Abstract

Controlled three-dimensional (3D) rotation of arbitrarily shaped objects in the observation space of optical microscopes is essential for realizing tomographic microscope imaging and offers great flexibility as a noncontact micromanipulation tool for biomedical applications. Herein, we present 3D rotational control of inhomogeneous biological samples using 3D optical multiple-force clamps based on time-shared scanning with a fast focus-tunable lens. For inhomogeneous samples with shape and optical anisotropy, we choose diatoms and their fragments, and demonstrate interactive and controlled 3D rotation about arbitrary axes in 3D Cartesian coordinates. We also outline the hardware setup and 3D rotation method for our demonstrations.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Palima and J. Glückstad, “Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces,” Laser Photonics Rev.7(4), 478–494 (2013).
    [CrossRef]
  2. Y. Tanaka, H. Kawada, K. Hirano, M. Ishikawa, and H. Kitajima, “Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques,” Opt. Express16(19), 15115–15122 (2008).
    [CrossRef] [PubMed]
  3. D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
    [CrossRef] [PubMed]
  4. M. K. Kreysing, T. Kiessling, A. Fritsch, C. Dietrich, J. R. Guck, and J. A. Käs, “The optical cell rotator,” Opt. Express16(21), 16984–16992 (2008).
    [CrossRef] [PubMed]
  5. G. Carmon and M. Feingold, “Rotation of single bacterial cells relative to the optical axis using optical tweezers,” Opt. Lett.36(1), 40–42 (2011).
    [CrossRef] [PubMed]
  6. Y. Tanaka, K. Hirano, H. Nagata, and M. Ishikawa, “Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping,” Electron. Lett.43(7), 412–414 (2007).
    [CrossRef]
  7. F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophotonics3(7), 468–475 (2010).
    [CrossRef] [PubMed]
  8. J. Swoger, P. Verveer, K. Greger, J. Huisken, and E. H. K. Stelzer, “Multi-view image fusion improves resolution in three-dimensional microscopy,” Opt. Express15(13), 8029–8042 (2007).
    [CrossRef] [PubMed]
  9. P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy. Three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J.55(1), 101–110 (1989).
    [CrossRef] [PubMed]
  10. M. Fauver, E. J. Seibel, J. R. Rahn, M. G. Meyer, F. W. Patten, T. Neumann, and A. C. Nelson, “Three-dimensional imaging of single isolated cell nuclei using optical projection tomography,” Opt. Express13(11), 4210–4223 (2005).
    [CrossRef] [PubMed]
  11. D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012).
    [CrossRef] [PubMed]
  12. S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Dynamic axial stabilization of counter-propagating beam-traps with feedback control,” Opt. Express18(17), 18217–18222 (2010).
    [CrossRef] [PubMed]
  13. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett.82(5), 829–831 (2003).
    [CrossRef]
  14. Y. Tanaka, H. Kawada, S. Tsutsui, M. Ishikawa, and H. Kitajima, “Dynamic micro-bead arrays using optical tweezers combined with intelligent control techniques,” Opt. Express17(26), 24102–24111 (2009).
    [CrossRef] [PubMed]
  15. P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J.69(5), 1666–1673 (1995).
    [CrossRef] [PubMed]
  16. Y. Tanaka, “3D multiple optical tweezers based on time-shared scanning with a fast focus tunable lens,” J. Opt.15(2), 025708 (2013).
    [CrossRef]
  17. Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, “A model of diatom shape and texture for analysis, synthesis and identification,” Mach. Vis. Appl.17(5), 297–307 (2006).
    [CrossRef]
  18. F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express21(18), 21010–21026 (2013).
    [CrossRef] [PubMed]
  19. H. Oku, M. Ishikawa, T. Theodorus, and K. Hashimoto, “High-speed autofocusing of a cell using diffraction patterns,” Opt. Express14(9), 3952–3960 (2006).
    [CrossRef]
  20. D. B. Phillips, G. M. Gibson, R. Bowman, M. J. Padgett, S. Hanna, D. M. Carberry, M. J. Miles, and S. H. Simpson, “An optically actuated surface scanning probe,” Opt. Express20(28), 29679–29693 (2012).
    [CrossRef] [PubMed]
  21. X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, “Universal physical responses to stretch in the living cell,” Nature447(7144), 592–595 (2007).
    [CrossRef] [PubMed]

2013 (3)

D. Palima and J. Glückstad, “Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces,” Laser Photonics Rev.7(4), 478–494 (2013).
[CrossRef]

