Abstract

The detection of biomolecules based on fluorescence measurements is a powerful diagnostic tool for the acquisition of genetic, proteomic and cellular information. One key performance limiting factor remains the integrated optical filter, which is designed to reject strong excitation light while transmitting weak emission (fluorescent) light to the photodetector. Conventional filters have several disadvantages. For instance absorbing filters, like those made from amorphous silicon carbide, exhibit low rejection ratios, especially in the case of small Stokes’ shift fluorophores (e.g. green fluorescent protein GFP with λexc = 480 nm and λem = 510 nm), whereas interference filters comprising many layers require complex fabrication. This paper describes an alternative solution based on dielectric diffraction gratings. These filters are not only highly efficient but require a smaller number of manufacturing steps. Using FEM-based optical modelling as a design optimization tool, three filtering concepts are explored: (i) a diffraction grating fabricated on the surface of an absorbing filter, (ii) a diffraction grating embedded in a host material with a low refractive index, and (iii) a combination of an embedded grating and an absorbing filter. Both concepts involving an embedded grating show high rejection ratios (over 100,000) for the case of GFP, but also high sensitivity to manufacturing errors and variations in the incident angle of the excitation light. Despite this, simulations show that a 60 times improvement in the rejection ratio relative to a conventional flat absorbing filter can be obtained using an optimized embedded diffraction grating fabricated on top of an absorbing filter.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Rich and D. G. Myszka, “Survey of the 2009 commercial optical biosensor literature,” J. Mol. Recognit.24(6), 892–914 (2011).
    [CrossRef] [PubMed]
  2. D. Bowtell, J. Sambrook, and D. N. A. Microarrays, A Molecular Cloning Manual, Cold Spring Harbor Laboratory Press, (2003).
  3. E. M. Goldys, Fluorescence Applications in Biotechnology and Life Sciences (John Wiley & Sons, 2009).
  4. A. Roda, Chemiluminescence and Bioluminescence: Past, Present and Future (Royal Society of Chemistry 2010).
  5. N. Ohta and A. Robertson, Colorimetry: Fundamentals and Applications (John Wiley & Sons, 2006).
  6. J. R. Epstein, I. Biran, and D. R. Walt, “Fluorescence-based nucleic acid detection and microarrays,” Anal. Chim. Acta469(1), 3–36 (2002).
    [CrossRef]
  7. The Molecular Probes® Handbook.” [Online]. Available: http://www.lifetechnologies.com/si/en/home/ references/ molecular-probes-the-handbook.html . [Accessed: 18-Apr-2014].
  8. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 2005).
  9. J. P. Conde, A. Jóskowiak, B. Lipovšek, A. Pimentel, A. T. Pereira, M. Santos, J. Krč, M. Topic, D. M. F. Prazeres, and V. Chu, “Spectral selectivity constraints in fluo- rescence detection of biomolecules using amorphous silicon based detectors,” Phys. Status Solidi C7(3–4), 1156–1159 (2010).
  10. A. C. Pimentel, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Fluorescence detection of DNA using an amorphous silicon p-i-n photodiode,” J. Appl. Phys.104(5), 054913 (2008).
    [CrossRef]
  11. F. Dong, V. Chu, and J. P. Conde, “Submicron thin-film amorphous silicon photoconductive light sensors,” Sens. Actuators Phys.170(1-2), 32–35 (2011).
    [CrossRef]
  12. A. Joskowiak, M. S. Santos, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Integration of thin film amorphous silicon photodetector with lab-on-chip for monitoring protein fluorescence in solution and in live microbial cells,” Sens. Actuators B Chem.156(2), 662–667 (2011).
    [CrossRef]
  13. A. Jóskowiak, N. Stasio, V. Chu, D. M. F. Prazeres, and J. P. Conde, “Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors,” Biosens. Bioelectron.36(1), 242–249 (2012).
    [CrossRef] [PubMed]
  14. B. Lipovsek, A. Joskowiak, J. Krc, M. Topic, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Characterisation of hydrogenated silicon-carbon alloy filters with different carbon composition for on-chip fluorescence detection of biomolecules,” Sens. Actuators Phys.163(1), 96–100 (2010).
    [CrossRef]
  15. B. Lipovsek, A. Joskowiak, J. Krc, M. Topic, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Design of spectrally selective filters in fluorescence detection of biomolecules,” presented at the 45th International Conference on Microelectronics, Devices and Materials and the Workshop on Advanced Photovoltaic Devices and Technologies, Ljubljana, (2009).
  16. C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip9(10), 1371–1376 (2009).
    [CrossRef] [PubMed]
  17. H. J. Levinson, Principles of Lithography, Third Edition, 3 edition. Bellingham, Wash: SPIE Press, (2011).
  18. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
    [CrossRef]
  19. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon.4(3), 379–440 (2012).
    [CrossRef]
  20. S. Mahiya, Green Fluorescent Protein: Cloning Purification and Physical Properties of Green Fluorescent Protein, Saarbrücken: LAP LAMBERT Academic Publishing, (2012).
  21. Green Fluorescent Protein (GFP).” [Online]. Available: http://www.jic.ac.uk/microscopy/more/T5_9.htm . [Accessed: 31-Jan-2014].
  22. R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem.67(1), 509–544 (1998).
    [CrossRef] [PubMed]
  23. S. Lee, W. A. Lim, and K. S. Thorn, “Improved Blue, Green, and Red Fluorescent Protein Tagging Vectors for S. cerevisiae,” PLoS ONE8(7), e67902 (2013).
    [CrossRef] [PubMed]
  24. D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov, “Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues,” Physiol. Rev.90(3), 1103–1163 (2010).
    [CrossRef] [PubMed]
  25. M. Dundr, J. G. McNally, J. Cohen, and T. Misteli, “Quantitation of GFP-fusion proteins in single living cells,” J. Struct. Biol.140(1-3), 92–99 (2002).
    [CrossRef] [PubMed]
  26. Fluorescence SpectraViewer.” [Online]. Available: http://www.lifetechnologies.com/si/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html?ICID=svtool&UID=EGFPpH7 . [Accessed: 31-Jan-2014].
  27. COMSOL Multiphysics®.” [Online]. Available: https://www.comsol.com/ ‎ [Accessed: 31-Jan-2014].
  28. J. Peatross and M. Ware, Physics of Light and Optics (2013).
  29. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express18(16), 16973–16988 (2010).
    [CrossRef] [PubMed]
  30. V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express20(10), 10888–10895 (2012).
    [CrossRef] [PubMed]
  31. C. J. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol.26(1), 014043 (2011).
    [CrossRef]
  32. H. S. Lee and H. D. Jeong, “Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces,” Cirp Ann. Manuf. Technol.58(1), 485–490 (2009).
    [CrossRef]
  33. D. J. Resnick, W. J. Dauksher, D. P. Mancini, K. J. Nordquist, T. C. Bailey, S. C. Johnson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. E. Schumaker, “Imprint lithography: lab curiosity or the real NGL,” Proc. SPIE5037, 12–23 (2003).
  34. L. J. Guo, “Nanoimprint Lithography: Methods and Material Requirements,” Adv. Mater.19(4), 495–513 (2007).
    [CrossRef]
  35. R. Ji, A. Krueger, M. Hornung, M. Verschuuren, R. van de Laar, and J. van Eekelen, “Full Field Nanoimprint on Mask Aligners Using Substrate Conformal Imprint Lithography Technique,” Acta Phys. Pol. A116, S187–S189 (2009).
  36. R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng.87(5–8), 963–967 (2010).
    [CrossRef]
  37. J.-M. Jin, The Finite Element Method in Electromagnetics, Wiley, (2002).
  38. J. Webb and V. Kanellopoulos, “Absorbing Boundary-Conditions for the Finite-Element Solution of the Vector Wave-Equation,” Microw. Opt. Technol. Lett.2(10), 370–372 (1989).
    [CrossRef]
  39. M. Zeman, R. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si : H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys.88(11), 6436–6443 (2000).
    [CrossRef]

