chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

Saar, B. G.

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett.34(13), 2051–2053 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Sawada, T.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem.73(9), 2112–2116 (2001).
[CrossRef] [PubMed]

Schaffer, C. B.

G. O. Clay, C. B. Schaffer, and D. Kleinfeld, “Large two-photon absorptivity of hemoglobin in the infrared range of 780-880 nm,” J. Chem. Phys.126(2), 025102 (2007).
[CrossRef] [PubMed]

Schatzlein, A.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc.43(5), 668–674 (2012).
[CrossRef]

Schneider, P.

Sell, A.

Selm, R.

Sharping, J.E.

Y.-H. Zhai, C. Goulart, J.E. Sharping, H. Wei, S. Chen, W. Tong, M.N. Slipchenko, D. Zhang, and J.-X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett.98, 191106 (2011).

Shevtsova, E. F.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics3(12), 791–806 (2010).
[CrossRef] [PubMed]

Slipchenko, M.N.

Y.-H. Zhai, C. Goulart, J.E. Sharping, H. Wei, S. Chen, W. Tong, M.N. Slipchenko, D. Zhang, and J.-X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett.98, 191106 (2011).

Stehno-Bittel, L.

Stolow, A.

Su, J.

Sumimura, K.

Sunney Xie, X.

Tada, K.

K. Tada and N. Karasawa, “Broadband coherent anti-stokes raman scattering spectroscopy using soliton pulse trains from a photonic crystal fiber,” Opt. Commun.282(19), 3948–3952 (2009).
[CrossRef]

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Thøgersen, J.

Thomas, B. K.

Tokeshi, M.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem.73(9), 2112–2116 (2001).
[CrossRef] [PubMed]

Tong, W.

Y.-H. Zhai, C. Goulart, J.E. Sharping, H. Wei, S. Chen, W. Tong, M.N. Slipchenko, D. Zhang, and J.-X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett.98, 191106 (2011).

Träutlein, D.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Tünnermann, A.

Uchegbu, I.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc.43(5), 668–674 (2012).
[CrossRef]

Uchida, M.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem.73(9), 2112–2116 (2001).
[CrossRef] [PubMed]

Unruh, J. R.

Vallée, R.

S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Opt. Express2(5), 1296 (2011).
[CrossRef]

Villeneuve, A.

S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Opt. Express2(5), 1296 (2011).
[CrossRef]

Vladimirov, Y. A.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics3(12), 791–806 (2010).
[CrossRef] [PubMed]

Volkmer, A.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B105(7), 1277–1280 (2001).
[CrossRef]

Wadsworth, W. J.

Wei, H.

Y.-H. Zhai, C. Goulart, J.E. Sharping, H. Wei, S. Chen, W. Tong, M.N. Slipchenko, D. Zhang, and J.-X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett.98, 191106 (2011).

Winterhalder, M.

Wise, F. W.

Wong, S. T.

Xie, R.

Xie, X. S.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics8(2), 153–159 (2014).
[CrossRef]

E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.38(20), 4154–4157 (2013).
[CrossRef] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011).
[CrossRef] [PubMed]

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett.34(13), 2051–2053 (2009).
[CrossRef] [PubMed]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging Chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express15(19), 12076–12087 (2007).
[CrossRef] [PubMed]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B105(7), 1277–1280 (2001).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Xie, X.S.

S.-J. Lu, W. Min, S.-S. Chong, G.R. Holtom, and X.S. Xie, “Label-free imaging of heme proteins with two-photon excited lens microscopy,” Appl. Phys. Lett.96, 113701 (2010).

Xu, X.

Yang, W.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics8(2), 153–159 (2014).
[CrossRef]

Young, G. S.

Zach, A.

Zhai, Y.-H.

Y.-H. Zhai, C. Goulart, J.E. Sharping, H. Wei, S. Chen, W. Tong, M.N. Slipchenko, D. Zhang, and J.-X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett.98, 191106 (2011).

Zhang, D.

Y.-H. Zhai, C. Goulart, J.E. Sharping, H. Wei, S. Chen, W. Tong, M.N. Slipchenko, D. Zhang, and J.-X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett.98, 191106 (2011).

Zhang, R.

