Abstract

Imaging and evaluation of the optic nerve head (ONH) plays an essential part in the detection and clinical management of glaucoma. The morphological characteristics of ONHs vary greatly from person to person and this variability means it is difficult to quantify them in a standardized way. We developed and evaluated a feature extraction approach using shift-invariant wavelet packet and kernel principal component analysis to quantify the shape features in ONH images acquired by scanning laser ophthalmoscopy (Heidelberg Retina Tomograph [HRT]). The methods were developed and tested on 1996 eyes from three different clinical centers. A shape abnormality score (SAS) was developed from extracted features using a Gaussian process to identify glaucomatous abnormality. SAS can be used as a diagnostic index to quantify the overall likelihood of ONH abnormality. Maps showing areas of likely abnormality within the ONH were also derived. Diagnostic performance of the technique, as estimated by ROC analysis, was significantly better than the classification tools currently used in the HRT software – the technique offers the additional advantage of working with all images and is fully automated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Jonas, W. M. Budde, and S. Panda-Jonas, “Ophthalmoscopic evaluation of the optic nerve head,” Surv. Ophthalmol.43(4), 293–320 (1999).
    [CrossRef] [PubMed]
  2. C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J. K. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res.24(1), 39–73 (2005).
    [CrossRef] [PubMed]
  3. I. A. Sigal, J. G. Flanagan, I. Tertinegg, and C. R. Ethier, “3D morphometry of the human optic nerve head,” Exp. Eye Res.90(1), 70–80 (2010).
    [CrossRef] [PubMed]
  4. P. G. Sanfilippo, A. Cardini, A. W. Hewitt, J. G. Crowston, and D. A. Mackey, “Optic disc morphology--rethinking shape,” Prog. Retin. Eye Res.28(4), 227–248 (2009).
    [CrossRef] [PubMed]
  5. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt.26(8), 1492–1499 (1987).
    [CrossRef] [PubMed]
  6. G. Wollstein, D. F. Garway-Heath, and R. A. Hitchings, “Identification of early glaucoma cases with the scanning laser ophthalmoscope,” Ophthalmology105(8), 1557–1563 (1998).
    [CrossRef] [PubMed]
  7. C. Y. Mardin and A. G. Jünemann, “The diagnostic value of optic nerve imaging in early glaucoma,” Curr. Opin. Ophthalmol.12(2), 100–104 (2001).
    [CrossRef] [PubMed]
  8. M. R. Kesen, G. L. Spaeth, J. D. Henderer, M. L. Pereira, A. F. Smith, and W. C. Steinmann, “The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma,” Am. J. Ophthalmol.133(5), 613–616 (2002).
    [CrossRef] [PubMed]
  9. D. S. Kamal, A. C. Viswanathan, D. F. Garway-Heath, R. A. Hitchings, D. Poinoosawmy, and C. Bunce, “Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma,” Br. J. Ophthalmol.83(3), 290–294 (1999).
    [CrossRef] [PubMed]
  10. N. G. Strouthidis and D. F. Garway-Heath, “New developments in Heidelberg retina tomograph for glaucoma,” Curr. Opin. Ophthalmol.19(2), 141–148 (2008).
    [CrossRef] [PubMed]
  11. D. F. Garway-Heath and R. A. Hitchings, “Quantitative evaluation of the optic nerve head in early glaucoma,” Br. J. Ophthalmol.82(4), 352–361 (1998).
    [CrossRef] [PubMed]
  12. J. Caprioli and J. M. Miller, “Optic disc rim area is related to disc size in normal subjects,” Arch. Ophthalmol.105(12), 1683–1685 (1987).
    [CrossRef] [PubMed]
  13. J. B. Jonas, G. C. Gusek, and G. O. Naumann, “Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes,” Invest. Ophthalmol. Vis. Sci.29(7), 1151–1158 (1988).
    [PubMed]
  14. C. Y. Mardin, T. Hothorn, A. Peters, A. G. Jünemann, N. X. Nguyen, and B. Lausen, “New Glaucoma Classification Method Based on Standard Heidelberg Retina Tomograph Parameters by Bagging Classification Trees,” J. Glaucoma12(4), 340–346 (2003).
    [CrossRef] [PubMed]
  15. B. A. Ford, P. H. Artes, T. A. McCormick, M. T. Nicolela, R. P. LeBlanc, and B. C. Chauhan, “Comparison of data analysis tools for detection of glaucoma with the heidelberg retina tomograph,” Ophthalmology110(6), 1145–1150 (2003).
    [CrossRef] [PubMed]
  16. L. M. Zangwill, K. Chan, C. Bowd, J. Hao, T.-W. Lee, R. N. Weinreb, T. J. Sejnowski, and M. H. Goldbaum, “Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers,” Invest. Ophthalmol. Vis. Sci.45(9), 3144–3151 (2004).
    [CrossRef] [PubMed]
  17. M. Iester, V. Mariotti, F. Lanza, and G. Calabria, “The effect of contour line position on optic nerve head analysis by Heidelberg Retina Tomograph,” Eur. J. Ophthalmol.19(6), 942–948 (2009).
    [PubMed]
  18. N. V. Swindale, G. Stjepanovic, A. Chin, and F. S. Mikelberg, “Automated Analysis of Normal and Glaucomatous Optic Nerve Head Topography Images,” Invest. Ophthalmol. Vis. Sci.41(7), 1730–1742 (2000).
    [PubMed]
  19. A. Coops, D. B. Henson, A. J. Kwartz, and P. H. Artes, “Automated Analysis of Heidelberg Retina Tomograph Optic Disc Images by Glaucoma Probability Score,” Invest. Ophthalmol. Vis. Sci.47(12), 5348–5355 (2006).
    [CrossRef] [PubMed]
  20. M. J. Hawker, S. A. Vernon, and G. Ainsworth, “Specificity of the Heidelberg Retina Tomograph’s diagnostic algorithms in a normal elderly population: the Bridlington Eye Assessment Project,” Ophthalmology113(5), 778–785 (2006).
    [CrossRef] [PubMed]
  21. H. Saito, T. Tsutsumi, M. Araie, A. Tomidokoro, and A. Iwase, “Sensitivity and specificity of the Heidelberg Retina Tomograph II Version 3.0 in a population-based study: the Tajimi Study,” Ophthalmology116(10), 1854–1861 (2009).
    [CrossRef] [PubMed]
  22. M. Iester, F. S. Mikelberg, and S. M. Drance, “The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph,” Ophthalmology104(3), 545–548 (1997).
    [CrossRef] [PubMed]
  23. M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Linear regression modeling of rim area to discriminate between normal and glaucomatous optic nerve heads: the Bridlington Eye Assessment Project,” J. Glaucoma16(4), 345–351 (2007).
    [CrossRef] [PubMed]
  24. P. H. Artes and D. P. Crabb, “Estimating Normative Limits of Heidelberg Retina Tomograph Optic Disc Rim Area with Quantile Regression,” Invest. Ophthalmol. Vis. Sci.51(1), 355–361 (2010).
    [CrossRef] [PubMed]
  25. A. J. Kwartz, D. B. Henson, R. A. Harper, A. F. Spencer, and D. McLeod, “The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma,” Health Technol. Assess.9(46), 1–132 (2005).
    [PubMed]
  26. S. A. Vernon, M. J. Hawker, G. Ainsworth, J. G. Hillman, H. K. Macnab, and H. S. Dua, “Laser Scanning Tomography of the Optic Nerve Head in a Normal Elderly Population: The Bridlington Eye Assessment Project,” Invest. Ophthalmol. Vis. Sci.46(8), 2823–2828 (2005).
    [CrossRef] [PubMed]
  27. M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Detecting glaucoma with RADAAR: the Bridlington Eye Assessment Project,” Br. J. Ophthalmol.90(6), 744–748 (2006).
    [CrossRef] [PubMed]
  28. D. B. Henson, Visual Fields, 2nd ed (Oxford University Press, 2000).
  29. N. G. Strouthidis, E. T. White, V. M. Owen, T. A. Ho, C. J. Hammond, and D. F. Garway-Heath, “Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements,” Br. J. Ophthalmol.89(11), 1427–1432 (2005).
    [CrossRef] [PubMed]
  30. M. Vetterli, “Wavelets, approximation, and compression,” IEEE Signal Process. Mag.18, 59–73 (2010).
  31. J.-L. Starck and F. Murtagh, “Astronomical image and signal processing: looking at noise, information and scale,” IEEE Signal Process. Mag.18(2), 30–40 (2001).
    [CrossRef]
  32. A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still image compression standard,” IEEE Signal Process. Mag.18(5), 36–58 (2001).
    [CrossRef]
  33. T. Chang and C. J. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Process.2(4), 429–441 (1993).
    [CrossRef] [PubMed]
  34. A. Laine and J. Fan, “Texture Classification by Wavelet Packet Signatures,” IEEE Trans. Pattern Anal. Mach. Intell.15(11), 1186–1191 (1993).
    [CrossRef]
  35. C.-M. Pun and M.-C. Lee, “Extraction of Shift Invariant Wavelet Features for Classification of Images with Different Sizes,” IEEE Trans. Pattern Anal. Mach. Intell.26(9), 1228–1233 (2004).
    [CrossRef] [PubMed]
  36. S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Trans. Pattern Anal. Mach. Intell.11(7), 674–693 (1989).
    [CrossRef]
  37. I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The dual-tree complex wavelet transform,” IEEE Signal Process. Mag.22(6), 123–151 (2005).
    [CrossRef]
  38. P. L. Dragotti and M. Vetterli, “Wavelet footprints: theory, algorithms, and applications,” IEEE Trans. Signal Process.51(5), 1306–1323 (2003).
    [CrossRef]
  39. N. Kingsbury, “Image processing with complex wavelets,” Philos. Trans. R. Soc., A357(1760), 2543–2560 (1999).
    [CrossRef]
  40. R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for best basis selection,” IEEE Trans. Inf. Theory38(2), 713–718 (1992).
    [CrossRef]
  41. T. W. Ridler and S. Calvard, “Picture Thresholding Using an Iterative Selection Method,” IEEE Trans. Syst. Man Cybern.8(8), 630–632 (1978).
    [CrossRef]
  42. C. K. Chui, An introduction to wavelets (Academic Press Professional, Inc., 1992).
  43. I. Daubechies, Ten lectures on wavelets (Society for Industrial and Applied Mathematics, 1992).
  44. B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear Component Analysis as a Kernel Eigenvalue Problem,” Neural Comput.10(5), 1299–1319 (1998).
    [CrossRef]
  45. J. Yang, A. F. Frangi, J. Y. Yang, D. Zhang, and Z. Jin, “KPCA plus LDA: a Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition,” IEEE Trans. Pattern Anal. Mach. Intell.27(2), 230–244 (2005).
    [CrossRef] [PubMed]
  46. K. Jung, K. Kim, and H. J. Kim, “Face recognition using kernel principal component analysis,” IEEE Sig. Proc. Lett.9(2), 40–42 (2002).
    [CrossRef]
  47. C. K. I. Williams, “Regression with Gaussian Processes,” in Mathematics of Neural Networks: Models, Algorithms and Applications, (Kluwer, 1995)
  48. C. K. I. Williams and D. Barber, “Bayesian classification with Gaussian processes,” IEEE Trans. Pattern Anal. Machine Intelligence20(12), 1342–1351 (1998).
    [CrossRef]
  49. T. P. Minka, “A family of algorithms for approximate bayesian inference,” (Massachusetts Institute of Technology, 2001).
  50. C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (MIT Press, 2006).
  51. M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural Netw.6(4), 525–533 (1993).
    [CrossRef]
  52. M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand.49(6), 409–436 (1952).
    [CrossRef]
  53. J. T. Kwok and I. W. Tsang, “The pre-image problem in kernel methods,” IEEE Trans. Neural Netw.15(6), 1517–1525 (2004).
    [CrossRef] [PubMed]
  54. K. H. Park, S. J. Park, Y. J. Lee, J. Y. Kim, and J. Caprioli, “Ability of peripapillary atrophy parameters to differentiate normal-tension glaucoma from glaucomalike disk,” J. Glaucoma10(2), 95–101 (2001).
    [CrossRef] [PubMed]
  55. M. J. Hawker, G. Ainsworth, S. A. Vernon, and H. S. Dua, “Observer agreement using the Heidelberg retina tomograph: the Bridlington Eye Assessment Project,” J. Glaucoma17(4), 280–286 (2008).
    [CrossRef] [PubMed]
  56. P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, J. G. Lijmer, and Standards for Reporting of Diagnostic Accuracy, “The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration,” Ann. Intern. Med.138(1), 1–12 (2003).
    [CrossRef] [PubMed]
  57. B. C. Chauhan, J. W. Blanchard, D. C. Hamilton, and R. P. LeBlanc, “Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography,” Invest. Ophthalmol. Vis. Sci.41(3), 775–782 (2000).
    [PubMed]
  58. C. Bowd, M. Balasubramanian, R. N. Weinreb, G. Vizzeri, L. M. Alencar, N. O’Leary, P. A. Sample, and L. M. Zangwill, “Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression,” Invest. Ophthalmol. Vis. Sci.50(2), 691–701 (2008).
    [CrossRef] [PubMed]
  59. N. G. Strouthidis, H. Yang, J. F. Reynaud, J. L. Grimm, S. K. Gardiner, B. Fortune, and C. F. Burgoyne, “Comparison of Clinical and Spectral Domain Optical Coherence Tomography Optic Disc Margin Anatomy,” Invest. Ophthalmol. Vis. Sci.50(10), 4709–4718 (2009).
    [CrossRef] [PubMed]
  60. A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology119(4), 738–747 (2012).
    [CrossRef] [PubMed]
  61. B. C. Chauhan and C. F. Burgoyne, “From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change,” Am. J. Ophthalmol.156(2), 218–227 (2013).
    [CrossRef] [PubMed]