Y. Tanaka, “3D multiple optical tweezers based on time-shared scanning with a fast focus tunable lens,” J. Opt.15(2), 025708 (2013).
[CrossRef]

F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express21(18), 21010–21026 (2013).
[CrossRef] [PubMed]

2012 (2)

2011 (2)

2010 (2)

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophotonics3(7), 468–475 (2010).
[CrossRef] [PubMed]

S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Dynamic axial stabilization of counter-propagating beam-traps with feedback control,” Opt. Express18(17), 18217–18222 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

2007 (3)

J. Swoger, P. Verveer, K. Greger, J. Huisken, and E. H. K. Stelzer, “Multi-view image fusion improves resolution in three-dimensional microscopy,” Opt. Express15(13), 8029–8042 (2007).
[CrossRef] [PubMed]

Y. Tanaka, K. Hirano, H. Nagata, and M. Ishikawa, “Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping,” Electron. Lett.43(7), 412–414 (2007).
[CrossRef]

X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, “Universal physical responses to stretch in the living cell,” Nature447(7144), 592–595 (2007).
[CrossRef] [PubMed]

2006 (2)

H. Oku, M. Ishikawa, T. Theodorus, and K. Hashimoto, “High-speed autofocusing of a cell using diffraction patterns,” Opt. Express14(9), 3952–3960 (2006).
[CrossRef]

Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, “A model of diatom shape and texture for analysis, synthesis and identification,” Mach. Vis. Appl.17(5), 297–307 (2006).
[CrossRef]

2005 (1)

2003 (1)

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett.82(5), 829–831 (2003).
[CrossRef]

1995 (1)

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J.69(5), 1666–1673 (1995).
[CrossRef] [PubMed]

1989 (1)

P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy. Three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J.55(1), 101–110 (1989).
[CrossRef] [PubMed]

Agard, D. A.

P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy. Three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J.55(1), 101–110 (1989).
[CrossRef] [PubMed]

An, S. S.

X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, “Universal physical responses to stretch in the living cell,” Nature447(7144), 592–595 (2007).
[CrossRef] [PubMed]

Bañas, A.

Bañas, A. R.

Bingelyte, V.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett.82(5), 829–831 (2003).
[CrossRef]

Bowman, R.

Brakenhoff, G. J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J.69(5), 1666–1673 (1995).
[CrossRef] [PubMed]

Bronkhorst, P. J. H.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J.69(5), 1666–1673 (1995).
[CrossRef] [PubMed]

Butler, J. P.

X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, “Universal physical responses to stretch in the living cell,” Nature447(7144), 592–595 (2007).
[CrossRef] [PubMed]

Carberry, D. M.

Carmon, G.

Courtial, J.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett.82(5), 829–831 (2003).
[CrossRef]

Deng, L.

X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, “Universal physical responses to stretch in the living cell,” Nature447(7144), 592–595 (2007).
[CrossRef] [PubMed]

Denz, C.

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophotonics3(7), 468–475 (2010).
[CrossRef] [PubMed]

Dietrich, C.

Droop, S. J. M.

Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, “A model of diatom shape and texture for analysis, synthesis and identification,” Mach. Vis. Appl.17(5), 297–307 (2006).
[CrossRef]

Fahrbach, F. O.

Fauver, M.

Feingold, M.

Fredberg, J. J.

X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, “Universal physical responses to stretch in the living cell,” Nature447(7144), 592–595 (2007).
[CrossRef] [PubMed]

Fritsch, A.

Gerthoffer, W. T.

X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, “Universal physical responses to stretch in the living cell,” Nature447(7144), 592–595 (2007).
[CrossRef] [PubMed]

Gibson, G. M.

Glückstad, J.

Greger, K.

Grieve, J. A.

Grimbergen, J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J.69(5), 1666–1673 (1995).
[CrossRef] [PubMed]

Guck, J. R.

Hanna, S.

Hashimoto, K.

Helmchen, F.

Hicks, Y. A.

Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, “A model of diatom shape and texture for analysis, synthesis and identification,” Mach. Vis. Appl.17(5), 297–307 (2006).
[CrossRef]

Hirano, K.

Y. Tanaka, H. Kawada, K. Hirano, M. Ishikawa, and H. Kitajima, “Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques,” Opt. Express16(19), 15115–15122 (2008).
[CrossRef] [PubMed]

Y. Tanaka, K. Hirano, H. Nagata, and M. Ishikawa, “Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping,” Electron. Lett.43(7), 412–414 (2007).
[CrossRef]

Hiraoka, Y.

