Abstract

In this study, a simple duel-optical spectroscopic imaging apparatus capable of simultaneously determining relative changes in brain oxy-and deoxy-hemoglobin concentrations was used following administration of the anxiolytic compound diazepam in mice with strong dominant (Dom) and submissive (Sub) behavioral traits. Three month old mice (n = 30) were anesthetized and after 10 min of baseline imaging, diazepam (1.5 mg/kg) was administered and measurements were taken for 80 min. The mouse head was illuminated by white light based LED's and diffused reflected light passing through different channels, consisting of a bandpass filter and a CCD camera, respectively, was collected and analyzed to measure the hemodynamic response. This work’s major findings are threefold: first, Dom and Sub animals showed statistically significant differences in hemodynamic response to diazepam administration. Secondly, diazepam was found to more strongly affect the Sub group. Thirdly, different time-series profiles were observed post-injection, which can serve as a possible marker for the groups’ differentiation. To the best of our knowledge, this is the first report on the effects of an anxiolytic drug on brain hemodynamic responses in mice using diffused light optical imaging.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Kessler, P. Berglund, O. Demler, R. Jin, K. R. Merikangas, and E. E. Walters, “Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication,” Arch. Gen. Psychiatry62(6), 593–602 (2005).
    [CrossRef] [PubMed]
  2. R. C. Kessler, A. M. Ruscio, K. Shear, and H. U. Wittchen, “Epidemiology of anxiety disorders,” Curr. Top. Behav. Neurosci.2, 21–35 (2009).
    [CrossRef] [PubMed]
  3. V. Krishnan and E. J. Nestler, “The molecular neurobiology of depression,” Nature455(7215), 894–902 (2008).
    [CrossRef] [PubMed]
  4. M. T. Berlim, M. P. Fleck, and G. Turecki, “Current trends in the assessment and somatic treatment of resistant/refractory major depression: an overview,” Ann. Med.40(2), 149–159 (2008).
    [CrossRef] [PubMed]
  5. C. J. Harmer, G. M. Goodwin, and P. J. Cowen, “Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action,” Br. J. Psychiatry195(2), 102–108 (2009).
    [CrossRef] [PubMed]
  6. G. R. McClelland and P. Raptopoulos, “EEG and blood level of the potential antidepressant paroxetine after a single oral dose to normal volunteers,” Psychopharmacology (Berl.)83(4), 327–329 (1984).
    [CrossRef] [PubMed]
  7. R. G. Wise, B. J. Lujan, P. Schweinhardt, G. D. Peskett, R. Rogers, and I. Tracey, “The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI,” Magn. Reson. Imaging25(6), 801–810 (2007).
    [CrossRef] [PubMed]
  8. R. Rakheja, A. Ciarallo, Y. Z. Alabed, and M. Hickeson, “Intravenous administration of diazepam significantly reduces brown fat activity on 18F-FDG PET/CT,” Am. J. Nucl. Med. Mol. Imaging1(1), 29–35 (2011).
    [PubMed]
  9. J. Divljaković, M. Milić, T. Timić, and M. M. Savić, “Tolerance liability of diazepam is dependent on the dose used for protracted treatment,” Pharmacol. Rep.64(5), 1116–1125 (2012).
    [CrossRef] [PubMed]
  10. M. P. Peppers, “Benzodiazepines for alcohol withdrawal in the elderly and in patients with liver disease,” Pharmacotherapy16(1), 49–57 (1996).
    [PubMed]
  11. K. Rickels, E. Schweizer, N. DeMartinis, L. Mandos, and C. Mercer, “Gepirone and diazepam in generalized anxiety disorder: a placebo-controlled trial,” J. Clin. Psychopharmacol.17(4), 272–277 (1997).
    [CrossRef] [PubMed]
  12. D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of Biomedical Optics (CRC Press, Boca Raton, 2011).
  13. E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt.5(3), 287–290 (2000).
    [CrossRef] [PubMed]
  14. R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp.16(3), 183–189 (2002).