2013 (1)

B. C. Chauhan and C. F. Burgoyne, “From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change,” Am. J. Ophthalmol.156(2), 218–227 (2013).
[CrossRef] [PubMed]

2012 (1)

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology119(4), 738–747 (2012).
[CrossRef] [PubMed]

2010 (3)

I. A. Sigal, J. G. Flanagan, I. Tertinegg, and C. R. Ethier, “3D morphometry of the human optic nerve head,” Exp. Eye Res.90(1), 70–80 (2010).
[CrossRef] [PubMed]

P. H. Artes and D. P. Crabb, “Estimating Normative Limits of Heidelberg Retina Tomograph Optic Disc Rim Area with Quantile Regression,” Invest. Ophthalmol. Vis. Sci.51(1), 355–361 (2010).
[CrossRef] [PubMed]

M. Vetterli, “Wavelets, approximation, and compression,” IEEE Signal Process. Mag.18, 59–73 (2010).

2009 (4)

H. Saito, T. Tsutsumi, M. Araie, A. Tomidokoro, and A. Iwase, “Sensitivity and specificity of the Heidelberg Retina Tomograph II Version 3.0 in a population-based study: the Tajimi Study,” Ophthalmology116(10), 1854–1861 (2009).
[CrossRef] [PubMed]

P. G. Sanfilippo, A. Cardini, A. W. Hewitt, J. G. Crowston, and D. A. Mackey, “Optic disc morphology--rethinking shape,” Prog. Retin. Eye Res.28(4), 227–248 (2009).
[CrossRef] [PubMed]

M. Iester, V. Mariotti, F. Lanza, and G. Calabria, “The effect of contour line position on optic nerve head analysis by Heidelberg Retina Tomograph,” Eur. J. Ophthalmol.19(6), 942–948 (2009).
[PubMed]

N. G. Strouthidis, H. Yang, J. F. Reynaud, J. L. Grimm, S. K. Gardiner, B. Fortune, and C. F. Burgoyne, “Comparison of Clinical and Spectral Domain Optical Coherence Tomography Optic Disc Margin Anatomy,” Invest. Ophthalmol. Vis. Sci.50(10), 4709–4718 (2009).
[CrossRef] [PubMed]

2008 (3)

C. Bowd, M. Balasubramanian, R. N. Weinreb, G. Vizzeri, L. M. Alencar, N. O’Leary, P. A. Sample, and L. M. Zangwill, “Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression,” Invest. Ophthalmol. Vis. Sci.50(2), 691–701 (2008).
[CrossRef] [PubMed]

M. J. Hawker, G. Ainsworth, S. A. Vernon, and H. S. Dua, “Observer agreement using the Heidelberg retina tomograph: the Bridlington Eye Assessment Project,” J. Glaucoma17(4), 280–286 (2008).
[CrossRef] [PubMed]

N. G. Strouthidis and D. F. Garway-Heath, “New developments in Heidelberg retina tomograph for glaucoma,” Curr. Opin. Ophthalmol.19(2), 141–148 (2008).
[CrossRef] [PubMed]

2007 (1)

M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Linear regression modeling of rim area to discriminate between normal and glaucomatous optic nerve heads: the Bridlington Eye Assessment Project,” J. Glaucoma16(4), 345–351 (2007).
[CrossRef] [PubMed]

2006 (3)

A. Coops, D. B. Henson, A. J. Kwartz, and P. H. Artes, “Automated Analysis of Heidelberg Retina Tomograph Optic Disc Images by Glaucoma Probability Score,” Invest. Ophthalmol. Vis. Sci.47(12), 5348–5355 (2006).
[CrossRef] [PubMed]

M. J. Hawker, S. A. Vernon, and G. Ainsworth, “Specificity of the Heidelberg Retina Tomograph’s diagnostic algorithms in a normal elderly population: the Bridlington Eye Assessment Project,” Ophthalmology113(5), 778–785 (2006).
[CrossRef] [PubMed]

M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Detecting glaucoma with RADAAR: the Bridlington Eye Assessment Project,” Br. J. Ophthalmol.90(6), 744–748 (2006).
[CrossRef] [PubMed]

2005 (6)

N. G. Strouthidis, E. T. White, V. M. Owen, T. A. Ho, C. J. Hammond, and D. F. Garway-Heath, “Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements,” Br. J. Ophthalmol.89(11), 1427–1432 (2005).
[CrossRef] [PubMed]

A. J. Kwartz, D. B. Henson, R. A. Harper, A. F. Spencer, and D. McLeod, “The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma,” Health Technol. Assess.9(46), 1–132 (2005).
[PubMed]

S. A. Vernon, M. J. Hawker, G. Ainsworth, J. G. Hillman, H. K. Macnab, and H. S. Dua, “Laser Scanning Tomography of the Optic Nerve Head in a Normal Elderly Population: The Bridlington Eye Assessment Project,” Invest. Ophthalmol. Vis. Sci.46(8), 2823–2828 (2005).
[CrossRef] [PubMed]

I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The dual-tree complex wavelet transform,” IEEE Signal Process. Mag.22(6), 123–151 (2005).
[CrossRef]

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J. K. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res.24(1), 39–73 (2005).
[CrossRef] [PubMed]

J. Yang, A. F. Frangi, J. Y. Yang, D. Zhang, and Z. Jin, “KPCA plus LDA: a Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition,” IEEE Trans. Pattern Anal. Mach. Intell.27(2), 230–244 (2005).
[CrossRef] [PubMed]

2004 (3)

C.-M. Pun and M.-C. Lee, “Extraction of Shift Invariant Wavelet Features for Classification of Images with Different Sizes,” IEEE Trans. Pattern Anal. Mach. Intell.26(9), 1228–1233 (2004).
[CrossRef] [PubMed]

J. T. Kwok and I. W. Tsang, “The pre-image problem in kernel methods,” IEEE Trans. Neural Netw.15(6), 1517–1525 (2004).
[CrossRef] [PubMed]

L. M. Zangwill, K. Chan, C. Bowd, J. Hao, T.-W. Lee, R. N. Weinreb, T. J. Sejnowski, and M. H. Goldbaum, “Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers,” Invest. Ophthalmol. Vis. Sci.45(9), 3144–3151 (2004).
[CrossRef] [PubMed]

2003 (4)

C. Y. Mardin, T. Hothorn, A. Peters, A. G. Jünemann, N. X. Nguyen, and B. Lausen, “New Glaucoma Classification Method Based on Standard Heidelberg Retina Tomograph Parameters by Bagging Classification Trees,” J. Glaucoma12(4), 340–346 (2003).
[CrossRef] [PubMed]

B. A. Ford, P. H. Artes, T. A. McCormick, M. T. Nicolela, R. P. LeBlanc, and B. C. Chauhan, “Comparison of data analysis tools for detection of glaucoma with the heidelberg retina tomograph,” Ophthalmology110(6), 1145–1150 (2003).
[CrossRef] [PubMed]

P. L. Dragotti and M. Vetterli, “Wavelet footprints: theory, algorithms, and applications,” IEEE Trans. Signal Process.51(5), 1306–1323 (2003).
[CrossRef]

P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, J. G. Lijmer, and Standards for Reporting of Diagnostic Accuracy, “The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration,” Ann. Intern. Med.138(1), 1–12 (2003).
[CrossRef] [PubMed]

2002 (2)

K. Jung, K. Kim, and H. J. Kim, “Face recognition using kernel principal component analysis,” IEEE Sig. Proc. Lett.9(2), 40–42 (2002).
[CrossRef]

M. R. Kesen, G. L. Spaeth, J. D. Henderer, M. L. Pereira, A. F. Smith, and W. C. Steinmann, “The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma,” Am. J. Ophthalmol.133(5), 613–616 (2002).
[CrossRef] [PubMed]

2001 (4)

C. Y. Mardin and A. G. Jünemann, “The diagnostic value of optic nerve imaging in early glaucoma,” Curr. Opin. Ophthalmol.12(2), 100–104 (2001).
[CrossRef] [PubMed]

J.-L. Starck and F. Murtagh, “Astronomical image and signal processing: looking at noise, information and scale,” IEEE Signal Process. Mag.18(2), 30–40 (2001).
[CrossRef]

A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still image compression standard,” IEEE Signal Process. Mag.18(5), 36–58 (2001).
[CrossRef]

K. H. Park, S. J. Park, Y. J. Lee, J. Y. Kim, and J. Caprioli, “Ability of peripapillary atrophy parameters to differentiate normal-tension glaucoma from glaucomalike disk,” J. Glaucoma10(2), 95–101 (2001).
[CrossRef] [PubMed]

2000 (2)

B. C. Chauhan, J. W. Blanchard, D. C. Hamilton, and R. P. LeBlanc, “Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography,” Invest. Ophthalmol. Vis. Sci.41(3), 775–782 (2000).
[PubMed]

N. V. Swindale, G. Stjepanovic, A. Chin, and F. S. Mikelberg, “Automated Analysis of Normal and Glaucomatous Optic Nerve Head Topography Images,” Invest. Ophthalmol. Vis. Sci.41(7), 1730–1742 (2000).
[PubMed]

1999 (3)

D. S. Kamal, A. C. Viswanathan, D. F. Garway-Heath, R. A. Hitchings, D. Poinoosawmy, and C. Bunce, “Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma,” Br. J. Ophthalmol.83(3), 290–294 (1999).
[CrossRef] [PubMed]

