Abstract

We demonstrate the possibility to switch the z-polarization component of the illumination in the vicinity of the focus of high-NA objective lenses by applying radially and azimuthally polarized incident light. The influence of the field distribution on nonlinear effects was first investigated by the means of simulations. These were performed for high-NA objective lenses commonly used in nonlinear microscopy. Special attention is paid to the influence of the polarization of the incoming field. For linearly, circularly and radially polarized light a considerable polarization component in z-direction is generated by high NA focusing. Azimuthal polarization is an exceptional case: even for strong focusing no z-component arises. Furthermore, the influence of the input polarization on the intensity contributing to the nonlinear signal generation was computed. No distinct difference between comparable input polarization states was found for chosen thresholds of nonlinear signal generation. Differences in signal generation for radially and azimuthally polarized vortex beams were experimentally evaluated in native collagen tissue (porcine cornea). The findings are in good agreement with the theoretical predictions and display the possibility to probe the molecular orientation along the optical axis of samples with known nonlinear properties. The combination of simulations regarding the nonlinear response of materials and experiments with different sample orientations and present or non present z-polarization could help to increase the understanding of nonlinear signal formation in yet unstudied materials.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Mulitphoton microscopy in biological research,” Chem. Biol.5, 603–608 (2001).
  2. W. Denk and K. Svoboda, “Photon upmanship: Why multiphoton imaging is more than a gimmick,” Neuron18, 351–357 (1997).
    [CrossRef] [PubMed]
  3. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nature Biotechnol.21, 1369–1377 (2003).
    [CrossRef]
  4. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature Methods2, 932–940 (2005).
    [CrossRef] [PubMed]
  5. N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dbarre, P. Bourgine, A. Santos, N. Peyriras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science329, 967–971 (2010).
    [CrossRef] [PubMed]
  6. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
    [CrossRef] [PubMed]
  7. N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express18, 5028–5040 (2010).
    [CrossRef] [PubMed]
  8. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Ann. Rev. Biomed. Eng.2, 399–429 (2000).
    [CrossRef]
  9. L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microscopy226, 195–206 (2007).
    [CrossRef]
  10. R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier Inc., 2008).
  11. A.-M. Pena, T. Boulesteix, T. Dartigalongue, and M.-C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens i and iv,” J. Am. Chem. Soc.127, 10314–10322 (2005).
    [CrossRef] [PubMed]
  12. G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M.-C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express3, 1–15 (2011).
    [CrossRef]
  13. A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type i collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem.115, 12759–12769 (2011).
    [CrossRef]
  14. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91, 233901 (2003).
    [CrossRef] [PubMed]
  15. D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett.28, 923–925 (2003).
    [CrossRef] [PubMed]
  16. E. Y. S. Yew and C. J. R. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun.275, 453–457 (2007).
    [CrossRef]
  17. K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44, 1066–1068 (2005).
    [CrossRef]
  18. K. Yoshiki, K. Ryosuke, M. Hashimoto, N. Hashimoto, and T. Araki, “Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation,” Opt. Lett.32, 1680–1682 (2007).
    [CrossRef] [PubMed]
  19. M. Leutenegger, R. Rao, R. A. Leitgeb, and T. Lasser, “Fast focus field calculations,” Opt. Express14, 11277–11291 (2006).
    [CrossRef] [PubMed]
  20. E. Wolf, ed., An Integral Representation of the Image Field, vol. 253 of A(Proceedings of the Royal Society of London - Mathematical and Physical Sciences, 1959).
  21. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale (Elsevier Inc., 2006).
  22. B. R. Masters, “Correlation of histology and linear and nonlinear microscopy of the living human cornea,” J. Biophoton.2, 127–139 (2009).
    [CrossRef]
  23. F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Visual Sci.51, 2459–2465 (2010).
    [CrossRef]
  24. A. J. Quantock and R. D. Young, “Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function,” Developmental Dynamics237, 2607–2621 (2008).
    [CrossRef] [PubMed]
  25. M. D. Shoulders and R. T. Raines, “Collagen structure and stability,” Ann. Rev. Biochem.78, 929–958 (2009).
    [CrossRef] [PubMed]
  26. M. Beresna, “Polarization engineering with ultrafast laser writing in transparent media,” Ph.D. thesis, University of Southampton (2012).
  27. S. Richter, M. Heinrich, S. Doering, A. Tuennermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24, 042008:1–8 (2012).
    [CrossRef]
  28. W. Radner, M. Zehetmayer, R. Aufreiter, and R. Mallinger, “Interlacing and cross-angle distribution of collagen lamellae in the human cornea,” Cornea17, 537–543 (1998).
    [CrossRef] [PubMed]