    [CrossRef] [PubMed]
  15. K. Matsuo, T. Kato, M. Fukuda, and N. Kato, “Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy,” J. Neuropsychiatry Clin. Neurosci.12(4), 465–471 (2000).
    [CrossRef] [PubMed]
  16. P. M. Arenth, J. H. Ricker, and M. T. Schultheis, “Applications of functional near-infrared spectroscopy (fNIRS) to Neurorehabilitation of cognitive disabilities,” Clin. Neuropsychol.21(1), 38–57 (2007).
    [CrossRef] [PubMed]
  17. M. Costantini, A. Di Vacri, A. M. Chiarelli, F. Ferri, G. Luca Romani, and A. Merla, “Studying social cognition using near-infrared spectroscopy: the case of social Simon effect,” J. Biomed. Opt.18(2), 025005 (2013).
    [CrossRef] [PubMed]
  18. G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry52(7), 679–693 (2002).
    [CrossRef] [PubMed]
  19. R. D. Frostig, In vivo Optical Imaging of Brain Function, 2nd ed. (CRC Press, Boca Raton, 2009).
  20. G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
    [CrossRef] [PubMed]
  21. D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000).
    [CrossRef] [PubMed]
  22. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20(10), 435–442 (1997).
    [CrossRef] [PubMed]
  23. M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
    [CrossRef] [PubMed]
  24. L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging. (Wiley-Interscience, Hoboken, N.J., 2007).
  25. J. G. Fujimoto and D. L. Farkas, Biomedical Optical Imaging (Oxford University Press, Oxford; New York, 2009).
  26. F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, “Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse,” J. Opt. A, Pure Appl. Opt.8(7), 528 (2006).
    [CrossRef]
  27. K. Kohmura, K. Iwamoto, B. Aleksic, K. Sasada, N. Kawano, H. Katayama, Y. Noda, A. Noda, T. Iidaka, and N. Ozaki, “Effects of sedative antidepressants on prefrontal cortex activity during verbal fluency task in healthy subjects: a near-infrared spectroscopy study,” Psychopharmacology (Berl.)226(1), 75–81 (2013).
    [CrossRef] [PubMed]
  28. E. A. Verhagen, E. M. Kooi, P. P. van den Berg, and A. F. Bos, “Maternal antihypertensive drugs may influence cerebral oxygen extraction in preterm infants during the first days after birth,” J. Matern. Fetal Neonatal Med.26(9), 871–876 (2013).
    [CrossRef] [PubMed]
  29. Y. Feder, E. Nesher, A. Ogran, A. Kreinin, E. Malatynska, G. Yadid, and A. Pinhasov, “Selective breeding for dominant and submissive behavior in Sabra mice,” J. Affect. Disord.126(1-2), 214–222 (2010).
    [CrossRef] [PubMed]
  30. E. Nesher, M. Gross, S. Lisson, T. Tikhonov, G. Yadid, and A. Pinhasov, “Differential responses to distinct psychotropic agents of selectively bred dominant and submissive animals,” Behav. Brain Res.236(1), 225–235 (2013).
    [PubMed]
  31. A. Pinhasov, J. Crooke, D. Rosenthal, D. Brenneman, and E. Malatynska, “Reduction of Submissive Behavior Model for antidepressant drug activity testing: study using a video-tracking system,” Behav. Pharmacol.16(8), 657–664 (2005).
    [CrossRef] [PubMed]
  32. E. Malatynska, A. Pinhasov, J. J. Crooke, V. L. Smith-Swintosky, and D. E. Brenneman, “Reduction of dominant or submissive behaviors as models for antimanic or antidepressant drug testing: technical considerations,” J. Neurosci. Methods165(2), 175–182 (2007).
    [CrossRef] [PubMed]
  33. A. Moussaieff, M. Gross, E. Nesher, T. Tikhonov, G. Yadid, and A. Pinhasov, “Incensole acetate reduces depressive-like behavior and modulates hippocampal BDNF and CRF expression of submissive animals,” J. Psychopharmacol. (Oxford)26(12), 1584–1593 (2012).
    [CrossRef] [PubMed]
  34. E. Malatynska, A. Pinhasov, C. J. Creighton, J. J. Crooke, A. B. Reitz, D. E. Brenneman, and M. S. Lubomirski, “Assessing activity onset time and efficacy for clinically effective antidepressant and antimanic drugs in animal models based on dominant-submissive relationships,” Neurosci. Biobehav. Rev.31(6), 904–919 (2007).