J. B. Jonas, W. M. Budde, and S. Panda-Jonas, “Ophthalmoscopic evaluation of the optic nerve head,” Surv. Ophthalmol.43(4), 293–320 (1999).
[CrossRef] [PubMed]

N. Kingsbury, “Image processing with complex wavelets,” Philos. Trans. R. Soc., A357(1760), 2543–2560 (1999).
[CrossRef]

1998 (4)

G. Wollstein, D. F. Garway-Heath, and R. A. Hitchings, “Identification of early glaucoma cases with the scanning laser ophthalmoscope,” Ophthalmology105(8), 1557–1563 (1998).
[CrossRef] [PubMed]

D. F. Garway-Heath and R. A. Hitchings, “Quantitative evaluation of the optic nerve head in early glaucoma,” Br. J. Ophthalmol.82(4), 352–361 (1998).
[CrossRef] [PubMed]

C. K. I. Williams and D. Barber, “Bayesian classification with Gaussian processes,” IEEE Trans. Pattern Anal. Machine Intelligence20(12), 1342–1351 (1998).
[CrossRef]

B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear Component Analysis as a Kernel Eigenvalue Problem,” Neural Comput.10(5), 1299–1319 (1998).
[CrossRef]

1997 (1)

M. Iester, F. S. Mikelberg, and S. M. Drance, “The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph,” Ophthalmology104(3), 545–548 (1997).
[CrossRef] [PubMed]

1993 (3)

T. Chang and C. J. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Process.2(4), 429–441 (1993).
[CrossRef] [PubMed]

A. Laine and J. Fan, “Texture Classification by Wavelet Packet Signatures,” IEEE Trans. Pattern Anal. Mach. Intell.15(11), 1186–1191 (1993).
[CrossRef]

M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural Netw.6(4), 525–533 (1993).
[CrossRef]

1992 (1)

R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for best basis selection,” IEEE Trans. Inf. Theory38(2), 713–718 (1992).
[CrossRef]

1989 (1)

S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Trans. Pattern Anal. Mach. Intell.11(7), 674–693 (1989).
[CrossRef]

1988 (1)

J. B. Jonas, G. C. Gusek, and G. O. Naumann, “Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes,” Invest. Ophthalmol. Vis. Sci.29(7), 1151–1158 (1988).
[PubMed]

1987 (2)

J. Caprioli and J. M. Miller, “Optic disc rim area is related to disc size in normal subjects,” Arch. Ophthalmol.105(12), 1683–1685 (1987).
[CrossRef] [PubMed]

R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt.26(8), 1492–1499 (1987).
[CrossRef] [PubMed]

1978 (1)

T. W. Ridler and S. Calvard, “Picture Thresholding Using an Iterative Selection Method,” IEEE Trans. Syst. Man Cybern.8(8), 630–632 (1978).
[CrossRef]

1952 (1)

M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand.49(6), 409–436 (1952).
[CrossRef]

Ainsworth, G.

M. J. Hawker, G. Ainsworth, S. A. Vernon, and H. S. Dua, “Observer agreement using the Heidelberg retina tomograph: the Bridlington Eye Assessment Project,” J. Glaucoma17(4), 280–286 (2008).
[CrossRef] [PubMed]

M. J. Hawker, S. A. Vernon, and G. Ainsworth, “Specificity of the Heidelberg Retina Tomograph’s diagnostic algorithms in a normal elderly population: the Bridlington Eye Assessment Project,” Ophthalmology113(5), 778–785 (2006).
[CrossRef] [PubMed]

S. A. Vernon, M. J. Hawker, G. Ainsworth, J. G. Hillman, H. K. Macnab, and H. S. Dua, “Laser Scanning Tomography of the Optic Nerve Head in a Normal Elderly Population: The Bridlington Eye Assessment Project,” Invest. Ophthalmol. Vis. Sci.46(8), 2823–2828 (2005).
[CrossRef] [PubMed]

Alencar, L. M.

C. Bowd, M. Balasubramanian, R. N. Weinreb, G. Vizzeri, L. M. Alencar, N. O’Leary, P. A. Sample, and L. M. Zangwill, “Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression,” Invest. Ophthalmol. Vis. Sci.50(2), 691–701 (2008).
[CrossRef] [PubMed]

Araie, M.

H. Saito, T. Tsutsumi, M. Araie, A. Tomidokoro, and A. Iwase, “Sensitivity and specificity of the Heidelberg Retina Tomograph II Version 3.0 in a population-based study: the Tajimi Study,” Ophthalmology116(10), 1854–1861 (2009).
[CrossRef] [PubMed]

Artes, P. H.

P. H. Artes and D. P. Crabb, “Estimating Normative Limits of Heidelberg Retina Tomograph Optic Disc Rim Area with Quantile Regression,” Invest. Ophthalmol. Vis. Sci.51(1), 355–361 (2010).
[CrossRef] [PubMed]

A. Coops, D. B. Henson, A. J. Kwartz, and P. H. Artes, “Automated Analysis of Heidelberg Retina Tomograph Optic Disc Images by Glaucoma Probability Score,” Invest. Ophthalmol. Vis. Sci.47(12), 5348–5355 (2006).
[CrossRef] [PubMed]

B. A. Ford, P. H. Artes, T. A. McCormick, M. T. Nicolela, R. P. LeBlanc, and B. C. Chauhan, “Comparison of data analysis tools for detection of glaucoma with the heidelberg retina tomograph,” Ophthalmology110(6), 1145–1150 (2003).
[CrossRef] [PubMed]

Balasubramanian, M.

C. Bowd, M. Balasubramanian, R. N. Weinreb, G. Vizzeri, L. M. Alencar, N. O’Leary, P. A. Sample, and L. M. Zangwill, “Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression,” Invest. Ophthalmol. Vis. Sci.50(2), 691–701 (2008).
[CrossRef] [PubMed]

Baraniuk, R. G.

I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The dual-tree complex wavelet transform,” IEEE Signal Process. Mag.22(6), 123–151 (2005).
[CrossRef]

Barber, D.

C. K. I. Williams and D. Barber, “Bayesian classification with Gaussian processes,” IEEE Trans. Pattern Anal. Machine Intelligence20(12), 1342–1351 (1998).
[CrossRef]

Bellezza, A. J.

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J. K. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res.24(1), 39–73 (2005).
[CrossRef] [PubMed]

Blanchard, J. W.

B. C. Chauhan, J. W. Blanchard, D. C. Hamilton, and R. P. LeBlanc, “Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography,” Invest. Ophthalmol. Vis. Sci.41(3), 775–782 (2000).
[PubMed]

Bossuyt, P. M.

P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, J. G. Lijmer, and Standards for Reporting of Diagnostic Accuracy, “The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration,” Ann. Intern. Med.138(1), 1–12 (2003).
[CrossRef] [PubMed]

Bowd, C.

C. Bowd, M. Balasubramanian, R. N. Weinreb, G. Vizzeri, L. M. Alencar, N. O’Leary, P. A. Sample, and L. M. Zangwill, “Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression,” Invest. Ophthalmol. Vis. Sci.50(2), 691–701 (2008).
[CrossRef] [PubMed]

L. M. Zangwill, K. Chan, C. Bowd, J. Hao, T.-W. Lee, R. N. Weinreb, T. J. Sejnowski, and M. H. Goldbaum, “Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers,” Invest. Ophthalmol. Vis. Sci.45(9), 3144–3151 (2004).
[CrossRef] [PubMed]

Bruns, D. E.

P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, J. G. Lijmer, and Standards for Reporting of Diagnostic Accuracy, “The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration,” Ann. Intern. Med.138(1), 1–12 (2003).
[CrossRef] [PubMed]

Budde, W. M.

J. B. Jonas, W. M. Budde, and S. Panda-Jonas, “Ophthalmoscopic evaluation of the optic nerve head,” Surv. Ophthalmol.43(4), 293–320 (1999).
[CrossRef] [PubMed]

Bunce, C.

D. S. Kamal, A. C. Viswanathan, D. F. Garway-Heath, R. A. Hitchings, D. Poinoosawmy, and C. Bunce, “Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma,” Br. J. Ophthalmol.83(3), 290–294 (1999).
[CrossRef] [PubMed]

Burgoyne, C. F.

B. C. Chauhan and C. F. Burgoyne, “From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change,” Am. J. Ophthalmol.156(2), 218–227 (2013).
[CrossRef] [PubMed]

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology119(4), 738–747 (2012).
[CrossRef] [PubMed]

N. G. Strouthidis, H. Yang, J. F. Reynaud, J. L. Grimm, S. K. Gardiner, B. Fortune, and C. F. Burgoyne, “Comparison of Clinical and Spectral Domain Optical Coherence Tomography Optic Disc Margin Anatomy,” Invest. Ophthalmol. Vis. Sci.50(10), 4709–4718 (2009).
[CrossRef] [PubMed]

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J. K. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res.24(1), 39–73 (2005).
[CrossRef] [PubMed]

Calabria, G.

M. Iester, V. Mariotti, F. Lanza, and G. Calabria, “The effect of contour line position on optic nerve head analysis by Heidelberg Retina Tomograph,” Eur. J. Ophthalmol.19(6), 942–948 (2009).
[PubMed]

Calvard, S.

T. W. Ridler and S. Calvard, “Picture Thresholding Using an Iterative Selection Method,” IEEE Trans. Syst. Man Cybern.8(8), 630–632 (1978).
[CrossRef]

Caprioli, J.

K. H. Park, S. J. Park, Y. J. Lee, J. Y. Kim, and J. Caprioli, “Ability of peripapillary atrophy parameters to differentiate normal-tension glaucoma from glaucomalike disk,” J. Glaucoma10(2), 95–101 (2001).
[CrossRef] [PubMed]

J. Caprioli and J. M. Miller, “Optic disc rim area is related to disc size in normal subjects,” Arch. Ophthalmol.105(12), 1683–1685 (1987).
[CrossRef] [PubMed]

Cardini, A.

P. G. Sanfilippo, A. Cardini, A. W. Hewitt, J. G. Crowston, and D. A. Mackey, “Optic disc morphology--rethinking shape,” Prog. Retin. Eye Res.28(4), 227–248 (2009).
[CrossRef] [PubMed]

Chan, K.

L. M. Zangwill, K. Chan, C. Bowd, J. Hao, T.-W. Lee, R. N. Weinreb, T. J. Sejnowski, and M. H. Goldbaum, “Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers,” Invest. Ophthalmol. Vis. Sci.45(9), 3144–3151 (2004).
[CrossRef] [PubMed]

Chang, T.

T. Chang and C. J. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Process.2(4), 429–441 (1993).
[CrossRef] [PubMed]

Chauhan, B. C.

B. C. Chauhan and C. F. Burgoyne, “From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change,” Am. J. Ophthalmol.156(2), 218–227 (2013).
[CrossRef] [PubMed]

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology119(4), 738–747 (2012).
[CrossRef] [PubMed]

B. A. Ford, P. H. Artes, T. A. McCormick, M. T. Nicolela, R. P. LeBlanc, and B. C. Chauhan, “Comparison of data analysis tools for detection of glaucoma with the heidelberg retina tomograph,” Ophthalmology110(6), 1145–1150 (2003).
[CrossRef] [PubMed]

B. C. Chauhan, J. W. Blanchard, D. C. Hamilton, and R. P. LeBlanc, “Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography,” Invest. Ophthalmol. Vis. Sci.41(3), 775–782 (2000).
[PubMed]

Chin, A.

N. V. Swindale, G. Stjepanovic, A. Chin, and F. S. Mikelberg, “Automated Analysis of Normal and Glaucomatous Optic Nerve Head Topography Images,” Invest. Ophthalmol. Vis. Sci.41(7), 1730–1742 (2000).
[PubMed]

Christopoulos, C.