2013 (1)

S. Lee, W. A. Lim, and K. S. Thorn, “Improved Blue, Green, and Red Fluorescent Protein Tagging Vectors for S. cerevisiae,” PLoS ONE8(7), e67902 (2013).
[CrossRef] [PubMed]

2012 (3)

V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express20(10), 10888–10895 (2012).
[CrossRef] [PubMed]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon.4(3), 379–440 (2012).
[CrossRef]

A. Jóskowiak, N. Stasio, V. Chu, D. M. F. Prazeres, and J. P. Conde, “Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors,” Biosens. Bioelectron.36(1), 242–249 (2012).
[CrossRef] [PubMed]

2011 (4)

R. L. Rich and D. G. Myszka, “Survey of the 2009 commercial optical biosensor literature,” J. Mol. Recognit.24(6), 892–914 (2011).
[CrossRef] [PubMed]

F. Dong, V. Chu, and J. P. Conde, “Submicron thin-film amorphous silicon photoconductive light sensors,” Sens. Actuators Phys.170(1-2), 32–35 (2011).
[CrossRef]

A. Joskowiak, M. S. Santos, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Integration of thin film amorphous silicon photodetector with lab-on-chip for monitoring protein fluorescence in solution and in live microbial cells,” Sens. Actuators B Chem.156(2), 662–667 (2011).
[CrossRef]

C. J. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol.26(1), 014043 (2011).
[CrossRef]

2010 (5)

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng.87(5–8), 963–967 (2010).
[CrossRef]

J. P. Conde, A. Jóskowiak, B. Lipovšek, A. Pimentel, A. T. Pereira, M. Santos, J. Krč, M. Topic, D. M. F. Prazeres, and V. Chu, “Spectral selectivity constraints in fluo- rescence detection of biomolecules using amorphous silicon based detectors,” Phys. Status Solidi C7(3–4), 1156–1159 (2010).

B. Lipovsek, A. Joskowiak, J. Krc, M. Topic, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Characterisation of hydrogenated silicon-carbon alloy filters with different carbon composition for on-chip fluorescence detection of biomolecules,” Sens. Actuators Phys.163(1), 96–100 (2010).
[CrossRef]

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express18(16), 16973–16988 (2010).
[CrossRef] [PubMed]

D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov, “Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues,” Physiol. Rev.90(3), 1103–1163 (2010).
[CrossRef] [PubMed]

2009 (3)

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

R. Ji, A. Krueger, M. Hornung, M. Verschuuren, R. van de Laar, and J. van Eekelen, “Full Field Nanoimprint on Mask Aligners Using Substrate Conformal Imprint Lithography Technique,” Acta Phys. Pol. A116, S187–S189 (2009).

H. S. Lee and H. D. Jeong, “Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces,” Cirp Ann. Manuf. Technol.58(1), 485–490 (2009).
[CrossRef]

2008 (1)

A. C. Pimentel, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Fluorescence detection of DNA using an amorphous silicon p-i-n photodiode,” J. Appl. Phys.104(5), 054913 (2008).
[CrossRef]

2007 (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

L. J. Guo, “Nanoimprint Lithography: Methods and Material Requirements,” Adv. Mater.19(4), 495–513 (2007).
[CrossRef]

2003 (1)

D. J. Resnick, W. J. Dauksher, D. P. Mancini, K. J. Nordquist, T. C. Bailey, S. C. Johnson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. E. Schumaker, “Imprint lithography: lab curiosity or the real NGL,” Proc. SPIE5037, 12–23 (2003).