    [CrossRef] [PubMed]
  35. E. Nesher, V. Peskov, A. Rylova, O. Raz, and A. Pinhasov, “Comparative analysis of the behavioral and biomolecular parameters of four mouse strains,” J. Mol. Neurosci.46(2), 276–284 (2012).
    [CrossRef] [PubMed]
  36. J. T. Moon and S. R. Marschner, “Simulating multiple scattering in hair using a photon mapping approach,” ACM Trans. Graph.25(3), 1067–1074 (2006).
    [CrossRef]
  37. F. H. Mustafa and M. S. Jaafar, “Shaving area of unwanted hair before laser operation is useful in cosmetic procedure: A simulation study,” J. Saudi Society Dermat. Surg. (Article in Press).
  38. J. Qin, L. Shi, S. Dziennis, R. Reif, and R. K. Wang, “Fast synchronized dual-wavelength laser speckle imaging system for monitoring hemodynamic changes in a stroke mouse model,” Opt. Lett.37(19), 4005–4007 (2012).
    [CrossRef] [PubMed]
  39. P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt.13(4), 044007 (2008).
    [CrossRef] [PubMed]
  40. A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron39(2), 353–359 (2003).
    [CrossRef] [PubMed]
  41. D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 649–659 (1997).
    [CrossRef]
  42. E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007).
    [CrossRef] [PubMed]
  43. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem.195(2), 330–351 (1991).
    [CrossRef] [PubMed]
  44. C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci.27(17), 4572–4586 (2007).
    [CrossRef] [PubMed]
  45. S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” Neuroimage19(3), 884–894 (2003).
    [CrossRef] [PubMed]
  46. S. B. Chen, Z. Feng, P. C. Li, S. L. Jacques, S. Q. Zeng, and Q. M. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt.11(3), 034002 (2006).
    [CrossRef] [PubMed]
  47. M. R. Zhao, M. A. Suh, H. T. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia48(11), 2059–2067 (2007).
    [CrossRef] [PubMed]
  48. Z. C. Luo, Z. J. Yuan, Y. T. Pan, and C. W. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett.34(9), 1480–1482 (2009).
    [CrossRef] [PubMed]
  49. R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974).
    [CrossRef] [PubMed]
  50. H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys.22(8), 1209–1217 (1995).
    [CrossRef] [PubMed]
  51. W. G. Zijlstra, A. Buursma, and O. Willem van Assendelft, eds., Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application. 2000, VSP. 368.
  52. A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
    [CrossRef] [PubMed]
  53. R. Nachabé, B. H. W. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express1(5), 1432–1442 (2010).
    [CrossRef] [PubMed]
  54. S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt.17(7), 077005 (2012).
    [CrossRef] [PubMed]
  55. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-microm wavelength region,” Appl. Opt.12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  56. J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab.22(6), 670–679 (2002).
    [CrossRef] [PubMed]
  57. S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt.18(1), 015003 (2013).
    [CrossRef] [PubMed]
  58. P. Delaveau, M. Jabourian, C. Lemogne, S. Guionnet, L. Bergouignan, and P. Fossati, “Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies,” J. Affect. Disord.130(1-2), 66–74 (2011).
    [CrossRef] [PubMed]
  59. M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett.28(14), 1218–1220 (2003).
    [CrossRef] [PubMed]
  60. D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” Neuroimage26(2), 619–627 (2005).
    [CrossRef] [PubMed]
  61. D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol.46(1), 41–62 (2001).
    [CrossRef] [PubMed]