2012 (1)

S. Richter, M. Heinrich, S. Doering, A. Tuennermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24, 042008:1–8 (2012).
[CrossRef]

2011 (2)

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M.-C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express3, 1–15 (2011).
[CrossRef]

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type i collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem.115, 12759–12769 (2011).
[CrossRef]

2010 (3)

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Visual Sci.51, 2459–2465 (2010).
[CrossRef]

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dbarre, P. Bourgine, A. Santos, N. Peyriras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science329, 967–971 (2010).
[CrossRef] [PubMed]

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express18, 5028–5040 (2010).
[CrossRef] [PubMed]

2009 (2)

M. D. Shoulders and R. T. Raines, “Collagen structure and stability,” Ann. Rev. Biochem.78, 929–958 (2009).
[CrossRef] [PubMed]

B. R. Masters, “Correlation of histology and linear and nonlinear microscopy of the living human cornea,” J. Biophoton.2, 127–139 (2009).
[CrossRef]

2008 (1)

A. J. Quantock and R. D. Young, “Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function,” Developmental Dynamics237, 2607–2621 (2008).
[CrossRef] [PubMed]

2007 (3)

E. Y. S. Yew and C. J. R. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun.275, 453–457 (2007).
[CrossRef]

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microscopy226, 195–206 (2007).
[CrossRef]

K. Yoshiki, K. Ryosuke, M. Hashimoto, N. Hashimoto, and T. Araki, “Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation,” Opt. Lett.32, 1680–1682 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (3)

A.-M. Pena, T. Boulesteix, T. Dartigalongue, and M.-C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens i and iv,” J. Am. Chem. Soc.127, 10314–10322 (2005).
[CrossRef] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature Methods2, 932–940 (2005).
[CrossRef] [PubMed]

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44, 1066–1068 (2005).
[CrossRef]

2003 (3)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91, 233901 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nature Biotechnol.21, 1369–1377 (2003).
[CrossRef]

D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett.28, 923–925 (2003).
[CrossRef] [PubMed]

2001 (1)

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Mulitphoton microscopy in biological research,” Chem. Biol.5, 603–608 (2001).

2000 (1)

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Ann. Rev. Biomed. Eng.2, 399–429 (2000).
[CrossRef]

1998 (1)

W. Radner, M. Zehetmayer, R. Aufreiter, and R. Mallinger, “Interlacing and cross-angle distribution of collagen lamellae in the human cornea,” Cornea17, 537–543 (1998).
[CrossRef] [PubMed]

1997 (1)

W. Denk and K. Svoboda, “Photon upmanship: Why multiphoton imaging is more than a gimmick,” Neuron18, 351–357 (1997).
[CrossRef] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
[CrossRef] [PubMed]

Aptel, F.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Visual Sci.51, 2459–2465 (2010).
[CrossRef]

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express18, 5028–5040 (2010).
[CrossRef] [PubMed]

Araki, T.

K. Yoshiki, K. Ryosuke, M. Hashimoto, N. Hashimoto, and T. Araki, “Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation,” Opt. Lett.32, 1680–1682 (2007).
[CrossRef] [PubMed]

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44, 1066–1068 (2005).
[CrossRef]

Aufreiter, R.

W. Radner, M. Zehetmayer, R. Aufreiter, and R. Mallinger, “Interlacing and cross-angle distribution of collagen lamellae in the human cornea,” Cornea17, 537–543 (1998).
[CrossRef] [PubMed]

Barzda, V.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type i collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem.115, 12759–12769 (2011).
[CrossRef]

Beaurepaire, E.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Visual Sci.51, 2459–2465 (2010).
[CrossRef]

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dbarre, P. Bourgine, A. Santos, N. Peyriras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science329, 967–971 (2010).
[CrossRef] [PubMed]

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express18, 5028–5040 (2010).
[CrossRef] [PubMed]

Beresna, M.

M. Beresna, “Polarization engineering with ultrafast laser writing in transparent media,” Ph.D. thesis, University of Southampton (2012).

Berland, K. M.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Ann. Rev. Biomed. Eng.2, 399–429 (2000).
[CrossRef]

Biss, D. P.

Boulesteix, T.