A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still image compression standard,” IEEE Signal Process. Mag.18(5), 36–58 (2001).
[CrossRef]

Coifman, R. R.

R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for best basis selection,” IEEE Trans. Inf. Theory38(2), 713–718 (1992).
[CrossRef]

Coops, A.

A. Coops, D. B. Henson, A. J. Kwartz, and P. H. Artes, “Automated Analysis of Heidelberg Retina Tomograph Optic Disc Images by Glaucoma Probability Score,” Invest. Ophthalmol. Vis. Sci.47(12), 5348–5355 (2006).
[CrossRef] [PubMed]

Crabb, D. P.

P. H. Artes and D. P. Crabb, “Estimating Normative Limits of Heidelberg Retina Tomograph Optic Disc Rim Area with Quantile Regression,” Invest. Ophthalmol. Vis. Sci.51(1), 355–361 (2010).
[CrossRef] [PubMed]

Crowston, J. G.

P. G. Sanfilippo, A. Cardini, A. W. Hewitt, J. G. Crowston, and D. A. Mackey, “Optic disc morphology--rethinking shape,” Prog. Retin. Eye Res.28(4), 227–248 (2009).
[CrossRef] [PubMed]

de Vet, H. C.

P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, J. G. Lijmer, and Standards for Reporting of Diagnostic Accuracy, “The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration,” Ann. Intern. Med.138(1), 1–12 (2003).
[CrossRef] [PubMed]

Delori, F. C.

Downs, J. C.

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J. K. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res.24(1), 39–73 (2005).
[CrossRef] [PubMed]

Dragotti, P. L.

P. L. Dragotti and M. Vetterli, “Wavelet footprints: theory, algorithms, and applications,” IEEE Trans. Signal Process.51(5), 1306–1323 (2003).
[CrossRef]

Drance, S. M.

M. Iester, F. S. Mikelberg, and S. M. Drance, “The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph,” Ophthalmology104(3), 545–548 (1997).
[CrossRef] [PubMed]

Dua, H. S.

M. J. Hawker, G. Ainsworth, S. A. Vernon, and H. S. Dua, “Observer agreement using the Heidelberg retina tomograph: the Bridlington Eye Assessment Project,” J. Glaucoma17(4), 280–286 (2008).
[CrossRef] [PubMed]

M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Linear regression modeling of rim area to discriminate between normal and glaucomatous optic nerve heads: the Bridlington Eye Assessment Project,” J. Glaucoma16(4), 345–351 (2007).
[CrossRef] [PubMed]

M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Detecting glaucoma with RADAAR: the Bridlington Eye Assessment Project,” Br. J. Ophthalmol.90(6), 744–748 (2006).
[CrossRef] [PubMed]

S. A. Vernon, M. J. Hawker, G. Ainsworth, J. G. Hillman, H. K. Macnab, and H. S. Dua, “Laser Scanning Tomography of the Optic Nerve Head in a Normal Elderly Population: The Bridlington Eye Assessment Project,” Invest. Ophthalmol. Vis. Sci.46(8), 2823–2828 (2005).
[CrossRef] [PubMed]

Ebrahimi, T.

A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still image compression standard,” IEEE Signal Process. Mag.18(5), 36–58 (2001).
[CrossRef]

Ethier, C. R.

I. A. Sigal, J. G. Flanagan, I. Tertinegg, and C. R. Ethier, “3D morphometry of the human optic nerve head,” Exp. Eye Res.90(1), 70–80 (2010).
[CrossRef] [PubMed]

Fan, J.

A. Laine and J. Fan, “Texture Classification by Wavelet Packet Signatures,” IEEE Trans. Pattern Anal. Mach. Intell.15(11), 1186–1191 (1993).
[CrossRef]

Flanagan, J. G.

I. A. Sigal, J. G. Flanagan, I. Tertinegg, and C. R. Ethier, “3D morphometry of the human optic nerve head,” Exp. Eye Res.90(1), 70–80 (2010).
[CrossRef] [PubMed]

Ford, B. A.

B. A. Ford, P. H. Artes, T. A. McCormick, M. T. Nicolela, R. P. LeBlanc, and B. C. Chauhan, “Comparison of data analysis tools for detection of glaucoma with the heidelberg retina tomograph,” Ophthalmology110(6), 1145–1150 (2003).
[CrossRef] [PubMed]

Fortune, B.

N. G. Strouthidis, H. Yang, J. F. Reynaud, J. L. Grimm, S. K. Gardiner, B. Fortune, and C. F. Burgoyne, “Comparison of Clinical and Spectral Domain Optical Coherence Tomography Optic Disc Margin Anatomy,” Invest. Ophthalmol. Vis. Sci.50(10), 4709–4718 (2009).
[CrossRef] [PubMed]

Frangi, A. F.

J. Yang, A. F. Frangi, J. Y. Yang, D. Zhang, and Z. Jin, “KPCA plus LDA: a Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition,” IEEE Trans. Pattern Anal. Mach. Intell.27(2), 230–244 (2005).
[CrossRef] [PubMed]

Gardiner, S. K.

N. G. Strouthidis, H. Yang, J. F. Reynaud, J. L. Grimm, S. K. Gardiner, B. Fortune, and C. F. Burgoyne, “Comparison of Clinical and Spectral Domain Optical Coherence Tomography Optic Disc Margin Anatomy,” Invest. Ophthalmol. Vis. Sci.50(10), 4709–4718 (2009).
[CrossRef] [PubMed]

Garway-Heath, D. F.

N. G. Strouthidis and D. F. Garway-Heath, “New developments in Heidelberg retina tomograph for glaucoma,” Curr. Opin. Ophthalmol.19(2), 141–148 (2008).
[CrossRef] [PubMed]

N. G. Strouthidis, E. T. White, V. M. Owen, T. A. Ho, C. J. Hammond, and D. F. Garway-Heath, “Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements,” Br. J. Ophthalmol.89(11), 1427–1432 (2005).
[CrossRef] [PubMed]

D. S. Kamal, A. C. Viswanathan, D. F. Garway-Heath, R. A. Hitchings, D. Poinoosawmy, and C. Bunce, “Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma,” Br. J. Ophthalmol.83(3), 290–294 (1999).
[CrossRef] [PubMed]

G. Wollstein, D. F. Garway-Heath, and R. A. Hitchings, “Identification of early glaucoma cases with the scanning laser ophthalmoscope,” Ophthalmology105(8), 1557–1563 (1998).
[CrossRef] [PubMed]

D. F. Garway-Heath and R. A. Hitchings, “Quantitative evaluation of the optic nerve head in early glaucoma,” Br. J. Ophthalmol.82(4), 352–361 (1998).
[CrossRef] [PubMed]

Gatsonis, C. A.

P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, J. G. Lijmer, and Standards for Reporting of Diagnostic Accuracy, “The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration,” Ann. Intern. Med.138(1), 1–12 (2003).
[CrossRef] [PubMed]

Glasziou, P. P.

P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, J. G. Lijmer, and Standards for Reporting of Diagnostic Accuracy, “The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration,” Ann. Intern. Med.138(1), 1–12 (2003).
[CrossRef] [PubMed]

Goldbaum, M. H.

L. M. Zangwill, K. Chan, C. Bowd, J. Hao, T.-W. Lee, R. N. Weinreb, T. J. Sejnowski, and M. H. Goldbaum, “Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers,” Invest. Ophthalmol. Vis. Sci.45(9), 3144–3151 (2004).
[CrossRef] [PubMed]

Grimm, J. L.

N. G. Strouthidis, H. Yang, J. F. Reynaud, J. L. Grimm, S. K. Gardiner, B. Fortune, and C. F. Burgoyne, “Comparison of Clinical and Spectral Domain Optical Coherence Tomography Optic Disc Margin Anatomy,” Invest. Ophthalmol. Vis. Sci.50(10), 4709–4718 (2009).
[CrossRef] [PubMed]

Gusek, G. C.

J. B. Jonas, G. C. Gusek, and G. O. Naumann, “Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes,” Invest. Ophthalmol. Vis. Sci.29(7), 1151–1158 (1988).
[PubMed]

Hamilton, D. C.

B. C. Chauhan, J. W. Blanchard, D. C. Hamilton, and R. P. LeBlanc, “Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography,” Invest. Ophthalmol. Vis. Sci.41(3), 775–782 (2000).
[PubMed]

Hammond, C. J.

N. G. Strouthidis, E. T. White, V. M. Owen, T. A. Ho, C. J. Hammond, and D. F. Garway-Heath, “Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements,” Br. J. Ophthalmol.89(11), 1427–1432 (2005).
[CrossRef] [PubMed]

Hao, J.

L. M. Zangwill, K. Chan, C. Bowd, J. Hao, T.-W. Lee, R. N. Weinreb, T. J. Sejnowski, and M. H. Goldbaum, “Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers,” Invest. Ophthalmol. Vis. Sci.45(9), 3144–3151 (2004).
[CrossRef] [PubMed]

Harper, R. A.

A. J. Kwartz, D. B. Henson, R. A. Harper, A. F. Spencer, and D. McLeod, “The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma,” Health Technol. Assess.9(46), 1–132 (2005).
[PubMed]

Hart, R. T.

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J. K. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res.24(1), 39–73 (2005).
[CrossRef] [PubMed]

Hawker, M. J.

M. J. Hawker, G. Ainsworth, S. A. Vernon, and H. S. Dua, “Observer agreement using the Heidelberg retina tomograph: the Bridlington Eye Assessment Project,” J. Glaucoma17(4), 280–286 (2008).
[CrossRef] [PubMed]

M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Linear regression modeling of rim area to discriminate between normal and glaucomatous optic nerve heads: the Bridlington Eye Assessment Project,” J. Glaucoma16(4), 345–351 (2007).
[CrossRef] [PubMed]

M. J. Hawker, S. A. Vernon, and G. Ainsworth, “Specificity of the Heidelberg Retina Tomograph’s diagnostic algorithms in a normal elderly population: the Bridlington Eye Assessment Project,” Ophthalmology113(5), 778–785 (2006).
[CrossRef] [PubMed]

M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Detecting glaucoma with RADAAR: the Bridlington Eye Assessment Project,” Br. J. Ophthalmol.90(6), 744–748 (2006).
[CrossRef] [PubMed]

S. A. Vernon, M. J. Hawker, G. Ainsworth, J. G. Hillman, H. K. Macnab, and H. S. Dua, “Laser Scanning Tomography of the Optic Nerve Head in a Normal Elderly Population: The Bridlington Eye Assessment Project,” Invest. Ophthalmol. Vis. Sci.46(8), 2823–2828 (2005).
[CrossRef] [PubMed]

Henderer, J. D.

M. R. Kesen, G. L. Spaeth, J. D. Henderer, M. L. Pereira, A. F. Smith, and W. C. Steinmann, “The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma,” Am. J. Ophthalmol.133(5), 613–616 (2002).
[CrossRef] [PubMed]

Henson, D. B.

A. Coops, D. B. Henson, A. J. Kwartz, and P. H. Artes, “Automated Analysis of Heidelberg Retina Tomograph Optic Disc Images by Glaucoma Probability Score,” Invest. Ophthalmol. Vis. Sci.47(12), 5348–5355 (2006).
[CrossRef] [PubMed]

A. J. Kwartz, D. B. Henson, R. A. Harper, A. F. Spencer, and D. McLeod, “The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma,” Health Technol. Assess.9(46), 1–132 (2005).
[PubMed]

Hestenes, M. R.