2013 (5)

M. Costantini, A. Di Vacri, A. M. Chiarelli, F. Ferri, G. Luca Romani, and A. Merla, “Studying social cognition using near-infrared spectroscopy: the case of social Simon effect,” J. Biomed. Opt.18(2), 025005 (2013).
[CrossRef] [PubMed]

K. Kohmura, K. Iwamoto, B. Aleksic, K. Sasada, N. Kawano, H. Katayama, Y. Noda, A. Noda, T. Iidaka, and N. Ozaki, “Effects of sedative antidepressants on prefrontal cortex activity during verbal fluency task in healthy subjects: a near-infrared spectroscopy study,” Psychopharmacology (Berl.)226(1), 75–81 (2013).
[CrossRef] [PubMed]

E. A. Verhagen, E. M. Kooi, P. P. van den Berg, and A. F. Bos, “Maternal antihypertensive drugs may influence cerebral oxygen extraction in preterm infants during the first days after birth,” J. Matern. Fetal Neonatal Med.26(9), 871–876 (2013).
[CrossRef] [PubMed]

E. Nesher, M. Gross, S. Lisson, T. Tikhonov, G. Yadid, and A. Pinhasov, “Differential responses to distinct psychotropic agents of selectively bred dominant and submissive animals,” Behav. Brain Res.236(1), 225–235 (2013).
[PubMed]

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt.18(1), 015003 (2013).
[CrossRef] [PubMed]

2012 (5)

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt.17(7), 077005 (2012).
[CrossRef] [PubMed]

J. Qin, L. Shi, S. Dziennis, R. Reif, and R. K. Wang, “Fast synchronized dual-wavelength laser speckle imaging system for monitoring hemodynamic changes in a stroke mouse model,” Opt. Lett.37(19), 4005–4007 (2012).
[CrossRef] [PubMed]

A. Moussaieff, M. Gross, E. Nesher, T. Tikhonov, G. Yadid, and A. Pinhasov, “Incensole acetate reduces depressive-like behavior and modulates hippocampal BDNF and CRF expression of submissive animals,” J. Psychopharmacol. (Oxford)26(12), 1584–1593 (2012).
[CrossRef] [PubMed]

E. Nesher, V. Peskov, A. Rylova, O. Raz, and A. Pinhasov, “Comparative analysis of the behavioral and biomolecular parameters of four mouse strains,” J. Mol. Neurosci.46(2), 276–284 (2012).
[CrossRef] [PubMed]

J. Divljaković, M. Milić, T. Timić, and M. M. Savić, “Tolerance liability of diazepam is dependent on the dose used for protracted treatment,” Pharmacol. Rep.64(5), 1116–1125 (2012).
[CrossRef] [PubMed]

2011 (2)

R. Rakheja, A. Ciarallo, Y. Z. Alabed, and M. Hickeson, “Intravenous administration of diazepam significantly reduces brown fat activity on 18F-FDG PET/CT,” Am. J. Nucl. Med. Mol. Imaging1(1), 29–35 (2011).
[PubMed]

P. Delaveau, M. Jabourian, C. Lemogne, S. Guionnet, L. Bergouignan, and P. Fossati, “Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies,” J. Affect. Disord.130(1-2), 66–74 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (3)

R. C. Kessler, A. M. Ruscio, K. Shear, and H. U. Wittchen, “Epidemiology of anxiety disorders,” Curr. Top. Behav. Neurosci.2, 21–35 (2009).
[CrossRef] [PubMed]

C. J. Harmer, G. M. Goodwin, and P. J. Cowen, “Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action,” Br. J. Psychiatry195(2), 102–108 (2009).
[CrossRef] [PubMed]

Z. C. Luo, Z. J. Yuan, Y. T. Pan, and C. W. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett.34(9), 1480–1482 (2009).
[CrossRef] [PubMed]

2008 (3)

V. Krishnan and E. J. Nestler, “The molecular neurobiology of depression,” Nature455(7215), 894–902 (2008).
[CrossRef] [PubMed]

M. T. Berlim, M. P. Fleck, and G. Turecki, “Current trends in the assessment and somatic treatment of resistant/refractory major depression: an overview,” Ann. Med.40(2), 149–159 (2008).
[CrossRef] [PubMed]