P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum.80(3), 033107 (2009).
[CrossRef] [PubMed]

Zharov, V. P.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics3(12), 791–806 (2010).
[CrossRef] [PubMed]

Zumbusch, A.

G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett.34(18), 2847–2849 (2009).
[CrossRef] [PubMed]

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25 (2004).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Anal. Chem. (1)

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem.73(9), 2112–2116 (2001).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

Y.-H. Zhai, C. Goulart, J.E. Sharping, H. Wei, S. Chen, W. Tong, M.N. Slipchenko, D. Zhang, and J.-X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett.98, 191106 (2011).

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser,” Appl. Phys. Lett.99(18), 181112 (2011).
[CrossRef] [PubMed]

S.-J. Lu, W. Min, S.-S. Chong, G.R. Holtom, and X.S. Xie, “Label-free imaging of heme proteins with two-photon excited lens microscopy,” Appl. Phys. Lett.96, 113701 (2010).

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25 (2004).
[CrossRef]

J. Biophotonics (1)

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics3(12), 791–806 (2010).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

G. O. Clay, C. B. Schaffer, and D. Kleinfeld, “Large two-photon absorptivity of hemoglobin in the infrared range of 780-880 nm,” J. Chem. Phys.126(2), 025102 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B105(7), 1277–1280 (2001).
[CrossRef]

J. Raman Spectrosc. (1)

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc.43(5), 668–674 (2012).
[CrossRef]

Methods Enzymol. (1)

W. A. Eaton and J. Hofrichter, “Polarized absorption and linear dichroism spectroscopy of hemoglobin,” Methods Enzymol.76, 175–261 (1981).
[CrossRef] [PubMed]

Nat. Photonics (1)

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics8(2), 153–159 (2014).
[CrossRef]

Nature (1)

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging Chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

K. Tada and N. Karasawa, “Broadband coherent anti-stokes raman scattering spectroscopy using soliton pulse trains from a photonic crystal fiber,” Opt. Commun.282(19), 3948–3952 (2009).
[CrossRef]

Opt. Express (7)

S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Opt. Express2(5), 1296 (2011).
[CrossRef]

K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, and K. Itoh, “Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique,” Opt. Express20(13), 13958–13965 (2012).
[CrossRef] [PubMed]

J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two-Photon Microscopy with Wavelength Switchable Fiber Laser Excitation,” Opt. Express14(21), 9825–9831 (2006).
[CrossRef] [PubMed]

E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express15(8), 4848–4856 (2007).
[CrossRef] [PubMed]

C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express15(19), 12076–12087 (2007).
[CrossRef] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express17(23), 20700–20706 (2009).
[CrossRef] [PubMed]

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express20(4), 4484–4493 (2012).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum.80(3), 033107 (2009).
[CrossRef] [PubMed]

Science (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Other (1)

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental configuration with controllable Stokes wavelength (λs) and relative pump delay (δt). BS: beam splitter, SM: silver mirror, PCF: photonic crystal fiber, LP: long-pass filter, BP: bandpass filter, SF6: SF-6 glasses rod, DC: dichroic beam combiner, OB: objective lenses, PC: pockels cell, Pol: polarizer, PD: photodiode. Inset on the right: measured relative intensity noise of the fiber laser (red) and of the soliton self-frequency shifted pulses (black).

Fig. 2
Fig. 2

Images of mouse brain tissue slices. (a) SRS image (100 µm x 100 µm scan). (b) SRS image in a different region (50 µm x 50 µm scan). (c) CARS imaging in the same region as in (b). The pump-Stokes frequency detuning was set at 2920 cm−1 corresponding to a Raman resonance of lipids and protein.

Fig. 3
Fig. 3

(a) Amplitude (left y-axis) and SNR (right y-axis) of the photothermal signal as a function of modulation frequency. Bottom-left inset: SRS image when pump-Stokes pulses are temporally overlapped, and top-right inset: photothermal image with 10 ps time delay between pump and probe pulses. (b) Normalized amplitudes of CARS (circles), SRS (diamonds) and photothermal (stars) signals as the function of the pump power in dBm.

Fig. 4
Fig. 4

Images of blood cells on glass slides. (a) CARS image with 2920 cm−1 pump-Stokes frequency detuning, (b) CARS image in a different region on the slide, and (c) photothermal image at the same region as in (b) with 20 kHz pump modulation frequency.

Metrics