P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy. Three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J.55(1), 101–110 (1989).
[CrossRef] [PubMed]

Hörner, F.

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophotonics3(7), 468–475 (2010).
[CrossRef] [PubMed]

Huisken, J.

Ishikawa, M.

Käs, J. A.

Kawada, H.

Kelemen, L.

Kiessling, T.

Kitajima, H.

Kreysing, M. K.

Leach, J.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett.82(5), 829–831 (2003).
[CrossRef]

Maier, B.

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophotonics3(7), 468–475 (2010).
[CrossRef] [PubMed]

Mann, D. G.

Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, “A model of diatom shape and texture for analysis, synthesis and identification,” Mach. Vis. Appl.17(5), 297–307 (2006).
[CrossRef]

Marshall, D.

Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, “A model of diatom shape and texture for analysis, synthesis and identification,” Mach. Vis. Appl.17(5), 297–307 (2006).
[CrossRef]

Martin, R. R.

Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, “A model of diatom shape and texture for analysis, synthesis and identification,” Mach. Vis. Appl.17(5), 297–307 (2006).
[CrossRef]

Meyer, M. G.

Miles, M. J.

Müller, S.

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophotonics3(7), 468–475 (2010).
[CrossRef] [PubMed]

Nagata, H.

Y. Tanaka, K. Hirano, H. Nagata, and M. Ishikawa, “Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping,” Electron. Lett.43(7), 412–414 (2007).
[CrossRef]

Navajas, D.

X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, “Universal physical responses to stretch in the living cell,” Nature447(7144), 592–595 (2007).
[CrossRef] [PubMed]

Nelson, A. C.

Neumann, T.

Nijhof, E. J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J.69(5), 1666–1673 (1995).
[CrossRef] [PubMed]

Oku, H.

Ormos, P.

Padgett, M. J.

Palima, D.

Patten, F. W.

Phillips, D. B.

Rahn, J. R.

Rosin, P. L.

Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, “A model of diatom shape and texture for analysis, synthesis and identification,” Mach. Vis. Appl.17(5), 297–307 (2006).
[CrossRef]

Schmid, B.

Sedat, J. W.

P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy. Three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J.55(1), 101–110 (1989).
[CrossRef] [PubMed]

Seibel, E. J.

Shaw, P. J.

P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy. Three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J.55(1), 101–110 (1989).
[CrossRef] [PubMed]

Simpson, S. H.

Sixma, J. J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J.69(5), 1666–1673 (1995).
[CrossRef] [PubMed]

Stelzer, E. H. K.

Streekstra, G. J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J.69(5), 1666–1673 (1995).
[CrossRef] [PubMed]

Swoger, J.

Tanaka, Y.

Y. Tanaka, “3D multiple optical tweezers based on time-shared scanning with a fast focus tunable lens,” J. Opt.15(2), 025708 (2013).
[CrossRef]

Y. Tanaka, H. Kawada, S. Tsutsui, M. Ishikawa, and H. Kitajima, “Dynamic micro-bead arrays using optical tweezers combined with intelligent control techniques,” Opt. Express17(26), 24102–24111 (2009).
[CrossRef] [PubMed]

Y. Tanaka, H. Kawada, K. Hirano, M. Ishikawa, and H. Kitajima, “Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques,” Opt. Express16(19), 15115–15122 (2008).
[CrossRef] [PubMed]

Y. Tanaka, K. Hirano, H. Nagata, and M. Ishikawa, “Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping,” Electron. Lett.43(7), 412–414 (2007).
[CrossRef]

Tauro, S.

Theodorus, T.

Trepat, X.

X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, “Universal physical responses to stretch in the living cell,” Nature447(7144), 592–595 (2007).
[CrossRef] [PubMed]

Tschumperlin, D. J.

X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, “Universal physical responses to stretch in the living cell,” Nature447(7144), 592–595 (2007).
[CrossRef] [PubMed]

Tsutsui, S.

Verveer, P.

Vizsnyiczai, G.

Voigt, F. F.

Woerdemann, M.