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt.13(4), 044007 (2008).
[CrossRef] [PubMed]

2007 (8)

E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007).
[CrossRef] [PubMed]

E. Malatynska, A. Pinhasov, C. J. Creighton, J. J. Crooke, A. B. Reitz, D. E. Brenneman, and M. S. Lubomirski, “Assessing activity onset time and efficacy for clinically effective antidepressant and antimanic drugs in animal models based on dominant-submissive relationships,” Neurosci. Biobehav. Rev.31(6), 904–919 (2007).
[CrossRef] [PubMed]

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
[CrossRef] [PubMed]

R. G. Wise, B. J. Lujan, P. Schweinhardt, G. D. Peskett, R. Rogers, and I. Tracey, “The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI,” Magn. Reson. Imaging25(6), 801–810 (2007).
[CrossRef] [PubMed]

P. M. Arenth, J. H. Ricker, and M. T. Schultheis, “Applications of functional near-infrared spectroscopy (fNIRS) to Neurorehabilitation of cognitive disabilities,” Clin. Neuropsychol.21(1), 38–57 (2007).
[CrossRef] [PubMed]

C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci.27(17), 4572–4586 (2007).
[CrossRef] [PubMed]

E. Malatynska, A. Pinhasov, J. J. Crooke, V. L. Smith-Swintosky, and D. E. Brenneman, “Reduction of dominant or submissive behaviors as models for antimanic or antidepressant drug testing: technical considerations,” J. Neurosci. Methods165(2), 175–182 (2007).
[CrossRef] [PubMed]

M. R. Zhao, M. A. Suh, H. T. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia48(11), 2059–2067 (2007).
[CrossRef] [PubMed]

2006 (3)

S. B. Chen, Z. Feng, P. C. Li, S. L. Jacques, S. Q. Zeng, and Q. M. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt.11(3), 034002 (2006).
[CrossRef] [PubMed]

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, “Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse,” J. Opt. A, Pure Appl. Opt.8(7), 528 (2006).
[CrossRef]

J. T. Moon and S. R. Marschner, “Simulating multiple scattering in hair using a photon mapping approach,” ACM Trans. Graph.25(3), 1067–1074 (2006).
[CrossRef]

2005 (3)

A. Pinhasov, J. Crooke, D. Rosenthal, D. Brenneman, and E. Malatynska, “Reduction of Submissive Behavior Model for antidepressant drug activity testing: study using a video-tracking system,” Behav. Pharmacol.16(8), 657–664 (2005).
[CrossRef] [PubMed]

R. C. Kessler, P. Berglund, O. Demler, R. Jin, K. R. Merikangas, and E. E. Walters, “Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication,” Arch. Gen. Psychiatry62(6), 593–602 (2005).
[CrossRef] [PubMed]

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” Neuroimage26(2), 619–627 (2005).
[CrossRef] [PubMed]

2003 (3)

M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett.28(14), 1218–1220 (2003).
[CrossRef] [PubMed]

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” Neuroimage19(3), 884–894 (2003).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron39(2), 353–359 (2003).
[CrossRef] [PubMed]

2002 (3)

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry52(7), 679–693 (2002).
[CrossRef] [PubMed]

R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp.16(3), 183–189 (2002).
[CrossRef] [PubMed]

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab.22(6), 670–679 (2002).
[CrossRef] [PubMed]

2001 (1)

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol.46(1), 41–62 (2001).
[CrossRef] [PubMed]

2000 (3)

K. Matsuo, T. Kato, M. Fukuda, and N. Kato, “Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy,” J. Neuropsychiatry Clin. Neurosci.12(4), 465–471 (2000).
[CrossRef] [PubMed]

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt.5(3), 287–290 (2000).
[CrossRef] [PubMed]

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000).
[CrossRef] [PubMed]

1999 (1)

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
[CrossRef] [PubMed]

1997 (3)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20(10), 435–442 (1997).
[CrossRef] [PubMed]

D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 649–659 (1997).
[CrossRef]