M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand.49(6), 409–436 (1952).
[CrossRef]

Hewitt, A. W.

P. G. Sanfilippo, A. Cardini, A. W. Hewitt, J. G. Crowston, and D. A. Mackey, “Optic disc morphology--rethinking shape,” Prog. Retin. Eye Res.28(4), 227–248 (2009).
[CrossRef] [PubMed]

Hillman, J. G.

S. A. Vernon, M. J. Hawker, G. Ainsworth, J. G. Hillman, H. K. Macnab, and H. S. Dua, “Laser Scanning Tomography of the Optic Nerve Head in a Normal Elderly Population: The Bridlington Eye Assessment Project,” Invest. Ophthalmol. Vis. Sci.46(8), 2823–2828 (2005).
[CrossRef] [PubMed]

Hitchings, R. A.

D. S. Kamal, A. C. Viswanathan, D. F. Garway-Heath, R. A. Hitchings, D. Poinoosawmy, and C. Bunce, “Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma,” Br. J. Ophthalmol.83(3), 290–294 (1999).
[CrossRef] [PubMed]

G. Wollstein, D. F. Garway-Heath, and R. A. Hitchings, “Identification of early glaucoma cases with the scanning laser ophthalmoscope,” Ophthalmology105(8), 1557–1563 (1998).
[CrossRef] [PubMed]

D. F. Garway-Heath and R. A. Hitchings, “Quantitative evaluation of the optic nerve head in early glaucoma,” Br. J. Ophthalmol.82(4), 352–361 (1998).
[CrossRef] [PubMed]

Ho, T. A.

N. G. Strouthidis, E. T. White, V. M. Owen, T. A. Ho, C. J. Hammond, and D. F. Garway-Heath, “Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements,” Br. J. Ophthalmol.89(11), 1427–1432 (2005).
[CrossRef] [PubMed]

Hothorn, T.

C. Y. Mardin, T. Hothorn, A. Peters, A. G. Jünemann, N. X. Nguyen, and B. Lausen, “New Glaucoma Classification Method Based on Standard Heidelberg Retina Tomograph Parameters by Bagging Classification Trees,” J. Glaucoma12(4), 340–346 (2003).
[CrossRef] [PubMed]

Hughes, G. W.

Iester, M.

M. Iester, V. Mariotti, F. Lanza, and G. Calabria, “The effect of contour line position on optic nerve head analysis by Heidelberg Retina Tomograph,” Eur. J. Ophthalmol.19(6), 942–948 (2009).
[PubMed]

M. Iester, F. S. Mikelberg, and S. M. Drance, “The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph,” Ophthalmology104(3), 545–548 (1997).
[CrossRef] [PubMed]

Irwig, L. M.

P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, J. G. Lijmer, and Standards for Reporting of Diagnostic Accuracy, “The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration,” Ann. Intern. Med.138(1), 1–12 (2003).
[CrossRef] [PubMed]

Iwase, A.

H. Saito, T. Tsutsumi, M. Araie, A. Tomidokoro, and A. Iwase, “Sensitivity and specificity of the Heidelberg Retina Tomograph II Version 3.0 in a population-based study: the Tajimi Study,” Ophthalmology116(10), 1854–1861 (2009).
[CrossRef] [PubMed]

Jin, Z.

J. Yang, A. F. Frangi, J. Y. Yang, D. Zhang, and Z. Jin, “KPCA plus LDA: a Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition,” IEEE Trans. Pattern Anal. Mach. Intell.27(2), 230–244 (2005).
[CrossRef] [PubMed]

Jonas, J. B.

J. B. Jonas, W. M. Budde, and S. Panda-Jonas, “Ophthalmoscopic evaluation of the optic nerve head,” Surv. Ophthalmol.43(4), 293–320 (1999).
[CrossRef] [PubMed]

J. B. Jonas, G. C. Gusek, and G. O. Naumann, “Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes,” Invest. Ophthalmol. Vis. Sci.29(7), 1151–1158 (1988).
[PubMed]

Jünemann, A. G.

C. Y. Mardin, T. Hothorn, A. Peters, A. G. Jünemann, N. X. Nguyen, and B. Lausen, “New Glaucoma Classification Method Based on Standard Heidelberg Retina Tomograph Parameters by Bagging Classification Trees,” J. Glaucoma12(4), 340–346 (2003).
[CrossRef] [PubMed]

C. Y. Mardin and A. G. Jünemann, “The diagnostic value of optic nerve imaging in early glaucoma,” Curr. Opin. Ophthalmol.12(2), 100–104 (2001).
[CrossRef] [PubMed]

Jung, K.

K. Jung, K. Kim, and H. J. Kim, “Face recognition using kernel principal component analysis,” IEEE Sig. Proc. Lett.9(2), 40–42 (2002).
[CrossRef]

Kamal, D. S.

D. S. Kamal, A. C. Viswanathan, D. F. Garway-Heath, R. A. Hitchings, D. Poinoosawmy, and C. Bunce, “Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma,” Br. J. Ophthalmol.83(3), 290–294 (1999).
[CrossRef] [PubMed]

Kesen, M. R.

M. R. Kesen, G. L. Spaeth, J. D. Henderer, M. L. Pereira, A. F. Smith, and W. C. Steinmann, “The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma,” Am. J. Ophthalmol.133(5), 613–616 (2002).
[CrossRef] [PubMed]

Kim, H. J.

K. Jung, K. Kim, and H. J. Kim, “Face recognition using kernel principal component analysis,” IEEE Sig. Proc. Lett.9(2), 40–42 (2002).
[CrossRef]

Kim, J. Y.

K. H. Park, S. J. Park, Y. J. Lee, J. Y. Kim, and J. Caprioli, “Ability of peripapillary atrophy parameters to differentiate normal-tension glaucoma from glaucomalike disk,” J. Glaucoma10(2), 95–101 (2001).
[CrossRef] [PubMed]

Kim, K.

K. Jung, K. Kim, and H. J. Kim, “Face recognition using kernel principal component analysis,” IEEE Sig. Proc. Lett.9(2), 40–42 (2002).
[CrossRef]

Kingsbury, N.

N. Kingsbury, “Image processing with complex wavelets,” Philos. Trans. R. Soc., A357(1760), 2543–2560 (1999).
[CrossRef]

Kingsbury, N. G.

I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The dual-tree complex wavelet transform,” IEEE Signal Process. Mag.22(6), 123–151 (2005).
[CrossRef]

Kuo, C. J.

T. Chang and C. J. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Process.2(4), 429–441 (1993).
[CrossRef] [PubMed]

Kwartz, A. J.

A. Coops, D. B. Henson, A. J. Kwartz, and P. H. Artes, “Automated Analysis of Heidelberg Retina Tomograph Optic Disc Images by Glaucoma Probability Score,” Invest. Ophthalmol. Vis. Sci.47(12), 5348–5355 (2006).
[CrossRef] [PubMed]

A. J. Kwartz, D. B. Henson, R. A. Harper, A. F. Spencer, and D. McLeod, “The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma,” Health Technol. Assess.9(46), 1–132 (2005).
[PubMed]

Kwok, J. T.

J. T. Kwok and I. W. Tsang, “The pre-image problem in kernel methods,” IEEE Trans. Neural Netw.15(6), 1517–1525 (2004).
[CrossRef] [PubMed]

Laine, A.

A. Laine and J. Fan, “Texture Classification by Wavelet Packet Signatures,” IEEE Trans. Pattern Anal. Mach. Intell.15(11), 1186–1191 (1993).
[CrossRef]

Lanza, F.

M. Iester, V. Mariotti, F. Lanza, and G. Calabria, “The effect of contour line position on optic nerve head analysis by Heidelberg Retina Tomograph,” Eur. J. Ophthalmol.19(6), 942–948 (2009).
[PubMed]

Lausen, B.

C. Y. Mardin, T. Hothorn, A. Peters, A. G. Jünemann, N. X. Nguyen, and B. Lausen, “New Glaucoma Classification Method Based on Standard Heidelberg Retina Tomograph Parameters by Bagging Classification Trees,” J. Glaucoma12(4), 340–346 (2003).
[CrossRef] [PubMed]

LeBlanc, R. P.

B. A. Ford, P. H. Artes, T. A. McCormick, M. T. Nicolela, R. P. LeBlanc, and B. C. Chauhan, “Comparison of data analysis tools for detection of glaucoma with the heidelberg retina tomograph,” Ophthalmology110(6), 1145–1150 (2003).
[CrossRef] [PubMed]

B. C. Chauhan, J. W. Blanchard, D. C. Hamilton, and R. P. LeBlanc, “Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography,” Invest. Ophthalmol. Vis. Sci.41(3), 775–782 (2000).
[PubMed]

Lee, M.-C.

C.-M. Pun and M.-C. Lee, “Extraction of Shift Invariant Wavelet Features for Classification of Images with Different Sizes,” IEEE Trans. Pattern Anal. Mach. Intell.26(9), 1228–1233 (2004).
[CrossRef] [PubMed]

Lee, T.-W.

L. M. Zangwill, K. Chan, C. Bowd, J. Hao, T.-W. Lee, R. N. Weinreb, T. J. Sejnowski, and M. H. Goldbaum, “Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers,” Invest. Ophthalmol. Vis. Sci.45(9), 3144–3151 (2004).
[CrossRef] [PubMed]

Lee, Y. J.

K. H. Park, S. J. Park, Y. J. Lee, J. Y. Kim, and J. Caprioli, “Ability of peripapillary atrophy parameters to differentiate normal-tension glaucoma from glaucomalike disk,” J. Glaucoma10(2), 95–101 (2001).
[CrossRef] [PubMed]

Lijmer, J. G.

P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, J. G. Lijmer, and Standards for Reporting of Diagnostic Accuracy, “The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration,” Ann. Intern. Med.138(1), 1–12 (2003).
[CrossRef] [PubMed]

Mackey, D. A.

P. G. Sanfilippo, A. Cardini, A. W. Hewitt, J. G. Crowston, and D. A. Mackey, “Optic disc morphology--rethinking shape,” Prog. Retin. Eye Res.28(4), 227–248 (2009).
[CrossRef] [PubMed]

Macnab, H. K.

S. A. Vernon, M. J. Hawker, G. Ainsworth, J. G. Hillman, H. K. Macnab, and H. S. Dua, “Laser Scanning Tomography of the Optic Nerve Head in a Normal Elderly Population: The Bridlington Eye Assessment Project,” Invest. Ophthalmol. Vis. Sci.46(8), 2823–2828 (2005).
[CrossRef] [PubMed]

Mallat, S. G.

S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Trans. Pattern Anal. Mach. Intell.11(7), 674–693 (1989).
[CrossRef]

Mardin, C. Y.

C. Y. Mardin, T. Hothorn, A. Peters, A. G. Jünemann, N. X. Nguyen, and B. Lausen, “New Glaucoma Classification Method Based on Standard Heidelberg Retina Tomograph Parameters by Bagging Classification Trees,” J. Glaucoma12(4), 340–346 (2003).
[CrossRef] [PubMed]

C. Y. Mardin and A. G. Jünemann, “The diagnostic value of optic nerve imaging in early glaucoma,” Curr. Opin. Ophthalmol.12(2), 100–104 (2001).
[CrossRef] [PubMed]

Mariotti, V.

M. Iester, V. Mariotti, F. Lanza, and G. Calabria, “The effect of contour line position on optic nerve head analysis by Heidelberg Retina Tomograph,” Eur. J. Ophthalmol.19(6), 942–948 (2009).
[PubMed]

McCormick, T. A.