2002 (2)

J. R. Epstein, I. Biran, and D. R. Walt, “Fluorescence-based nucleic acid detection and microarrays,” Anal. Chim. Acta469(1), 3–36 (2002).
[CrossRef]

M. Dundr, J. G. McNally, J. Cohen, and T. Misteli, “Quantitation of GFP-fusion proteins in single living cells,” J. Struct. Biol.140(1-3), 92–99 (2002).
[CrossRef] [PubMed]

2000 (1)

M. Zeman, R. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si : H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys.88(11), 6436–6443 (2000).
[CrossRef]

1998 (1)

R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem.67(1), 509–544 (1998).
[CrossRef] [PubMed]

1989 (1)

J. Webb and V. Kanellopoulos, “Absorbing Boundary-Conditions for the Finite-Element Solution of the Vector Wave-Equation,” Microw. Opt. Technol. Lett.2(10), 370–372 (1989).
[CrossRef]

Aimez, V.

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

Bailey, T. C.

D. J. Resnick, W. J. Dauksher, D. P. Mancini, K. J. Nordquist, T. C. Bailey, S. C. Johnson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. E. Schumaker, “Imprint lithography: lab curiosity or the real NGL,” Proc. SPIE5037, 12–23 (2003).

Biran, I.

J. R. Epstein, I. Biran, and D. R. Walt, “Fluorescence-based nucleic acid detection and microarrays,” Anal. Chim. Acta469(1), 3–36 (2002).
[CrossRef]

Chang-Hasnain, C. J.

Charette, P. G.

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

Chu, V.

A. Jóskowiak, N. Stasio, V. Chu, D. M. F. Prazeres, and J. P. Conde, “Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors,” Biosens. Bioelectron.36(1), 242–249 (2012).
[CrossRef] [PubMed]

F. Dong, V. Chu, and J. P. Conde, “Submicron thin-film amorphous silicon photoconductive light sensors,” Sens. Actuators Phys.170(1-2), 32–35 (2011).
[CrossRef]

A. Joskowiak, M. S. Santos, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Integration of thin film amorphous silicon photodetector with lab-on-chip for monitoring protein fluorescence in solution and in live microbial cells,” Sens. Actuators B Chem.156(2), 662–667 (2011).
[CrossRef]

B. Lipovsek, A. Joskowiak, J. Krc, M. Topic, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Characterisation of hydrogenated silicon-carbon alloy filters with different carbon composition for on-chip fluorescence detection of biomolecules,” Sens. Actuators Phys.163(1), 96–100 (2010).
[CrossRef]

J. P. Conde, A. Jóskowiak, B. Lipovšek, A. Pimentel, A. T. Pereira, M. Santos, J. Krč, M. Topic, D. M. F. Prazeres, and V. Chu, “Spectral selectivity constraints in fluo- rescence detection of biomolecules using amorphous silicon based detectors,” Phys. Status Solidi C7(3–4), 1156–1159 (2010).

A. C. Pimentel, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Fluorescence detection of DNA using an amorphous silicon p-i-n photodiode,” J. Appl. Phys.104(5), 054913 (2008).
[CrossRef]

Chudakov, D. M.

D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov, “Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues,” Physiol. Rev.90(3), 1103–1163 (2010).
[CrossRef] [PubMed]

Cohen, J.

M. Dundr, J. G. McNally, J. Cohen, and T. Misteli, “Quantitation of GFP-fusion proteins in single living cells,” J. Struct. Biol.140(1-3), 92–99 (2002).
[CrossRef] [PubMed]

Conde, J. P.

A. Jóskowiak, N. Stasio, V. Chu, D. M. F. Prazeres, and J. P. Conde, “Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors,” Biosens. Bioelectron.36(1), 242–249 (2012).
[CrossRef] [PubMed]

F. Dong, V. Chu, and J. P. Conde, “Submicron thin-film amorphous silicon photoconductive light sensors,” Sens. Actuators Phys.170(1-2), 32–35 (2011).
[CrossRef]

A. Joskowiak, M. S. Santos, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Integration of thin film amorphous silicon photodetector with lab-on-chip for monitoring protein fluorescence in solution and in live microbial cells,” Sens. Actuators B Chem.156(2), 662–667 (2011).
[CrossRef]

B. Lipovsek, A. Joskowiak, J. Krc, M. Topic, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Characterisation of hydrogenated silicon-carbon alloy filters with different carbon composition for on-chip fluorescence detection of biomolecules,” Sens. Actuators Phys.163(1), 96–100 (2010).
[CrossRef]

J. P. Conde, A. Jóskowiak, B. Lipovšek, A. Pimentel, A. T. Pereira, M. Santos, J. Krč, M. Topic, D. M. F. Prazeres, and V. Chu, “Spectral selectivity constraints in fluo- rescence detection of biomolecules using amorphous silicon based detectors,” Phys. Status Solidi C7(3–4), 1156–1159 (2010).

A. C. Pimentel, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Fluorescence detection of DNA using an amorphous silicon p-i-n photodiode,” J. Appl. Phys.104(5), 054913 (2008).
[CrossRef]

Dauksher, W. J.

D. J. Resnick, W. J. Dauksher, D. P. Mancini, K. J. Nordquist, T. C. Bailey, S. C. Johnson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. E. Schumaker, “Imprint lithography: lab curiosity or the real NGL,” Proc. SPIE5037, 12–23 (2003).