K. Rickels, E. Schweizer, N. DeMartinis, L. Mandos, and C. Mercer, “Gepirone and diazepam in generalized anxiety disorder: a placebo-controlled trial,” J. Clin. Psychopharmacol.17(4), 272–277 (1997).
[CrossRef] [PubMed]

1996 (1)

M. P. Peppers, “Benzodiazepines for alcohol withdrawal in the elderly and in patients with liver disease,” Pharmacotherapy16(1), 49–57 (1996).
[PubMed]

1995 (2)

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
[CrossRef] [PubMed]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys.22(8), 1209–1217 (1995).
[CrossRef] [PubMed]

1991 (1)

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem.195(2), 330–351 (1991).
[CrossRef] [PubMed]

1984 (1)

G. R. McClelland and P. Raptopoulos, “EEG and blood level of the potential antidepressant paroxetine after a single oral dose to normal volunteers,” Psychopharmacology (Berl.)83(4), 327–329 (1984).
[CrossRef] [PubMed]

1974 (1)

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974).
[CrossRef] [PubMed]

1973 (1)

Agoncillo, T.

C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci.27(17), 4572–4586 (2007).
[CrossRef] [PubMed]

Alabed, Y. Z.

R. Rakheja, A. Ciarallo, Y. Z. Alabed, and M. Hickeson, “Intravenous administration of diazepam significantly reduces brown fat activity on 18F-FDG PET/CT,” Am. J. Nucl. Med. Mol. Imaging1(1), 29–35 (2011).
[PubMed]

Aleksic, B.

K. Kohmura, K. Iwamoto, B. Aleksic, K. Sasada, N. Kawano, H. Katayama, Y. Noda, A. Noda, T. Iidaka, and N. Ozaki, “Effects of sedative antidepressants on prefrontal cortex activity during verbal fluency task in healthy subjects: a near-infrared spectroscopy study,” Psychopharmacology (Berl.)226(1), 75–81 (2013).
[CrossRef] [PubMed]

Andermann, M. L.

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron39(2), 353–359 (2003).
[CrossRef] [PubMed]

Arenth, P. M.

P. M. Arenth, J. H. Ricker, and M. T. Schultheis, “Applications of functional near-infrared spectroscopy (fNIRS) to Neurorehabilitation of cognitive disabilities,” Clin. Neuropsychol.21(1), 38–57 (2007).
[CrossRef] [PubMed]

Ashida, H.

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt.18(1), 015003 (2013).
[CrossRef] [PubMed]

Ayata, C.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt.13(4), 044007 (2008).
[CrossRef] [PubMed]

Ballesteros, J. R.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol.46(1), 41–62 (2001).
[CrossRef] [PubMed]

Bandera, A.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, “Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse,” J. Opt. A, Pure Appl. Opt.8(7), 528 (2006).
[CrossRef]

Benaron, D. A.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000).
[CrossRef] [PubMed]

Berglund, P.

R. C. Kessler, P. Berglund, O. Demler, R. Jin, K. R. Merikangas, and E. E. Walters, “Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication,” Arch. Gen. Psychiatry62(6), 593–602 (2005).
[CrossRef] [PubMed]

Bergouignan, L.

P. Delaveau, M. Jabourian, C. Lemogne, S. Guionnet, L. Bergouignan, and P. Fossati, “Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies,” J. Affect. Disord.130(1-2), 66–74 (2011).
[CrossRef] [PubMed]

Berlim, M. T.

M. T. Berlim, M. P. Fleck, and G. Turecki, “Current trends in the assessment and somatic treatment of resistant/refractory major depression: an overview,” Ann. Med.40(2), 149–159 (2008).
[CrossRef] [PubMed]

Berwick, J.

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab.22(6), 670–679 (2002).
[CrossRef] [PubMed]

Boas, D.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000).
[CrossRef] [PubMed]

Boas, D. A.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt.13(4), 044007 (2008).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron39(2), 353–359 (2003).
[CrossRef] [PubMed]

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry52(7), 679–693 (2002).
[CrossRef] [PubMed]

Boppart, S. A.