B. A. Ford, P. H. Artes, T. A. McCormick, M. T. Nicolela, R. P. LeBlanc, and B. C. Chauhan, “Comparison of data analysis tools for detection of glaucoma with the heidelberg retina tomograph,” Ophthalmology110(6), 1145–1150 (2003).
[CrossRef] [PubMed]

McLeod, D.

A. J. Kwartz, D. B. Henson, R. A. Harper, A. F. Spencer, and D. McLeod, “The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma,” Health Technol. Assess.9(46), 1–132 (2005).
[PubMed]

Mikelberg, F. S.

N. V. Swindale, G. Stjepanovic, A. Chin, and F. S. Mikelberg, “Automated Analysis of Normal and Glaucomatous Optic Nerve Head Topography Images,” Invest. Ophthalmol. Vis. Sci.41(7), 1730–1742 (2000).
[PubMed]

M. Iester, F. S. Mikelberg, and S. M. Drance, “The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph,” Ophthalmology104(3), 545–548 (1997).
[CrossRef] [PubMed]

Miller, J. M.

J. Caprioli and J. M. Miller, “Optic disc rim area is related to disc size in normal subjects,” Arch. Ophthalmol.105(12), 1683–1685 (1987).
[CrossRef] [PubMed]

Moher, D.

P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, J. G. Lijmer, and Standards for Reporting of Diagnostic Accuracy, “The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration,” Ann. Intern. Med.138(1), 1–12 (2003).
[CrossRef] [PubMed]

Møller, M. F.

M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural Netw.6(4), 525–533 (1993).
[CrossRef]

Müller, K.-R.

B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear Component Analysis as a Kernel Eigenvalue Problem,” Neural Comput.10(5), 1299–1319 (1998).
[CrossRef]

Murtagh, F.

J.-L. Starck and F. Murtagh, “Astronomical image and signal processing: looking at noise, information and scale,” IEEE Signal Process. Mag.18(2), 30–40 (2001).
[CrossRef]

Naumann, G. O.

J. B. Jonas, G. C. Gusek, and G. O. Naumann, “Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes,” Invest. Ophthalmol. Vis. Sci.29(7), 1151–1158 (1988).
[PubMed]

Nguyen, N. X.

C. Y. Mardin, T. Hothorn, A. Peters, A. G. Jünemann, N. X. Nguyen, and B. Lausen, “New Glaucoma Classification Method Based on Standard Heidelberg Retina Tomograph Parameters by Bagging Classification Trees,” J. Glaucoma12(4), 340–346 (2003).
[CrossRef] [PubMed]

Nicolela, M. T.

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology119(4), 738–747 (2012).
[CrossRef] [PubMed]

B. A. Ford, P. H. Artes, T. A. McCormick, M. T. Nicolela, R. P. LeBlanc, and B. C. Chauhan, “Comparison of data analysis tools for detection of glaucoma with the heidelberg retina tomograph,” Ophthalmology110(6), 1145–1150 (2003).
[CrossRef] [PubMed]

O’Leary, N.

C. Bowd, M. Balasubramanian, R. N. Weinreb, G. Vizzeri, L. M. Alencar, N. O’Leary, P. A. Sample, and L. M. Zangwill, “Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression,” Invest. Ophthalmol. Vis. Sci.50(2), 691–701 (2008).
[CrossRef] [PubMed]

Owen, V. M.

N. G. Strouthidis, E. T. White, V. M. Owen, T. A. Ho, C. J. Hammond, and D. F. Garway-Heath, “Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements,” Br. J. Ophthalmol.89(11), 1427–1432 (2005).
[CrossRef] [PubMed]

Panda-Jonas, S.

J. B. Jonas, W. M. Budde, and S. Panda-Jonas, “Ophthalmoscopic evaluation of the optic nerve head,” Surv. Ophthalmol.43(4), 293–320 (1999).
[CrossRef] [PubMed]

Park, K. H.

K. H. Park, S. J. Park, Y. J. Lee, J. Y. Kim, and J. Caprioli, “Ability of peripapillary atrophy parameters to differentiate normal-tension glaucoma from glaucomalike disk,” J. Glaucoma10(2), 95–101 (2001).
[CrossRef] [PubMed]

Park, S. J.

K. H. Park, S. J. Park, Y. J. Lee, J. Y. Kim, and J. Caprioli, “Ability of peripapillary atrophy parameters to differentiate normal-tension glaucoma from glaucomalike disk,” J. Glaucoma10(2), 95–101 (2001).
[CrossRef] [PubMed]

Pereira, M. L.

M. R. Kesen, G. L. Spaeth, J. D. Henderer, M. L. Pereira, A. F. Smith, and W. C. Steinmann, “The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma,” Am. J. Ophthalmol.133(5), 613–616 (2002).
[CrossRef] [PubMed]

Peters, A.

C. Y. Mardin, T. Hothorn, A. Peters, A. G. Jünemann, N. X. Nguyen, and B. Lausen, “New Glaucoma Classification Method Based on Standard Heidelberg Retina Tomograph Parameters by Bagging Classification Trees,” J. Glaucoma12(4), 340–346 (2003).
[CrossRef] [PubMed]

Poinoosawmy, D.

D. S. Kamal, A. C. Viswanathan, D. F. Garway-Heath, R. A. Hitchings, D. Poinoosawmy, and C. Bunce, “Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma,” Br. J. Ophthalmol.83(3), 290–294 (1999).
[CrossRef] [PubMed]

Pun, C.-M.

C.-M. Pun and M.-C. Lee, “Extraction of Shift Invariant Wavelet Features for Classification of Images with Different Sizes,” IEEE Trans. Pattern Anal. Mach. Intell.26(9), 1228–1233 (2004).
[CrossRef] [PubMed]

Reis, A. S.

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology119(4), 738–747 (2012).
[CrossRef] [PubMed]

Reitsma, J. B.

P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, J. G. Lijmer, and Standards for Reporting of Diagnostic Accuracy, “The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration,” Ann. Intern. Med.138(1), 1–12 (2003).
[CrossRef] [PubMed]

Rennie, D.

P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, J. G. Lijmer, and Standards for Reporting of Diagnostic Accuracy, “The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration,” Ann. Intern. Med.138(1), 1–12 (2003).
[CrossRef] [PubMed]

Reynaud, J. F.

N. G. Strouthidis, H. Yang, J. F. Reynaud, J. L. Grimm, S. K. Gardiner, B. Fortune, and C. F. Burgoyne, “Comparison of Clinical and Spectral Domain Optical Coherence Tomography Optic Disc Margin Anatomy,” Invest. Ophthalmol. Vis. Sci.50(10), 4709–4718 (2009).
[CrossRef] [PubMed]

Ridler, T. W.

T. W. Ridler and S. Calvard, “Picture Thresholding Using an Iterative Selection Method,” IEEE Trans. Syst. Man Cybern.8(8), 630–632 (1978).
[CrossRef]

Saito, H.

H. Saito, T. Tsutsumi, M. Araie, A. Tomidokoro, and A. Iwase, “Sensitivity and specificity of the Heidelberg Retina Tomograph II Version 3.0 in a population-based study: the Tajimi Study,” Ophthalmology116(10), 1854–1861 (2009).
[CrossRef] [PubMed]

Sample, P. A.

C. Bowd, M. Balasubramanian, R. N. Weinreb, G. Vizzeri, L. M. Alencar, N. O’Leary, P. A. Sample, and L. M. Zangwill, “Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression,” Invest. Ophthalmol. Vis. Sci.50(2), 691–701 (2008).
[CrossRef] [PubMed]

Sanfilippo, P. G.

P. G. Sanfilippo, A. Cardini, A. W. Hewitt, J. G. Crowston, and D. A. Mackey, “Optic disc morphology--rethinking shape,” Prog. Retin. Eye Res.28(4), 227–248 (2009).
[CrossRef] [PubMed]

Schölkopf, B.

B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear Component Analysis as a Kernel Eigenvalue Problem,” Neural Comput.10(5), 1299–1319 (1998).
[CrossRef]

Sejnowski, T. J.

L. M. Zangwill, K. Chan, C. Bowd, J. Hao, T.-W. Lee, R. N. Weinreb, T. J. Sejnowski, and M. H. Goldbaum, “Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers,” Invest. Ophthalmol. Vis. Sci.45(9), 3144–3151 (2004).
[CrossRef] [PubMed]

Selesnick, I. W.

I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The dual-tree complex wavelet transform,” IEEE Signal Process. Mag.22(6), 123–151 (2005).
[CrossRef]

Sharpe, G. P.

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology119(4), 738–747 (2012).
[CrossRef] [PubMed]

Sigal, I. A.

I. A. Sigal, J. G. Flanagan, I. Tertinegg, and C. R. Ethier, “3D morphometry of the human optic nerve head,” Exp. Eye Res.90(1), 70–80 (2010).
[CrossRef] [PubMed]

Skodras, A.

A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still image compression standard,” IEEE Signal Process. Mag.18(5), 36–58 (2001).
[CrossRef]

Smith, A. F.

M. R. Kesen, G. L. Spaeth, J. D. Henderer, M. L. Pereira, A. F. Smith, and W. C. Steinmann, “The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma,” Am. J. Ophthalmol.133(5), 613–616 (2002).
[CrossRef] [PubMed]

Smola, A.

B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear Component Analysis as a Kernel Eigenvalue Problem,” Neural Comput.10(5), 1299–1319 (1998).
[CrossRef]

Spaeth, G. L.

M. R. Kesen, G. L. Spaeth, J. D. Henderer, M. L. Pereira, A. F. Smith, and W. C. Steinmann, “The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma,” Am. J. Ophthalmol.133(5), 613–616 (2002).
[CrossRef] [PubMed]

Spencer, A. F.

A. J. Kwartz, D. B. Henson, R. A. Harper, A. F. Spencer, and D. McLeod, “The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma,” Health Technol. Assess.9(46), 1–132 (2005).
[PubMed]

Starck, J.-L.

J.-L. Starck and F. Murtagh, “Astronomical image and signal processing: looking at noise, information and scale,” IEEE Signal Process. Mag.18(2), 30–40 (2001).
[CrossRef]

Steinmann, W. C.

M. R. Kesen, G. L. Spaeth, J. D. Henderer, M. L. Pereira, A. F. Smith, and W. C. Steinmann, “The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma,” Am. J. Ophthalmol.133(5), 613–616 (2002).
[CrossRef] [PubMed]

Stiefel, E.

M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand.49(6), 409–436 (1952).
[CrossRef]

Stjepanovic, G.

N. V. Swindale, G. Stjepanovic, A. Chin, and F. S. Mikelberg, “Automated Analysis of Normal and Glaucomatous Optic Nerve Head Topography Images,” Invest. Ophthalmol. Vis. Sci.41(7), 1730–1742 (2000).
[PubMed]

Strouthidis, N. G.

N. G. Strouthidis, H. Yang, J. F. Reynaud, J. L. Grimm, S. K. Gardiner, B. Fortune, and C. F. Burgoyne, “Comparison of Clinical and Spectral Domain Optical Coherence Tomography Optic Disc Margin Anatomy,” Invest. Ophthalmol. Vis. Sci.50(10), 4709–4718 (2009).
[CrossRef] [PubMed]

N. G. Strouthidis and D. F. Garway-Heath, “New developments in Heidelberg retina tomograph for glaucoma,” Curr. Opin. Ophthalmol.19(2), 141–148 (2008).
[CrossRef] [PubMed]

N. G. Strouthidis, E. T. White, V. M. Owen, T. A. Ho, C. J. Hammond, and D. F. Garway-Heath, “Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements,” Br. J. Ophthalmol.89(11), 1427–1432 (2005).
[CrossRef] [PubMed]

Suh, J. K.