A.-M. Pena, T. Boulesteix, T. Dartigalongue, and M.-C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens i and iv,” J. Am. Chem. Soc.127, 10314–10322 (2005).
[CrossRef] [PubMed]

Bourgine, P.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dbarre, P. Bourgine, A. Santos, N. Peyriras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science329, 967–971 (2010).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier Inc., 2008).

Brown, T. G.

Cisek, R.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type i collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem.115, 12759–12769 (2011).
[CrossRef]

Dartigalongue, T.

A.-M. Pena, T. Boulesteix, T. Dartigalongue, and M.-C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens i and iv,” J. Am. Chem. Soc.127, 10314–10322 (2005).
[CrossRef] [PubMed]

Dbarre, D.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dbarre, P. Bourgine, A. Santos, N. Peyriras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science329, 967–971 (2010).
[CrossRef] [PubMed]

Deniset-Besseau, A.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Visual Sci.51, 2459–2465 (2010).
[CrossRef]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature Methods2, 932–940 (2005).
[CrossRef] [PubMed]

W. Denk and K. Svoboda, “Photon upmanship: Why multiphoton imaging is more than a gimmick,” Neuron18, 351–357 (1997).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
[CrossRef] [PubMed]

Diels, J.-C.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale (Elsevier Inc., 2006).

Doering, S.

S. Richter, M. Heinrich, S. Doering, A. Tuennermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24, 042008:1–8 (2012).
[CrossRef]

Dong, C. Y.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Ann. Rev. Biomed. Eng.2, 399–429 (2000).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91, 233901 (2003).
[CrossRef] [PubMed]

Duloquin, L.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dbarre, P. Bourgine, A. Santos, N. Peyriras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science329, 967–971 (2010).
[CrossRef] [PubMed]

Faure, E.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dbarre, P. Bourgine, A. Santos, N. Peyriras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science329, 967–971 (2010).
[CrossRef] [PubMed]

Fu, L.

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microscopy226, 195–206 (2007).
[CrossRef]

Gu, M.

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microscopy226, 195–206 (2007).
[CrossRef]

Gusachenko, I.

Hashimoto, M.

K. Yoshiki, K. Ryosuke, M. Hashimoto, N. Hashimoto, and T. Araki, “Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation,” Opt. Lett.32, 1680–1682 (2007).
[CrossRef] [PubMed]

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44, 1066–1068 (2005).
[CrossRef]

Hashimoto, N.

Heinrich, M.

S. Richter, M. Heinrich, S. Doering, A. Tuennermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24, 042008:1–8 (2012).
[CrossRef]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature Methods2, 932–940 (2005).
[CrossRef] [PubMed]

Kowalczuk, L.

Krouglov, S.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type i collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem.115, 12759–12769 (2011).
[CrossRef]

Lamarre, I.

Lasser, T.

Latour, G.

Legeais, J.-M.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Visual Sci.51, 2459–2465 (2010).
[CrossRef]

Leitgeb, R. A.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91, 233901 (2003).
[CrossRef] [PubMed]

Leutenegger, M.

Luengo-Oroz, M. A.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dbarre, P. Bourgine, A. Santos, N. Peyriras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science329, 967–971 (2010).
[CrossRef] [PubMed]

Mallinger, R.

W. Radner, M. Zehetmayer, R. Aufreiter, and R. Mallinger, “Interlacing and cross-angle distribution of collagen lamellae in the human cornea,” Cornea17, 537–543 (1998).
[CrossRef] [PubMed]

Masters, B. R.

B. R. Masters, “Correlation of histology and linear and nonlinear microscopy of the living human cornea,” J. Biophoton.2, 127–139 (2009).
[CrossRef]

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Ann. Rev. Biomed. Eng.2, 399–429 (2000).
[CrossRef]

Nolte, S.

S. Richter, M. Heinrich, S. Doering, A. Tuennermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24, 042008:1–8 (2012).
[CrossRef]

Olivier, N.

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express18, 5028–5040 (2010).
[CrossRef] [PubMed]

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dbarre, P. Bourgine, A. Santos, N. Peyriras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science329, 967–971 (2010).
[CrossRef] [PubMed]

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Visual Sci.51, 2459–2465 (2010).
[CrossRef]

Pena, A.-M.

A.-M. Pena, T. Boulesteix, T. Dartigalongue, and M.-C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens i and iv,” J. Am. Chem. Soc.127, 10314–10322 (2005).
[CrossRef] [PubMed]

Peschel, U.