Bos, A. F.

E. A. Verhagen, E. M. Kooi, P. P. van den Berg, and A. F. Bos, “Maternal antihypertensive drugs may influence cerebral oxygen extraction in preterm infants during the first days after birth,” J. Matern. Fetal Neonatal Med.26(9), 871–876 (2013).
[CrossRef] [PubMed]

Brenneman, D.

A. Pinhasov, J. Crooke, D. Rosenthal, D. Brenneman, and E. Malatynska, “Reduction of Submissive Behavior Model for antidepressant drug activity testing: study using a video-tracking system,” Behav. Pharmacol.16(8), 657–664 (2005).
[CrossRef] [PubMed]

Brenneman, D. E.

E. Malatynska, A. Pinhasov, J. J. Crooke, V. L. Smith-Swintosky, and D. E. Brenneman, “Reduction of dominant or submissive behaviors as models for antimanic or antidepressant drug testing: technical considerations,” J. Neurosci. Methods165(2), 175–182 (2007).
[CrossRef] [PubMed]

E. Malatynska, A. Pinhasov, C. J. Creighton, J. J. Crooke, A. B. Reitz, D. E. Brenneman, and M. S. Lubomirski, “Assessing activity onset time and efficacy for clinically effective antidepressant and antimanic drugs in animal models based on dominant-submissive relationships,” Neurosci. Biobehav. Rev.31(6), 904–919 (2007).
[CrossRef] [PubMed]

Bunce, S. C.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
[CrossRef] [PubMed]

Carter, K. M.

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” Neuroimage26(2), 619–627 (2005).
[CrossRef] [PubMed]

Chance, B.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol.46(1), 41–62 (2001).
[CrossRef] [PubMed]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20(10), 435–442 (1997).
[CrossRef] [PubMed]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys.22(8), 1209–1217 (1995).
[CrossRef] [PubMed]

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem.195(2), 330–351 (1991).
[CrossRef] [PubMed]

Chen, S. B.

S. B. Chen, Z. Feng, P. C. Li, S. L. Jacques, S. Q. Zeng, and Q. M. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt.11(3), 034002 (2006).
[CrossRef] [PubMed]

Chen, W. R.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt.17(7), 077005 (2012).
[CrossRef] [PubMed]

Chen-Bee, C. H.

C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci.27(17), 4572–4586 (2007).
[CrossRef] [PubMed]

Cheong, W. F.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000).
[CrossRef] [PubMed]

Chiarelli, A. M.

M. Costantini, A. Di Vacri, A. M. Chiarelli, F. Ferri, G. Luca Romani, and A. Merla, “Studying social cognition using near-infrared spectroscopy: the case of social Simon effect,” J. Biomed. Opt.18(2), 025005 (2013).
[CrossRef] [PubMed]

Cho, E.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
[CrossRef] [PubMed]

Ciarallo, A.

R. Rakheja, A. Ciarallo, Y. Z. Alabed, and M. Hickeson, “Intravenous administration of diazepam significantly reduces brown fat activity on 18F-FDG PET/CT,” Am. J. Nucl. Med. Mol. Imaging1(1), 29–35 (2011).
[PubMed]

Congestri, F.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, “Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse,” J. Opt. A, Pure Appl. Opt.8(7), 528 (2006).
[CrossRef]

Constable, R. T.

R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp.16(3), 183–189 (2002).
[CrossRef] [PubMed]

Cope, M.

D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 649–659 (1997).
[CrossRef]

Corballis, P. M.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
[CrossRef] [PubMed]

Costantini, M.

M. Costantini, A. Di Vacri, A. M. Chiarelli, F. Ferri, G. Luca Romani, and A. Merla, “Studying social cognition using near-infrared spectroscopy: the case of social Simon effect,” J. Biomed. Opt.18(2), 025005 (2013).
[CrossRef] [PubMed]

Cowen, P. J.

C. J. Harmer, G. M. Goodwin, and P. J. Cowen, “Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action,” Br. J. Psychiatry195(2), 102–108 (2009).
[CrossRef] [PubMed]

Creighton, C. J.