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J. K. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res.24(1), 39–73 (2005).
[CrossRef] [PubMed]

Swindale, N. V.

N. V. Swindale, G. Stjepanovic, A. Chin, and F. S. Mikelberg, “Automated Analysis of Normal and Glaucomatous Optic Nerve Head Topography Images,” Invest. Ophthalmol. Vis. Sci.41(7), 1730–1742 (2000).
[PubMed]

Tattersall, C. L.

M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Linear regression modeling of rim area to discriminate between normal and glaucomatous optic nerve heads: the Bridlington Eye Assessment Project,” J. Glaucoma16(4), 345–351 (2007).
[CrossRef] [PubMed]

M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Detecting glaucoma with RADAAR: the Bridlington Eye Assessment Project,” Br. J. Ophthalmol.90(6), 744–748 (2006).
[CrossRef] [PubMed]

Tertinegg, I.

I. A. Sigal, J. G. Flanagan, I. Tertinegg, and C. R. Ethier, “3D morphometry of the human optic nerve head,” Exp. Eye Res.90(1), 70–80 (2010).
[CrossRef] [PubMed]

Tomidokoro, A.

H. Saito, T. Tsutsumi, M. Araie, A. Tomidokoro, and A. Iwase, “Sensitivity and specificity of the Heidelberg Retina Tomograph II Version 3.0 in a population-based study: the Tajimi Study,” Ophthalmology116(10), 1854–1861 (2009).
[CrossRef] [PubMed]

Tsang, I. W.

J. T. Kwok and I. W. Tsang, “The pre-image problem in kernel methods,” IEEE Trans. Neural Netw.15(6), 1517–1525 (2004).
[CrossRef] [PubMed]

Tsutsumi, T.

H. Saito, T. Tsutsumi, M. Araie, A. Tomidokoro, and A. Iwase, “Sensitivity and specificity of the Heidelberg Retina Tomograph II Version 3.0 in a population-based study: the Tajimi Study,” Ophthalmology116(10), 1854–1861 (2009).
[CrossRef] [PubMed]

Vernon, S. A.

M. J. Hawker, G. Ainsworth, S. A. Vernon, and H. S. Dua, “Observer agreement using the Heidelberg retina tomograph: the Bridlington Eye Assessment Project,” J. Glaucoma17(4), 280–286 (2008).
[CrossRef] [PubMed]

M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Linear regression modeling of rim area to discriminate between normal and glaucomatous optic nerve heads: the Bridlington Eye Assessment Project,” J. Glaucoma16(4), 345–351 (2007).
[CrossRef] [PubMed]

M. J. Hawker, S. A. Vernon, and G. Ainsworth, “Specificity of the Heidelberg Retina Tomograph’s diagnostic algorithms in a normal elderly population: the Bridlington Eye Assessment Project,” Ophthalmology113(5), 778–785 (2006).
[CrossRef] [PubMed]

M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Detecting glaucoma with RADAAR: the Bridlington Eye Assessment Project,” Br. J. Ophthalmol.90(6), 744–748 (2006).
[CrossRef] [PubMed]

S. A. Vernon, M. J. Hawker, G. Ainsworth, J. G. Hillman, H. K. Macnab, and H. S. Dua, “Laser Scanning Tomography of the Optic Nerve Head in a Normal Elderly Population: The Bridlington Eye Assessment Project,” Invest. Ophthalmol. Vis. Sci.46(8), 2823–2828 (2005).
[CrossRef] [PubMed]

Vetterli, M.

M. Vetterli, “Wavelets, approximation, and compression,” IEEE Signal Process. Mag.18, 59–73 (2010).

P. L. Dragotti and M. Vetterli, “Wavelet footprints: theory, algorithms, and applications,” IEEE Trans. Signal Process.51(5), 1306–1323 (2003).
[CrossRef]

Viswanathan, A. C.

D. S. Kamal, A. C. Viswanathan, D. F. Garway-Heath, R. A. Hitchings, D. Poinoosawmy, and C. Bunce, “Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma,” Br. J. Ophthalmol.83(3), 290–294 (1999).
[CrossRef] [PubMed]

Vizzeri, G.

C. Bowd, M. Balasubramanian, R. N. Weinreb, G. Vizzeri, L. M. Alencar, N. O’Leary, P. A. Sample, and L. M. Zangwill, “Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression,” Invest. Ophthalmol. Vis. Sci.50(2), 691–701 (2008).
[CrossRef] [PubMed]

Webb, R. H.

Weinreb, R. N.

C. Bowd, M. Balasubramanian, R. N. Weinreb, G. Vizzeri, L. M. Alencar, N. O’Leary, P. A. Sample, and L. M. Zangwill, “Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression,” Invest. Ophthalmol. Vis. Sci.50(2), 691–701 (2008).
[CrossRef] [PubMed]

L. M. Zangwill, K. Chan, C. Bowd, J. Hao, T.-W. Lee, R. N. Weinreb, T. J. Sejnowski, and M. H. Goldbaum, “Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers,” Invest. Ophthalmol. Vis. Sci.45(9), 3144–3151 (2004).
[CrossRef] [PubMed]

White, E. T.

N. G. Strouthidis, E. T. White, V. M. Owen, T. A. Ho, C. J. Hammond, and D. F. Garway-Heath, “Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements,” Br. J. Ophthalmol.89(11), 1427–1432 (2005).
[CrossRef] [PubMed]

Wickerhauser, M. V.

R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for best basis selection,” IEEE Trans. Inf. Theory38(2), 713–718 (1992).
[CrossRef]

Williams, C. K. I.

C. K. I. Williams and D. Barber, “Bayesian classification with Gaussian processes,” IEEE Trans. Pattern Anal. Machine Intelligence20(12), 1342–1351 (1998).
[CrossRef]

Wollstein, G.

G. Wollstein, D. F. Garway-Heath, and R. A. Hitchings, “Identification of early glaucoma cases with the scanning laser ophthalmoscope,” Ophthalmology105(8), 1557–1563 (1998).
[CrossRef] [PubMed]

Yang, H.

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology119(4), 738–747 (2012).
[CrossRef] [PubMed]

N. G. Strouthidis, H. Yang, J. F. Reynaud, J. L. Grimm, S. K. Gardiner, B. Fortune, and C. F. Burgoyne, “Comparison of Clinical and Spectral Domain Optical Coherence Tomography Optic Disc Margin Anatomy,” Invest. Ophthalmol. Vis. Sci.50(10), 4709–4718 (2009).
[CrossRef] [PubMed]

Yang, J.

J. Yang, A. F. Frangi, J. Y. Yang, D. Zhang, and Z. Jin, “KPCA plus LDA: a Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition,” IEEE Trans. Pattern Anal. Mach. Intell.27(2), 230–244 (2005).
[CrossRef] [PubMed]

Yang, J. Y.

J. Yang, A. F. Frangi, J. Y. Yang, D. Zhang, and Z. Jin, “KPCA plus LDA: a Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition,” IEEE Trans. Pattern Anal. Mach. Intell.27(2), 230–244 (2005).
[CrossRef] [PubMed]

Zangwill, L. M.

C. Bowd, M. Balasubramanian, R. N. Weinreb, G. Vizzeri, L. M. Alencar, N. O’Leary, P. A. Sample, and L. M. Zangwill, “Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression,” Invest. Ophthalmol. Vis. Sci.50(2), 691–701 (2008).
[CrossRef] [PubMed]

L. M. Zangwill, K. Chan, C. Bowd, J. Hao, T.-W. Lee, R. N. Weinreb, T. J. Sejnowski, and M. H. Goldbaum, “Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers,” Invest. Ophthalmol. Vis. Sci.45(9), 3144–3151 (2004).
[CrossRef] [PubMed]

Zhang, D.

J. Yang, A. F. Frangi, J. Y. Yang, D. Zhang, and Z. Jin, “KPCA plus LDA: a Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition,” IEEE Trans. Pattern Anal. Mach. Intell.27(2), 230–244 (2005).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (2)

M. R. Kesen, G. L. Spaeth, J. D. Henderer, M. L. Pereira, A. F. Smith, and W. C. Steinmann, “The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma,” Am. J. Ophthalmol.133(5), 613–616 (2002).
[CrossRef] [PubMed]

B. C. Chauhan and C. F. Burgoyne, “From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change,” Am. J. Ophthalmol.156(2), 218–227 (2013).
[CrossRef] [PubMed]

Ann. Intern. Med. (1)

P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, J. G. Lijmer, and Standards for Reporting of Diagnostic Accuracy, “The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration,” Ann. Intern. Med.138(1), 1–12 (2003).
[CrossRef] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (1)

J. Caprioli and J. M. Miller, “Optic disc rim area is related to disc size in normal subjects,” Arch. Ophthalmol.105(12), 1683–1685 (1987).
[CrossRef] [PubMed]

Br. J. Ophthalmol. (4)

D. S. Kamal, A. C. Viswanathan, D. F. Garway-Heath, R. A. Hitchings, D. Poinoosawmy, and C. Bunce, “Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma,” Br. J. Ophthalmol.83(3), 290–294 (1999).
[CrossRef] [PubMed]

D. F. Garway-Heath and R. A. Hitchings, “Quantitative evaluation of the optic nerve head in early glaucoma,” Br. J. Ophthalmol.82(4), 352–361 (1998).
[CrossRef] [PubMed]

M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Detecting glaucoma with RADAAR: the Bridlington Eye Assessment Project,” Br. J. Ophthalmol.90(6), 744–748 (2006).
[CrossRef] [PubMed]

N. G. Strouthidis, E. T. White, V. M. Owen, T. A. Ho, C. J. Hammond, and D. F. Garway-Heath, “Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements,” Br. J. Ophthalmol.89(11), 1427–1432 (2005).
[CrossRef] [PubMed]

Curr. Opin. Ophthalmol. (2)

C. Y. Mardin and A. G. Jünemann, “The diagnostic value of optic nerve imaging in early glaucoma,” Curr. Opin. Ophthalmol.12(2), 100–104 (2001).
[CrossRef] [PubMed]

N. G. Strouthidis and D. F. Garway-Heath, “New developments in Heidelberg retina tomograph for glaucoma,” Curr. Opin. Ophthalmol.19(2), 141–148 (2008).
[CrossRef] [PubMed]

Eur. J. Ophthalmol. (1)

M. Iester, V. Mariotti, F. Lanza, and G. Calabria, “The effect of contour line position on optic nerve head analysis by Heidelberg Retina Tomograph,” Eur. J. Ophthalmol.19(6), 942–948 (2009).
[PubMed]

Exp. Eye Res. (1)

I. A. Sigal, J. G. Flanagan, I. Tertinegg, and C. R. Ethier, “3D morphometry of the human optic nerve head,” Exp. Eye Res.90(1), 70–80 (2010).
[CrossRef] [PubMed]

Health Technol. Assess. (1)

A. J. Kwartz, D. B. Henson, R. A. Harper, A. F. Spencer, and D. McLeod, “The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma,” Health Technol. Assess.9(46), 1–132 (2005).
[PubMed]

IEEE Sig. Proc. Lett. (1)

K. Jung, K. Kim, and H. J. Kim, “Face recognition using kernel principal component analysis,” IEEE Sig. Proc. Lett.9(2), 40–42 (2002).
[CrossRef]

IEEE Signal Process. Mag. (4)

I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The dual-tree complex wavelet transform,” IEEE Signal Process. Mag.22(6), 123–151 (2005).
[CrossRef]

M. Vetterli, “Wavelets, approximation, and compression,” IEEE Signal Process. Mag.18, 59–73 (2010).

J.-L. Starck and F. Murtagh, “Astronomical image and signal processing: looking at noise, information and scale,” IEEE Signal Process. Mag.18(2), 30–40 (2001).
[CrossRef]