S. Richter, M. Heinrich, S. Doering, A. Tuennermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24, 042008:1–8 (2012).
[CrossRef]

Peyriras, N.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dbarre, P. Bourgine, A. Santos, N. Peyriras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science329, 967–971 (2010).
[CrossRef] [PubMed]

Plamann, K.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Visual Sci.51, 2459–2465 (2010).
[CrossRef]

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express18, 5028–5040 (2010).
[CrossRef] [PubMed]

Prent, N.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type i collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem.115, 12759–12769 (2011).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91, 233901 (2003).
[CrossRef] [PubMed]

Quantock, A. J.

A. J. Quantock and R. D. Young, “Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function,” Developmental Dynamics237, 2607–2621 (2008).
[CrossRef] [PubMed]

Radner, W.

W. Radner, M. Zehetmayer, R. Aufreiter, and R. Mallinger, “Interlacing and cross-angle distribution of collagen lamellae in the human cornea,” Cornea17, 537–543 (1998).
[CrossRef] [PubMed]

Raines, R. T.

M. D. Shoulders and R. T. Raines, “Collagen structure and stability,” Ann. Rev. Biochem.78, 929–958 (2009).
[CrossRef] [PubMed]

Rao, R.

Richter, S.

S. Richter, M. Heinrich, S. Doering, A. Tuennermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24, 042008:1–8 (2012).
[CrossRef]

Rudolph, W.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale (Elsevier Inc., 2006).

Ryosuke, K.

Sandkuijl, D.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type i collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem.115, 12759–12769 (2011).
[CrossRef]

Santos, A.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dbarre, P. Bourgine, A. Santos, N. Peyriras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science329, 967–971 (2010).
[CrossRef] [PubMed]

Savy, T.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dbarre, P. Bourgine, A. Santos, N. Peyriras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science329, 967–971 (2010).
[CrossRef] [PubMed]

Schanne-Klein, M.-C.

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M.-C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express3, 1–15 (2011).
[CrossRef]

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express18, 5028–5040 (2010).
[CrossRef] [PubMed]

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Visual Sci.51, 2459–2465 (2010).
[CrossRef]

A.-M. Pena, T. Boulesteix, T. Dartigalongue, and M.-C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens i and iv,” J. Am. Chem. Soc.127, 10314–10322 (2005).
[CrossRef] [PubMed]

Sheppard, C. J. R.

E. Y. S. Yew and C. J. R. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun.275, 453–457 (2007).
[CrossRef]

Shoulders, M. D.

M. D. Shoulders and R. T. Raines, “Collagen structure and stability,” Ann. Rev. Biochem.78, 929–958 (2009).
[CrossRef] [PubMed]

So, P. T. C.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Ann. Rev. Biomed. Eng.2, 399–429 (2000).
[CrossRef]

Solinas, X.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dbarre, P. Bourgine, A. Santos, N. Peyriras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science329, 967–971 (2010).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
[CrossRef] [PubMed]

Svoboda, K.

W. Denk and K. Svoboda, “Photon upmanship: Why multiphoton imaging is more than a gimmick,” Neuron18, 351–357 (1997).
[CrossRef] [PubMed]

Tuennermann, A.

S. Richter, M. Heinrich, S. Doering, A. Tuennermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24, 042008:1–8 (2012).
[CrossRef]

Tuer, A. E.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type i collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem.115, 12759–12769 (2011).
[CrossRef]

Veilleux, I.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dbarre, P. Bourgine, A. Santos, N. Peyriras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science329, 967–971 (2010).
[CrossRef] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nature Biotechnol.21, 1369–1377 (2003).
[CrossRef]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Mulitphoton microscopy in biological research,” Chem. Biol.5, 603–608 (2001).

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nature Biotechnol.21, 1369–1377 (2003).
[CrossRef]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Mulitphoton microscopy in biological research,” Chem. Biol.5, 603–608 (2001).

Wilson, B. C.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type i collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem.115, 12759–12769 (2011).
[CrossRef]

Yasufuku, K.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type i collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem.115, 12759–12769 (2011).
[CrossRef]

Yew, E. Y. S.

E. Y. S. Yew and C. J. R. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun.275, 453–457 (2007).
[CrossRef]

Yoshiki, K.

K. Yoshiki, K. Ryosuke, M. Hashimoto, N. Hashimoto, and T. Araki, “Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation,” Opt. Lett.32, 1680–1682 (2007).
[CrossRef] [PubMed]

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44, 1066–1068 (2005).
[CrossRef]

Young, R. D.