Dong, F.

F. Dong, V. Chu, and J. P. Conde, “Submicron thin-film amorphous silicon photoconductive light sensors,” Sens. Actuators Phys.170(1-2), 32–35 (2011).
[CrossRef]

Dundr, M.

M. Dundr, J. G. McNally, J. Cohen, and T. Misteli, “Quantitation of GFP-fusion proteins in single living cells,” J. Struct. Biol.140(1-3), 92–99 (2002).
[CrossRef] [PubMed]

Ekerdt, J. G.

D. J. Resnick, W. J. Dauksher, D. P. Mancini, K. J. Nordquist, T. C. Bailey, S. C. Johnson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. E. Schumaker, “Imprint lithography: lab curiosity or the real NGL,” Proc. SPIE5037, 12–23 (2003).

Epstein, J. R.

J. R. Epstein, I. Biran, and D. R. Walt, “Fluorescence-based nucleic acid detection and microarrays,” Anal. Chim. Acta469(1), 3–36 (2002).
[CrossRef]

Guo, L. J.

L. J. Guo, “Nanoimprint Lithography: Methods and Material Requirements,” Adv. Mater.19(4), 495–513 (2007).
[CrossRef]

Hornung, M.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng.87(5–8), 963–967 (2010).
[CrossRef]

R. Ji, A. Krueger, M. Hornung, M. Verschuuren, R. van de Laar, and J. van Eekelen, “Full Field Nanoimprint on Mask Aligners Using Substrate Conformal Imprint Lithography Technique,” Acta Phys. Pol. A116, S187–S189 (2009).

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Jeong, H. D.

H. S. Lee and H. D. Jeong, “Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces,” Cirp Ann. Manuf. Technol.58(1), 485–490 (2009).
[CrossRef]

Ji, R.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng.87(5–8), 963–967 (2010).
[CrossRef]

R. Ji, A. Krueger, M. Hornung, M. Verschuuren, R. van de Laar, and J. van Eekelen, “Full Field Nanoimprint on Mask Aligners Using Substrate Conformal Imprint Lithography Technique,” Acta Phys. Pol. A116, S187–S189 (2009).

Johnson, S. C.

D. J. Resnick, W. J. Dauksher, D. P. Mancini, K. J. Nordquist, T. C. Bailey, S. C. Johnson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. E. Schumaker, “Imprint lithography: lab curiosity or the real NGL,” Proc. SPIE5037, 12–23 (2003).

Joskowiak, A.

A. Joskowiak, M. S. Santos, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Integration of thin film amorphous silicon photodetector with lab-on-chip for monitoring protein fluorescence in solution and in live microbial cells,” Sens. Actuators B Chem.156(2), 662–667 (2011).
[CrossRef]

B. Lipovsek, A. Joskowiak, J. Krc, M. Topic, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Characterisation of hydrogenated silicon-carbon alloy filters with different carbon composition for on-chip fluorescence detection of biomolecules,” Sens. Actuators Phys.163(1), 96–100 (2010).
[CrossRef]

Jóskowiak, A.

A. Jóskowiak, N. Stasio, V. Chu, D. M. F. Prazeres, and J. P. Conde, “Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors,” Biosens. Bioelectron.36(1), 242–249 (2012).
[CrossRef] [PubMed]

J. P. Conde, A. Jóskowiak, B. Lipovšek, A. Pimentel, A. T. Pereira, M. Santos, J. Krč, M. Topic, D. M. F. Prazeres, and V. Chu, “Spectral selectivity constraints in fluo- rescence detection of biomolecules using amorphous silicon based detectors,” Phys. Status Solidi C7(3–4), 1156–1159 (2010).

Kanellopoulos, V.

J. Webb and V. Kanellopoulos, “Absorbing Boundary-Conditions for the Finite-Element Solution of the Vector Wave-Equation,” Microw. Opt. Technol. Lett.2(10), 370–372 (1989).
[CrossRef]

Karagodsky, V.

Krc, J.

B. Lipovsek, A. Joskowiak, J. Krc, M. Topic, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Characterisation of hydrogenated silicon-carbon alloy filters with different carbon composition for on-chip fluorescence detection of biomolecules,” Sens. Actuators Phys.163(1), 96–100 (2010).
[CrossRef]

J. P. Conde, A. Jóskowiak, B. Lipovšek, A. Pimentel, A. T. Pereira, M. Santos, J. Krč, M. Topic, D. M. F. Prazeres, and V. Chu, “Spectral selectivity constraints in fluo- rescence detection of biomolecules using amorphous silicon based detectors,” Phys. Status Solidi C7(3–4), 1156–1159 (2010).

Krueger, A.

R. Ji, A. Krueger, M. Hornung, M. Verschuuren, R. van de Laar, and J. van Eekelen, “Full Field Nanoimprint on Mask Aligners Using Substrate Conformal Imprint Lithography Technique,” Acta Phys. Pol. A116, S187–S189 (2009).

Lee, H. S.

H. S. Lee and H. D. Jeong, “Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces,” Cirp Ann. Manuf. Technol.58(1), 485–490 (2009).
[CrossRef]

Lee, S.

S. Lee, W. A. Lim, and K. S. Thorn, “Improved Blue, Green, and Red Fluorescent Protein Tagging Vectors for S. cerevisiae,” PLoS ONE8(7), e67902 (2013).
[CrossRef] [PubMed]

Lim, W. A.