A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still image compression standard,” IEEE Signal Process. Mag.18(5), 36–58 (2001).
[CrossRef]

IEEE Trans. Image Process. (1)

T. Chang and C. J. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Process.2(4), 429–441 (1993).
[CrossRef] [PubMed]

IEEE Trans. Inf. Theory (1)

R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for best basis selection,” IEEE Trans. Inf. Theory38(2), 713–718 (1992).
[CrossRef]

IEEE Trans. Neural Netw. (1)

J. T. Kwok and I. W. Tsang, “The pre-image problem in kernel methods,” IEEE Trans. Neural Netw.15(6), 1517–1525 (2004).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (4)

J. Yang, A. F. Frangi, J. Y. Yang, D. Zhang, and Z. Jin, “KPCA plus LDA: a Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition,” IEEE Trans. Pattern Anal. Mach. Intell.27(2), 230–244 (2005).
[CrossRef] [PubMed]

A. Laine and J. Fan, “Texture Classification by Wavelet Packet Signatures,” IEEE Trans. Pattern Anal. Mach. Intell.15(11), 1186–1191 (1993).
[CrossRef]

C.-M. Pun and M.-C. Lee, “Extraction of Shift Invariant Wavelet Features for Classification of Images with Different Sizes,” IEEE Trans. Pattern Anal. Mach. Intell.26(9), 1228–1233 (2004).
[CrossRef] [PubMed]

S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Trans. Pattern Anal. Mach. Intell.11(7), 674–693 (1989).
[CrossRef]

IEEE Trans. Pattern Anal. Machine Intelligence (1)

C. K. I. Williams and D. Barber, “Bayesian classification with Gaussian processes,” IEEE Trans. Pattern Anal. Machine Intelligence20(12), 1342–1351 (1998).
[CrossRef]

IEEE Trans. Signal Process. (1)

P. L. Dragotti and M. Vetterli, “Wavelet footprints: theory, algorithms, and applications,” IEEE Trans. Signal Process.51(5), 1306–1323 (2003).
[CrossRef]

IEEE Trans. Syst. Man Cybern. (1)

T. W. Ridler and S. Calvard, “Picture Thresholding Using an Iterative Selection Method,” IEEE Trans. Syst. Man Cybern.8(8), 630–632 (1978).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (9)

P. H. Artes and D. P. Crabb, “Estimating Normative Limits of Heidelberg Retina Tomograph Optic Disc Rim Area with Quantile Regression,” Invest. Ophthalmol. Vis. Sci.51(1), 355–361 (2010).
[CrossRef] [PubMed]

B. C. Chauhan, J. W. Blanchard, D. C. Hamilton, and R. P. LeBlanc, “Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography,” Invest. Ophthalmol. Vis. Sci.41(3), 775–782 (2000).
[PubMed]

C. Bowd, M. Balasubramanian, R. N. Weinreb, G. Vizzeri, L. M. Alencar, N. O’Leary, P. A. Sample, and L. M. Zangwill, “Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression,” Invest. Ophthalmol. Vis. Sci.50(2), 691–701 (2008).
[CrossRef] [PubMed]

N. G. Strouthidis, H. Yang, J. F. Reynaud, J. L. Grimm, S. K. Gardiner, B. Fortune, and C. F. Burgoyne, “Comparison of Clinical and Spectral Domain Optical Coherence Tomography Optic Disc Margin Anatomy,” Invest. Ophthalmol. Vis. Sci.50(10), 4709–4718 (2009).
[CrossRef] [PubMed]

S. A. Vernon, M. J. Hawker, G. Ainsworth, J. G. Hillman, H. K. Macnab, and H. S. Dua, “Laser Scanning Tomography of the Optic Nerve Head in a Normal Elderly Population: The Bridlington Eye Assessment Project,” Invest. Ophthalmol. Vis. Sci.46(8), 2823–2828 (2005).
[CrossRef] [PubMed]

L. M. Zangwill, K. Chan, C. Bowd, J. Hao, T.-W. Lee, R. N. Weinreb, T. J. Sejnowski, and M. H. Goldbaum, “Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers,” Invest. Ophthalmol. Vis. Sci.45(9), 3144–3151 (2004).
[CrossRef] [PubMed]

N. V. Swindale, G. Stjepanovic, A. Chin, and F. S. Mikelberg, “Automated Analysis of Normal and Glaucomatous Optic Nerve Head Topography Images,” Invest. Ophthalmol. Vis. Sci.41(7), 1730–1742 (2000).
[PubMed]

A. Coops, D. B. Henson, A. J. Kwartz, and P. H. Artes, “Automated Analysis of Heidelberg Retina Tomograph Optic Disc Images by Glaucoma Probability Score,” Invest. Ophthalmol. Vis. Sci.47(12), 5348–5355 (2006).
[CrossRef] [PubMed]

J. B. Jonas, G. C. Gusek, and G. O. Naumann, “Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes,” Invest. Ophthalmol. Vis. Sci.29(7), 1151–1158 (1988).
[PubMed]

J. Glaucoma (4)

C. Y. Mardin, T. Hothorn, A. Peters, A. G. Jünemann, N. X. Nguyen, and B. Lausen, “New Glaucoma Classification Method Based on Standard Heidelberg Retina Tomograph Parameters by Bagging Classification Trees,” J. Glaucoma12(4), 340–346 (2003).
[CrossRef] [PubMed]

M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Linear regression modeling of rim area to discriminate between normal and glaucomatous optic nerve heads: the Bridlington Eye Assessment Project,” J. Glaucoma16(4), 345–351 (2007).
[CrossRef] [PubMed]

K. H. Park, S. J. Park, Y. J. Lee, J. Y. Kim, and J. Caprioli, “Ability of peripapillary atrophy parameters to differentiate normal-tension glaucoma from glaucomalike disk,” J. Glaucoma10(2), 95–101 (2001).
[CrossRef] [PubMed]

M. J. Hawker, G. Ainsworth, S. A. Vernon, and H. S. Dua, “Observer agreement using the Heidelberg retina tomograph: the Bridlington Eye Assessment Project,” J. Glaucoma17(4), 280–286 (2008).
[CrossRef] [PubMed]

J. Res. Natl. Bur. Stand. (1)

M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand.49(6), 409–436 (1952).
[CrossRef]

Neural Comput. (1)

B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear Component Analysis as a Kernel Eigenvalue Problem,” Neural Comput.10(5), 1299–1319 (1998).
[CrossRef]

Neural Netw. (1)

M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural Netw.6(4), 525–533 (1993).
[CrossRef]

Ophthalmology (6)

A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology119(4), 738–747 (2012).
[CrossRef] [PubMed]

B. A. Ford, P. H. Artes, T. A. McCormick, M. T. Nicolela, R. P. LeBlanc, and B. C. Chauhan, “Comparison of data analysis tools for detection of glaucoma with the heidelberg retina tomograph,” Ophthalmology110(6), 1145–1150 (2003).
[CrossRef] [PubMed]

M. J. Hawker, S. A. Vernon, and G. Ainsworth, “Specificity of the Heidelberg Retina Tomograph’s diagnostic algorithms in a normal elderly population: the Bridlington Eye Assessment Project,” Ophthalmology113(5), 778–785 (2006).
[CrossRef] [PubMed]

H. Saito, T. Tsutsumi, M. Araie, A. Tomidokoro, and A. Iwase, “Sensitivity and specificity of the Heidelberg Retina Tomograph II Version 3.0 in a population-based study: the Tajimi Study,” Ophthalmology116(10), 1854–1861 (2009).
[CrossRef] [PubMed]

M. Iester, F. S. Mikelberg, and S. M. Drance, “The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph,” Ophthalmology104(3), 545–548 (1997).
[CrossRef] [PubMed]

G. Wollstein, D. F. Garway-Heath, and R. A. Hitchings, “Identification of early glaucoma cases with the scanning laser ophthalmoscope,” Ophthalmology105(8), 1557–1563 (1998).
[CrossRef] [PubMed]

Philos. Trans. R. Soc., A (1)

N. Kingsbury, “Image processing with complex wavelets,” Philos. Trans. R. Soc., A357(1760), 2543–2560 (1999).
[CrossRef]

Prog. Retin. Eye Res. (2)

P. G. Sanfilippo, A. Cardini, A. W. Hewitt, J. G. Crowston, and D. A. Mackey, “Optic disc morphology--rethinking shape,” Prog. Retin. Eye Res.28(4), 227–248 (2009).
[CrossRef] [PubMed]

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J. K. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res.24(1), 39–73 (2005).
[CrossRef] [PubMed]

Surv. Ophthalmol. (1)

J. B. Jonas, W. M. Budde, and S. Panda-Jonas, “Ophthalmoscopic evaluation of the optic nerve head,” Surv. Ophthalmol.43(4), 293–320 (1999).
[CrossRef] [PubMed]

Other (6)

D. B. Henson, Visual Fields, 2nd ed (Oxford University Press, 2000).

C. K. Chui, An introduction to wavelets (Academic Press Professional, Inc., 1992).

I. Daubechies, Ten lectures on wavelets (Society for Industrial and Applied Mathematics, 1992).

T. P. Minka, “A family of algorithms for approximate bayesian inference,” (Massachusetts Institute of Technology, 2001).

C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (MIT Press, 2006).

C. K. I. Williams, “Regression with Gaussian Processes,” in Mathematics of Neural Networks: Models, Algorithms and Applications, (Kluwer, 1995)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

An example of HRT topographic (a) and reflectance (b) images. The ONH is conventionally divided into six sectors indicated on the reflectance image.

Fig. 2
Fig. 2

Illustration of adaptive shift-invariant wavelet packet. The value of Shannon entropy is indicated on the branches of each wavelet decomposition with the format of ‘lower level entropy: summation of higher level entropy’. The crosses indicate that the decomposition is prevented due to the increased information cost.

Fig. 3
Fig. 3

Illustrating the number of images that select each detail coefficient in the topography and reflectance images. Brighter pixels indicate more important coefficients selected by a larger number of images. The contrast is normalized in each image for visualization purpose.

Fig. 4
Fig. 4

The scatter plot of the first two most significant features of the ONH.

Fig. 5
Fig. 5

The scatter plot of the first and second most significant features from those images with a diagnosis in the training data set. The axes from KPCA and PCA are in arbitrary units. The histogram of glaucoma (red) and healthy (blue) data in each feature are shown on the top and right of the scatter plot. Note that the diagnosis information was unknown during feature extraction and it is only displayed here for visualization and demonstrative purpose.

Fig. 6
Fig. 6

ROC curve for SAS, MRA and GPS analysis. The unity line corresponds to random classification.

Fig. 7
Fig. 7

ROC curve of SAS derived from the topography, reflectance and combined features.

Fig. 8
Fig. 8

Examples of localized abnormality maps for ten eyes with a clinical diagnosis of glaucoma. The topography, reflectance and abnormality map are displayed for each ONH. SAS scores are given in the lower left corner of each topography image. Difference between the measured topography and reference healthy topography is represented by a heat map. The transparency of the abnormality heat map corresponds to the amount of change and a scale is shown on the margin of the abnormality map.

Tables (1)

Tables Icon

Table 1 Statistics (median [95% CI]) of ROC analysis.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p( y|f( x ) )=σ( yf( x ) )= yf( x ) N( yf( x )|0, 1 )
p( f |X, y, x )= p( f |X, f, x )p( f|X, y )df
p( y |X, y, x )= p( y | f )p( f |X, y, x )d f
p( y|X )= p( f|X )p( y|f )df

Metrics