A. J. Quantock and R. D. Young, “Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function,” Developmental Dynamics237, 2607–2621 (2008).
[CrossRef] [PubMed]

Zehetmayer, M.

W. Radner, M. Zehetmayer, R. Aufreiter, and R. Mallinger, “Interlacing and cross-angle distribution of collagen lamellae in the human cornea,” Cornea17, 537–543 (1998).
[CrossRef] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nature Biotechnol.21, 1369–1377 (2003).
[CrossRef]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Mulitphoton microscopy in biological research,” Chem. Biol.5, 603–608 (2001).

Ann. Rev. Biochem. (1)

M. D. Shoulders and R. T. Raines, “Collagen structure and stability,” Ann. Rev. Biochem.78, 929–958 (2009).
[CrossRef] [PubMed]

Ann. Rev. Biomed. Eng. (1)

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Ann. Rev. Biomed. Eng.2, 399–429 (2000).
[CrossRef]

Biomed. Opt. Express (1)

Chem. Biol. (1)

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Mulitphoton microscopy in biological research,” Chem. Biol.5, 603–608 (2001).

Cornea (1)

W. Radner, M. Zehetmayer, R. Aufreiter, and R. Mallinger, “Interlacing and cross-angle distribution of collagen lamellae in the human cornea,” Cornea17, 537–543 (1998).
[CrossRef] [PubMed]

Developmental Dynamics (1)

A. J. Quantock and R. D. Young, “Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function,” Developmental Dynamics237, 2607–2621 (2008).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (1)

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Visual Sci.51, 2459–2465 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

A.-M. Pena, T. Boulesteix, T. Dartigalongue, and M.-C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens i and iv,” J. Am. Chem. Soc.127, 10314–10322 (2005).
[CrossRef] [PubMed]

J. Biophoton. (1)

B. R. Masters, “Correlation of histology and linear and nonlinear microscopy of the living human cornea,” J. Biophoton.2, 127–139 (2009).
[CrossRef]

J. Laser Appl. (1)

S. Richter, M. Heinrich, S. Doering, A. Tuennermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24, 042008:1–8 (2012).
[CrossRef]

J. Microscopy (1)

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microscopy226, 195–206 (2007).
[CrossRef]

J. Phys. Chem. (1)

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type i collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem.115, 12759–12769 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44, 1066–1068 (2005).
[CrossRef]

Nature Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nature Biotechnol.21, 1369–1377 (2003).
[CrossRef]

Nature Methods (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature Methods2, 932–940 (2005).
[CrossRef] [PubMed]

Neuron (1)

W. Denk and K. Svoboda, “Photon upmanship: Why multiphoton imaging is more than a gimmick,” Neuron18, 351–357 (1997).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. Y. S. Yew and C. J. R. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun.275, 453–457 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91, 233901 (2003).
[CrossRef] [PubMed]

Science (2)

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dbarre, P. Bourgine, A. Santos, N. Peyriras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science329, 967–971 (2010).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
[CrossRef] [PubMed]

Other (4)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier Inc., 2008).

M. Beresna, “Polarization engineering with ultrafast laser writing in transparent media,” Ph.D. thesis, University of Southampton (2012).

E. Wolf, ed., An Integral Representation of the Image Field, vol. 253 of A(Proceedings of the Royal Society of London - Mathematical and Physical Sciences, 1959).

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale (Elsevier Inc., 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Scheme of the optical arrangement: the objective lens is approximated by an aperture and a single lens. Aperture and lens are thought to be in the same z-plane (dotted points are not depicting an actual distance). The electrical field of the incoming light Ein (plane wave approximation) is modified to Eapt by the aperture. Eapt is split up into its components in radial and azimuthal direction Ep and Es respectively. The lens with focal distance f focuses the light onto the origin of coordinates ��. The field vector Ep is deflected by θ and projected onto Er. The electric field behind the lens Eproj is the sum of Er and Es. The new wavefront is a spherical cap. (Ref [19], Fig. 1)

Fig. 2
Fig. 2

Schematic drawing of the electrical field distribution for linear, radial, radial vortex, azimuthal and azimuthal vortex polarization. Except of the two vortex cases all field distributions were assumed to be homogeneous.

Fig. 3
Fig. 3

Comparison between cw and pulsed case: The relative deviation between the cw and pulsed case is less than 1 %. Thus, calculations can be based on the cw-case.