S. Lee, W. A. Lim, and K. S. Thorn, “Improved Blue, Green, and Red Fluorescent Protein Tagging Vectors for S. cerevisiae,” PLoS ONE8(7), e67902 (2013).
[CrossRef] [PubMed]

Lipovsek, B.

B. Lipovsek, A. Joskowiak, J. Krc, M. Topic, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Characterisation of hydrogenated silicon-carbon alloy filters with different carbon composition for on-chip fluorescence detection of biomolecules,” Sens. Actuators Phys.163(1), 96–100 (2010).
[CrossRef]

Lipovšek, B.

J. P. Conde, A. Jóskowiak, B. Lipovšek, A. Pimentel, A. T. Pereira, M. Santos, J. Krč, M. Topic, D. M. F. Prazeres, and V. Chu, “Spectral selectivity constraints in fluo- rescence detection of biomolecules using amorphous silicon based detectors,” Phys. Status Solidi C7(3–4), 1156–1159 (2010).

Lukyanov, K. A.

D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov, “Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues,” Physiol. Rev.90(3), 1103–1163 (2010).
[CrossRef] [PubMed]

Lukyanov, S.

D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov, “Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues,” Physiol. Rev.90(3), 1103–1163 (2010).
[CrossRef] [PubMed]

Mancini, D. P.

D. J. Resnick, W. J. Dauksher, D. P. Mancini, K. J. Nordquist, T. C. Bailey, S. C. Johnson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. E. Schumaker, “Imprint lithography: lab curiosity or the real NGL,” Proc. SPIE5037, 12–23 (2003).

Matz, M. V.

D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov, “Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues,” Physiol. Rev.90(3), 1103–1163 (2010).
[CrossRef] [PubMed]

McNally, J. G.

M. Dundr, J. G. McNally, J. Cohen, and T. Misteli, “Quantitation of GFP-fusion proteins in single living cells,” J. Struct. Biol.140(1-3), 92–99 (2002).
[CrossRef] [PubMed]

Metselaar, J. W.

M. Zeman, R. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si : H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys.88(11), 6436–6443 (2000).
[CrossRef]

Misteli, T.

M. Dundr, J. G. McNally, J. Cohen, and T. Misteli, “Quantitation of GFP-fusion proteins in single living cells,” J. Struct. Biol.140(1-3), 92–99 (2002).
[CrossRef] [PubMed]

Moeller, M.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng.87(5–8), 963–967 (2010).
[CrossRef]

Moormann, C.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng.87(5–8), 963–967 (2010).
[CrossRef]

Myszka, D. G.

R. L. Rich and D. G. Myszka, “Survey of the 2009 commercial optical biosensor literature,” J. Mol. Recognit.24(6), 892–914 (2011).
[CrossRef] [PubMed]

Nordquist, K. J.

D. J. Resnick, W. J. Dauksher, D. P. Mancini, K. J. Nordquist, T. C. Bailey, S. C. Johnson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. E. Schumaker, “Imprint lithography: lab curiosity or the real NGL,” Proc. SPIE5037, 12–23 (2003).

Pereira, A. T.

J. P. Conde, A. Jóskowiak, B. Lipovšek, A. Pimentel, A. T. Pereira, M. Santos, J. Krč, M. Topic, D. M. F. Prazeres, and V. Chu, “Spectral selectivity constraints in fluo- rescence detection of biomolecules using amorphous silicon based detectors,” Phys. Status Solidi C7(3–4), 1156–1159 (2010).

Pimentel, A.

J. P. Conde, A. Jóskowiak, B. Lipovšek, A. Pimentel, A. T. Pereira, M. Santos, J. Krč, M. Topic, D. M. F. Prazeres, and V. Chu, “Spectral selectivity constraints in fluo- rescence detection of biomolecules using amorphous silicon based detectors,” Phys. Status Solidi C7(3–4), 1156–1159 (2010).

Pimentel, A. C.

A. C. Pimentel, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Fluorescence detection of DNA using an amorphous silicon p-i-n photodiode,” J. Appl. Phys.104(5), 054913 (2008).
[CrossRef]

Plachetka, U.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng.87(5–8), 963–967 (2010).
[CrossRef]

Prazeres, D. M. F.

A. Jóskowiak, N. Stasio, V. Chu, D. M. F. Prazeres, and J. P. Conde, “Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors,” Biosens. Bioelectron.36(1), 242–249 (2012).
[CrossRef] [PubMed]

A. Joskowiak, M. S. Santos, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Integration of thin film amorphous silicon photodetector with lab-on-chip for monitoring protein fluorescence in solution and in live microbial cells,” Sens. Actuators B Chem.156(2), 662–667 (2011).
[CrossRef]

B. Lipovsek, A. Joskowiak, J. Krc, M. Topic, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Characterisation of hydrogenated silicon-carbon alloy filters with different carbon composition for on-chip fluorescence detection of biomolecules,” Sens. Actuators Phys.163(1), 96–100 (2010).
[CrossRef]

J. P. Conde, A. Jóskowiak, B. Lipovšek, A. Pimentel, A. T. Pereira, M. Santos, J. Krč, M. Topic, D. M. F. Prazeres, and V. Chu, “Spectral selectivity constraints in fluo- rescence detection of biomolecules using amorphous silicon based detectors,” Phys. Status Solidi C7(3–4), 1156–1159 (2010).

A. C. Pimentel, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Fluorescence detection of DNA using an amorphous silicon p-i-n photodiode,” J. Appl. Phys.104(5), 054913 (2008).
[CrossRef]

Renaudin, A.

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

Resnick, D. J.