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophotonics3(7), 468–475 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett.82(5), 829–831 (2003).
[CrossRef]

Biophys. J. (2)

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J.69(5), 1666–1673 (1995).
[CrossRef] [PubMed]

P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy. Three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J.55(1), 101–110 (1989).
[CrossRef] [PubMed]

Electron. Lett. (1)

Y. Tanaka, K. Hirano, H. Nagata, and M. Ishikawa, “Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping,” Electron. Lett.43(7), 412–414 (2007).
[CrossRef]

J. Biophotonics (1)

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophotonics3(7), 468–475 (2010).
[CrossRef] [PubMed]

J. Opt. (1)

Y. Tanaka, “3D multiple optical tweezers based on time-shared scanning with a fast focus tunable lens,” J. Opt.15(2), 025708 (2013).
[CrossRef]

Laser Photonics Rev. (1)

D. Palima and J. Glückstad, “Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces,” Laser Photonics Rev.7(4), 478–494 (2013).
[CrossRef]

Mach. Vis. Appl. (1)

Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, “A model of diatom shape and texture for analysis, synthesis and identification,” Mach. Vis. Appl.17(5), 297–307 (2006).
[CrossRef]

Nature (1)

X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, “Universal physical responses to stretch in the living cell,” Nature447(7144), 592–595 (2007).
[CrossRef] [PubMed]

Opt. Express (11)

F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express21(18), 21010–21026 (2013).
[CrossRef] [PubMed]

H. Oku, M. Ishikawa, T. Theodorus, and K. Hashimoto, “High-speed autofocusing of a cell using diffraction patterns,” Opt. Express14(9), 3952–3960 (2006).
[CrossRef]

D. B. Phillips, G. M. Gibson, R. Bowman, M. J. Padgett, S. Hanna, D. M. Carberry, M. J. Miles, and S. H. Simpson, “An optically actuated surface scanning probe,” Opt. Express20(28), 29679–29693 (2012).
[CrossRef] [PubMed]

J. Swoger, P. Verveer, K. Greger, J. Huisken, and E. H. K. Stelzer, “Multi-view image fusion improves resolution in three-dimensional microscopy,” Opt. Express15(13), 8029–8042 (2007).
[CrossRef] [PubMed]

Y. Tanaka, H. Kawada, S. Tsutsui, M. Ishikawa, and H. Kitajima, “Dynamic micro-bead arrays using optical tweezers combined with intelligent control techniques,” Opt. Express17(26), 24102–24111 (2009).
[CrossRef] [PubMed]

Y. Tanaka, H. Kawada, K. Hirano, M. Ishikawa, and H. Kitajima, “Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques,” Opt. Express16(19), 15115–15122 (2008).
[CrossRef] [PubMed]

D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
[CrossRef] [PubMed]

M. K. Kreysing, T. Kiessling, A. Fritsch, C. Dietrich, J. R. Guck, and J. A. Käs, “The optical cell rotator,” Opt. Express16(21), 16984–16992 (2008).
[CrossRef] [PubMed]

M. Fauver, E. J. Seibel, J. R. Rahn, M. G. Meyer, F. W. Patten, T. Neumann, and A. C. Nelson, “Three-dimensional imaging of single isolated cell nuclei using optical projection tomography,” Opt. Express13(11), 4210–4223 (2005).
[CrossRef] [PubMed]

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012).
[CrossRef] [PubMed]

S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Dynamic axial stabilization of counter-propagating beam-traps with feedback control,” Opt. Express18(17), 18217–18222 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

Supplementary Material (4)

» Media 1: MOV (3331 KB)     
» Media 2: MOV (4166 KB)     
» Media 3: MOV (2316 KB)     
» Media 4: MOV (722 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical and control system configurations for controlled rotation of biological cells based on the optical multiple-force clamps technique.

Fig. 2
Fig. 2

(Media 1) (a) Controlled movements of six micro-beads forming a hexagon. (b–d) Translation along the z-axis. Rotation about the (e) x-axis, (f) y-axis, and (g) z-axis. The accompanying movie is in real-time, not accelerated.

Fig. 3
Fig. 3

Interactive and controlled 3D rotation of the fragment of a diatom. (a) Illustration of the fragment (colored yellow) and optical square-clamp points (shown as red circles). (b–l) (Media 2) Video frame sequence of the controlled rotations of the fragment in the 3D working space. The accompanying movie is in real-time, not accelerated.

Fig. 4
Fig. 4

Video frame sequences of 3D rotations of diatoms using two different optical multiple-force clamps (shown as red circles). (a–c) (Media 3) Controlled rotation of the diatom using the optical triangle-clamp points. (d–f) (Media 4) Autonomous rotation of the diatom using the optical two-point clamps. The accompanying movies are in real-time, not accelerated.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A x = [ 1 0 0 0 cos θ x sin θ x 0 sin θ x cos θ x ] ,
A y = [ cos θ y 0 sin θ y 0 1 0 sin θ y 0 cos θ y ] ,
A z = [ cos θ z sin θ z 0 sin θ z cos θ z 0 0 0 1 ] .

Metrics