Fig. 4
Fig. 4

Spatial distribution of polarization components after focussing radially and azimuthally polarized vortex beams with a high-NA objective lens (NA = 1.05, λ = 800 nm): A z-component of azimuthally polarized vortex beams does not exist.

Fig. 5
Fig. 5

Size and shape of the focus for different input polarizations (NA = 1.05, λ = 800 nm). The field distribution of the incoming light was assumed to be homogeneous except for the vortex cases. Except for the case of an azimuthally polarized homogeneous beam, all resulting intensity distributions have their maximum in the center of the focal plane.

Fig. 6
Fig. 6

Variation of the field distribution before focussing with an objective lens (NA = 1.05, λ = 800 nm): the z-polarization component depends strongly on the incoming field distribution. All calculations were done for linear input polarization.

Fig. 7
Fig. 7

Influence of the numerical aperture on the z-polarization component for different input fields: for an azimuthally polarized input field the z-polarization component is zero (independent from the NA), in all other cases the z-polarization component is increasing when increasing the NA.

Fig. 8
Fig. 8

Experimental setup: The fs-laser power was controlled by a light valve (polarizing beam splitter cube (PBS) and a half-wave plate (λ/2). The beam diameter was then adjusted to the scanning mirrors using a telescope. The polarizing elements were placed right in front of the scanning unit. Two quarter-wave plates (λ/4) and a half-wave plate ensured circular polarization. The custom made waveplate converted left circular to a radially and right circular to an azimuthally polarized vortex beam. The polarization state could be checked optional with a linear polarizer in front of a CCD-camera. Behind the scanning mirrors another telescope widened the beam to slightly overfill the back aperture of the objective lens. The backward signal was deflected by the primary dichroic mirror and the signal was detected with a PMT after a secondary dichroic mirror and a band-pass filter.

Fig. 9
Fig. 9

Comparison between radially and azimuthally polarized light. The present polarization states can be identified with a CCD camera and a linear polarizer in front of the camera.

Fig. 10
Fig. 10

Experimental setup for cornea imaging. The slice of cornea is placed in a chamber built by a metal ring and a microscope slide filled with Vidisic gel. Like this, the positioning is guaranteed.

Fig. 11
Fig. 11

Scheme of the two imaging modes. The orientation of the collagen planes relative to the optical axis is sketched and examplary resulting pictures are shown: a) The optical axis is parallel to the collagen planes leading to a transverse view. b) The optical axis is perpendicular to the collagen planes leading to a coronal view. Scale bars: 30 μm.

Fig. 12
Fig. 12

Ratios of the mean grey values of the images recorded with radially and azimuthally polarized vortex beams for (a) transverse and (b) coronal view. In each case the mean grey value of an image recorded with radially polarized light was compared to the mean grey value of the corresponding picture recorded with azimuthally polarized incident light. The ratios of the first 5 z-positions (equal to 8 μm in depth) were averaged for each position in the cornea.

Tables (2)

Tables Icon

Table 1 Behavior of different incoming field polarizations after strong focussing (NA = 1.05, λ = 800 nm). The field distribution was assumed to be homogeneous except for the two vortex beams. Every polarization state splits up into x-, y- and z-polarization components. For azimuthal polarization no z-component arises.

Tables Icon

Table 2 Squared intensity in the focal region for different thresholds (NA = 1.05, λ = 800 nm, Pavg = 80 mW). For linear and circular polarized light, the generated signal is of the same order of magnitude. This is also the case for radial and azimuthal as well as for radial vortex and azimuthal vortex input polarization.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

M = ( cos 2 φ cos θ + sin 2 φ sin φ cos φ cos θ sin φ cos φ 0 cos φ sin φ cos θ sin φ cos φ sin 2 φ cos θ + cos 2 φ 0 cos φ sin θ sin φ sin θ 0 )
E foc ( 𝒫 ) = i k f 2 π 0 2 π 0 α E proj ( φ , θ ) cos ( θ ) exp [ i k ( s x x + s y y + s z z ) ] sin ( θ ) d θ d φ
s = ( cos φ sin θ sin φ sin θ cos θ )
E foc ( 𝒫 ) = i f k [ E proj ( φ , θ ) cos θ exp [ i ( k z z ) ] ]
Δ I ( x , y ) = I cw ( x , y ) I avg ( x , y ) I peak ( 0 , 0 )
x direction = I x I , y direction = I y I , z direction = I z I

Metrics