D. J. Resnick, W. J. Dauksher, D. P. Mancini, K. J. Nordquist, T. C. Bailey, S. C. Johnson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. E. Schumaker, “Imprint lithography: lab curiosity or the real NGL,” Proc. SPIE5037, 12–23 (2003).

Rich, R. L.

R. L. Rich and D. G. Myszka, “Survey of the 2009 commercial optical biosensor literature,” J. Mol. Recognit.24(6), 892–914 (2011).
[CrossRef] [PubMed]

Richard, C.

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

Santos, M.

J. P. Conde, A. Jóskowiak, B. Lipovšek, A. Pimentel, A. T. Pereira, M. Santos, J. Krč, M. Topic, D. M. F. Prazeres, and V. Chu, “Spectral selectivity constraints in fluo- rescence detection of biomolecules using amorphous silicon based detectors,” Phys. Status Solidi C7(3–4), 1156–1159 (2010).

Santos, M. S.

A. Joskowiak, M. S. Santos, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Integration of thin film amorphous silicon photodetector with lab-on-chip for monitoring protein fluorescence in solution and in live microbial cells,” Sens. Actuators B Chem.156(2), 662–667 (2011).
[CrossRef]

Schropp, R. E. I.

M. Zeman, R. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si : H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys.88(11), 6436–6443 (2000).
[CrossRef]

Schumaker, N. E.

D. J. Resnick, W. J. Dauksher, D. P. Mancini, K. J. Nordquist, T. C. Bailey, S. C. Johnson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. E. Schumaker, “Imprint lithography: lab curiosity or the real NGL,” Proc. SPIE5037, 12–23 (2003).

Sedgwick, F. G.

Sreenivasan, S. V.

D. J. Resnick, W. J. Dauksher, D. P. Mancini, K. J. Nordquist, T. C. Bailey, S. C. Johnson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. E. Schumaker, “Imprint lithography: lab curiosity or the real NGL,” Proc. SPIE5037, 12–23 (2003).

Stacey, N. A.

D. J. Resnick, W. J. Dauksher, D. P. Mancini, K. J. Nordquist, T. C. Bailey, S. C. Johnson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. E. Schumaker, “Imprint lithography: lab curiosity or the real NGL,” Proc. SPIE5037, 12–23 (2003).

Stasio, N.

A. Jóskowiak, N. Stasio, V. Chu, D. M. F. Prazeres, and J. P. Conde, “Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors,” Biosens. Bioelectron.36(1), 242–249 (2012).
[CrossRef] [PubMed]

Thorn, K. S.

S. Lee, W. A. Lim, and K. S. Thorn, “Improved Blue, Green, and Red Fluorescent Protein Tagging Vectors for S. cerevisiae,” PLoS ONE8(7), e67902 (2013).
[CrossRef] [PubMed]

Topic, M.

J. P. Conde, A. Jóskowiak, B. Lipovšek, A. Pimentel, A. T. Pereira, M. Santos, J. Krč, M. Topic, D. M. F. Prazeres, and V. Chu, “Spectral selectivity constraints in fluo- rescence detection of biomolecules using amorphous silicon based detectors,” Phys. Status Solidi C7(3–4), 1156–1159 (2010).

B. Lipovsek, A. Joskowiak, J. Krc, M. Topic, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Characterisation of hydrogenated silicon-carbon alloy filters with different carbon composition for on-chip fluorescence detection of biomolecules,” Sens. Actuators Phys.163(1), 96–100 (2010).
[CrossRef]

Tsien, R. Y.

R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem.67(1), 509–544 (1998).
[CrossRef] [PubMed]

van de Laar, R.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng.87(5–8), 963–967 (2010).
[CrossRef]

R. Ji, A. Krueger, M. Hornung, M. Verschuuren, R. van de Laar, and J. van Eekelen, “Full Field Nanoimprint on Mask Aligners Using Substrate Conformal Imprint Lithography Technique,” Acta Phys. Pol. A116, S187–S189 (2009).

van Eekelen, J.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng.87(5–8), 963–967 (2010).
[CrossRef]

R. Ji, A. Krueger, M. Hornung, M. Verschuuren, R. van de Laar, and J. van Eekelen, “Full Field Nanoimprint on Mask Aligners Using Substrate Conformal Imprint Lithography Technique,” Acta Phys. Pol. A116, S187–S189 (2009).

van Swaaij, R.

M. Zeman, R. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si : H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys.88(11), 6436–6443 (2000).
[CrossRef]

Verschuuren, M.

R. Ji, A. Krueger, M. Hornung, M. Verschuuren, R. van de Laar, and J. van Eekelen, “Full Field Nanoimprint on Mask Aligners Using Substrate Conformal Imprint Lithography Technique,” Acta Phys. Pol. A116, S187–S189 (2009).

Verschuuren, M. A.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng.87(5–8), 963–967 (2010).
[CrossRef]

Walt, D. R.

J. R. Epstein, I. Biran, and D. R. Walt, “Fluorescence-based nucleic acid detection and microarrays,” Anal. Chim. Acta469(1), 3–36 (2002).
[CrossRef]

Webb, J.

J. Webb and V. Kanellopoulos, “Absorbing Boundary-Conditions for the Finite-Element Solution of the Vector Wave-Equation,” Microw. Opt. Technol. Lett.2(10), 370–372 (1989).
[CrossRef]

Willson, C. G.

D. J. Resnick, W. J. Dauksher, D. P. Mancini, K. J. Nordquist, T. C. Bailey, S. C. Johnson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. E. Schumaker, “Imprint lithography: lab curiosity or the real NGL,” Proc. SPIE5037, 12–23 (2003).

Yang, W.

Zeman, M.

M. Zeman, R. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si : H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys.88(11), 6436–6443 (2000).
[CrossRef]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Acta Phys. Pol. A (1)

R. Ji, A. Krueger, M. Hornung, M. Verschuuren, R. van de Laar, and J. van Eekelen, “Full Field Nanoimprint on Mask Aligners Using Substrate Conformal Imprint Lithography Technique,” Acta Phys. Pol. A116, S187–S189 (2009).

Adv. Mater. (1)

L. J. Guo, “Nanoimprint Lithography: Methods and Material Requirements,” Adv. Mater.19(4), 495–513 (2007).
[CrossRef]

Adv. Opt. Photon. (1)

Anal. Chim. Acta (1)

J. R. Epstein, I. Biran, and D. R. Walt, “Fluorescence-based nucleic acid detection and microarrays,” Anal. Chim. Acta469(1), 3–36 (2002).
[CrossRef]

Annu. Rev. Biochem. (1)

R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem.67(1), 509–544 (1998).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

A. Jóskowiak, N. Stasio, V. Chu, D. M. F. Prazeres, and J. P. Conde, “Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors,” Biosens. Bioelectron.36(1), 242–249 (2012).
[CrossRef] [PubMed]

Cirp Ann. Manuf. Technol. (1)

H. S. Lee and H. D. Jeong, “Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces,” Cirp Ann. Manuf. Technol.58(1), 485–490 (2009).
[CrossRef]

J. Appl. Phys. (2)

M. Zeman, R. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si : H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys.88(11), 6436–6443 (2000).
[CrossRef]

A. C. Pimentel, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Fluorescence detection of DNA using an amorphous silicon p-i-n photodiode,” J. Appl. Phys.104(5), 054913 (2008).
[CrossRef]

J. Mol. Recognit. (1)

R. L. Rich and D. G. Myszka, “Survey of the 2009 commercial optical biosensor literature,” J. Mol. Recognit.24(6), 892–914 (2011).
[CrossRef] [PubMed]

J. Struct. Biol. (1)

M. Dundr, J. G. McNally, J. Cohen, and T. Misteli, “Quantitation of GFP-fusion proteins in single living cells,” J. Struct. Biol.140(1-3), 92–99 (2002).
[CrossRef] [PubMed]

Lab Chip (1)

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

Microelectron. Eng. (1)

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng.87(5–8), 963–967 (2010).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

J. Webb and V. Kanellopoulos, “Absorbing Boundary-Conditions for the Finite-Element Solution of the Vector Wave-Equation,” Microw. Opt. Technol. Lett.2(10), 370–372 (1989).
[CrossRef]

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Opt. Express (2)

Phys. Status Solidi C (1)

J. P. Conde, A. Jóskowiak, B. Lipovšek, A. Pimentel, A. T. Pereira, M. Santos, J. Krč, M. Topic, D. M. F. Prazeres, and V. Chu, “Spectral selectivity constraints in fluo- rescence detection of biomolecules using amorphous silicon based detectors,” Phys. Status Solidi C7(3–4), 1156–1159 (2010).

Physiol. Rev. (1)

D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov, “Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues,” Physiol. Rev.90(3), 1103–1163 (2010).
[CrossRef] [PubMed]

PLoS ONE (1)

S. Lee, W. A. Lim, and K. S. Thorn, “Improved Blue, Green, and Red Fluorescent Protein Tagging Vectors for S. cerevisiae,” PLoS ONE8(7), e67902 (2013).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. J. Resnick, W. J. Dauksher, D. P. Mancini, K. J. Nordquist, T. C. Bailey, S. C. Johnson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. E. Schumaker, “Imprint lithography: lab curiosity or the real NGL,” Proc. SPIE5037, 12–23 (2003).

Semicond. Sci. Technol. (1)

C. J. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol.26(1), 014043 (2011).
[CrossRef]

Sens. Actuators B Chem. (1)

A. Joskowiak, M. S. Santos, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Integration of thin film amorphous silicon photodetector with lab-on-chip for monitoring protein fluorescence in solution and in live microbial cells,” Sens. Actuators B Chem.156(2), 662–667 (2011).
[CrossRef]

Sens. Actuators Phys. (2)

B. Lipovsek, A. Joskowiak, J. Krc, M. Topic, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Characterisation of hydrogenated silicon-carbon alloy filters with different carbon composition for on-chip fluorescence detection of biomolecules,” Sens. Actuators Phys.163(1), 96–100 (2010).
[CrossRef]

F. Dong, V. Chu, and J. P. Conde, “Submicron thin-film amorphous silicon photoconductive light sensors,” Sens. Actuators Phys.170(1-2), 32–35 (2011).
[CrossRef]

Other (14)

The Molecular Probes® Handbook.” [Online]. Available: http://www.lifetechnologies.com/si/en/home/ references/ molecular-probes-the-handbook.html . [Accessed: 18-Apr-2014].

R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 2005).

D. Bowtell, J. Sambrook, and D. N. A. Microarrays, A Molecular Cloning Manual, Cold Spring Harbor Laboratory Press, (2003).

E. M. Goldys, Fluorescence Applications in Biotechnology and Life Sciences (John Wiley & Sons, 2009).

A. Roda, Chemiluminescence and Bioluminescence: Past, Present and Future (Royal Society of Chemistry 2010).

N. Ohta and A. Robertson, Colorimetry: Fundamentals and Applications (John Wiley & Sons, 2006).

B. Lipovsek, A. Joskowiak, J. Krc, M. Topic, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Design of spectrally selective filters in fluorescence detection of biomolecules,” presented at the 45th International Conference on Microelectronics, Devices and Materials and the Workshop on Advanced Photovoltaic Devices and Technologies, Ljubljana, (2009).

S. Mahiya, Green Fluorescent Protein: Cloning Purification and Physical Properties of Green Fluorescent Protein, Saarbrücken: LAP LAMBERT Academic Publishing, (2012).

Green Fluorescent Protein (GFP).” [Online]. Available: http://www.jic.ac.uk/microscopy/more/T5_9.htm . [Accessed: 31-Jan-2014].

H. J. Levinson, Principles of Lithography, Third Edition, 3 edition. Bellingham, Wash: SPIE Press, (2011).

Fluorescence SpectraViewer.” [Online]. Available: http://www.lifetechnologies.com/si/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html?ICID=svtool&UID=EGFPpH7 . [Accessed: 31-Jan-2014].

COMSOL Multiphysics®.” [Online]. Available: https://www.comsol.com/ ‎ [Accessed: 31-Jan-2014].

J. Peatross and M. Ware, Physics of Light and Optics (2013).

J.-M. Jin, The Finite Element Method in Electromagnetics, Wiley, (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

a) Schematic representation of a fluorescence based biodetector with a thin-film hydrogenated amorphous silicon (a-Si:H) p-i-n photodiode. b) GFP excitation and emission spectra showing the maximum fluorescence excitation wavelength (λexc) sensitivity at 480 nm and the maximum emission wavelength (λem) intensity at 510 nm [26].

Fig. 2
Fig. 2

Schematic presentation of different filter configurations: a) a flat absorbing filter (AF) consisting of a single layer of a-SiC:H (reference), b) a filter with a diffraction grating on top (GAF), c) a diffraction grating in a low refractive index layer (EG), and d) a combination of diffraction grating in a low refractive index host layer on top of flat absorbing filter (EG + AF). The grating materials can be either TiO2 or p-a-SiC:H, the hosting material is SiO2 in all cases, h and P are the height and period of the diffraction grating, respectively, and is the thickness of the low-index spacer layer.

Fig. 3
Fig. 3

Contour plots showing the rejection ratio (RRT) dependence on P and h for different filters: a) GAF, b) TiO2 EG, c) p-a-SiC:H EG, and d) p-a-SiC:H EG with flat AF . The reference RRT corresponding to the flat absorbing filter is RRT = 10.21 (not denoted in plots). Note: the RRT color scale in the plot (a) is linear, while plots b, c, and d have logarithmic RRT scales.

Fig. 4
Fig. 4

The dependence of excitation light transmittance on the SiO2 spacer layer thickness for a TiO2 (P = 380 nm, h = 129 nm) and p-a-SiC:H (P = 295 nm, h = 94 nm) grating.

Fig. 5
Fig. 5

Transmittance (T), reflectance (R), and absorbance (A) spectra for an embedded grating in a SiO2 host. The grating is made of a) TiO2 - weakly absorbing material (P = 380 nm, h = 129 nm, dLIM = 650 nm) and b) p-a-SiC:H - absorbing material (P = 295 nm, h = 94 nm, dLIM = 350 nm). Note: a linear scale is used here. Absolute values of the electric field |E| (a.u.) at the excitation and emission wavelengths along with the corresponding transmittances are specified.

Fig. 6
Fig. 6

Comparison of transmittance dependence on the wavelength for optimized filtering structures.

Fig. 7
Fig. 7

Comparison of different duty-cycles for the p-a-SiC:H grating. For duty-cycle η = 0.25, an optimum of P = 359 nm, h = 262 nm, and dLIM = 400 nm resulted in RRT = 130000. For η = 0.5, an optimum at P = 295, h = 94 nm, and dLIM = 350 nm resulted in RRT = 16000. And for η = 0.75, an optimum at P = 345 nm, h = 85 nm and dLIM = 200 nm resulted in RRT = 2.2.

Fig. 8
Fig. 8

Transmittance dependence on the incident angle for the excitation (bottom scale) and emission (top scale) light for a TiO2 grating (P = 380 nm, h = 129 nm) and p-a-SiC:H grating (η = 0.5, P = 295 nm, h = 94 nm and η = 0.25, P = 359 nm, h = 262 nm). For comparison the angle dependence for the flat absorbing filter (dAF = 2000 nm) is added.

Fig. 9
Fig. 9

Effect of manufacturing uncertainties (on period (Popt/2 + Δ) and height (hopt + Δ) in range Δi = ± 0-5 nm and Δii = ± 0-3 nm) on T(λ) characteristics for: a) TiO2 grating (Popt = 380 nm, hopt = 129 nm) with and without the absorbing filter and b) p-a-SiCH grating (Popt = 295 nm, hopt = 94 nm) with and without the absorbing filter. Added are the ideal Texc values for both embedded gratings, without the absorbing filter.

Fig. 10
Fig. 10

Spectral response (SR) of the detector with different filtering solutions.

Fig. 11
Fig. 11

SR for different filter configurations for realistic conditions. Here less wavelengths were simulated (due to the large simulation model), thus lines are more rugged than in previous graphs.

Tables (2)

Tables Icon

Table 1 Complex refractive indices of used materials at excitation (480 nm) and emission (510 nm) wavelengths.

Tables Icon

Table 2 RRT and RRSR values for different filter concepts. The optimal periods and heights for different gratings are presented with the best results in terms of RR. RRs considering manufacturing errors as well as different incident angles of the excitation (0.5°) and emission (45°) light are also presented. Finally, RRSRs with the entire GFP emission spectrum, under ideal and real conditions, are given in the final column.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R R T = T em T exc
R R SR = S R em ( A W ) S R exc ( A W )

Metrics