E. Malatynska, A. Pinhasov, C. J. Creighton, J. J. Crooke, A. B. Reitz, D. E. Brenneman, and M. S. Lubomirski, “Assessing activity onset time and efficacy for clinically effective antidepressant and antimanic drugs in animal models based on dominant-submissive relationships,” Neurosci. Biobehav. Rev.31(6), 904–919 (2007).
[CrossRef] [PubMed]

Crespi, F.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, “Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse,” J. Opt. A, Pure Appl. Opt.8(7), 528 (2006).
[CrossRef]

Crooke, J.

A. Pinhasov, J. Crooke, D. Rosenthal, D. Brenneman, and E. Malatynska, “Reduction of Submissive Behavior Model for antidepressant drug activity testing: study using a video-tracking system,” Behav. Pharmacol.16(8), 657–664 (2005).
[CrossRef] [PubMed]

Crooke, J. J.

E. Malatynska, A. Pinhasov, C. J. Creighton, J. J. Crooke, A. B. Reitz, D. E. Brenneman, and M. S. Lubomirski, “Assessing activity onset time and efficacy for clinically effective antidepressant and antimanic drugs in animal models based on dominant-submissive relationships,” Neurosci. Biobehav. Rev.31(6), 904–919 (2007).
[CrossRef] [PubMed]

E. Malatynska, A. Pinhasov, J. J. Crooke, V. L. Smith-Swintosky, and D. E. Brenneman, “Reduction of dominant or submissive behaviors as models for antimanic or antidepressant drug testing: technical considerations,” J. Neurosci. Methods165(2), 175–182 (2007).
[CrossRef] [PubMed]

Dale, A. M.

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron39(2), 353–359 (2003).
[CrossRef] [PubMed]

Delaveau, P.

P. Delaveau, M. Jabourian, C. Lemogne, S. Guionnet, L. Bergouignan, and P. Fossati, “Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies,” J. Affect. Disord.130(1-2), 66–74 (2011).
[CrossRef] [PubMed]

Delpy, D. T.

D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 649–659 (1997).
[CrossRef]

DeMartinis, N.

K. Rickels, E. Schweizer, N. DeMartinis, L. Mandos, and C. Mercer, “Gepirone and diazepam in generalized anxiety disorder: a placebo-controlled trial,” J. Clin. Psychopharmacol.17(4), 272–277 (1997).
[CrossRef] [PubMed]

Demler, O.

R. C. Kessler, P. Berglund, O. Demler, R. Jin, K. R. Merikangas, and E. E. Walters, “Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication,” Arch. Gen. Psychiatry62(6), 593–602 (2005).
[CrossRef] [PubMed]

Desjardins, A. E.

Devor, A.

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron39(2), 353–359 (2003).
[CrossRef] [PubMed]

Di Vacri, A.

M. Costantini, A. Di Vacri, A. M. Chiarelli, F. Ferri, G. Luca Romani, and A. Merla, “Studying social cognition using near-infrared spectroscopy: the case of social Simon effect,” J. Biomed. Opt.18(2), 025005 (2013).
[CrossRef] [PubMed]

Divljakovic, J.

J. Divljaković, M. Milić, T. Timić, and M. M. Savić, “Tolerance liability of diazepam is dependent on the dose used for protracted treatment,” Pharmacol. Rep.64(5), 1116–1125 (2012).
[CrossRef] [PubMed]

Do Rschel, K.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
[CrossRef] [PubMed]

Donini, M.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, “Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse,” J. Opt. A, Pure Appl. Opt.8(7), 528 (2006).
[CrossRef]

Du, C. W.

Dunn, A. K.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt.13(4), 044007 (2008).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron39(2), 353–359 (2003).
[CrossRef] [PubMed]

Dziennis, S.

Eichling, J. O.

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974).
[CrossRef] [PubMed]

Fabiani, M.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
[CrossRef] [PubMed]

Fantini, S.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol.46(1), 41–62 (2001).
[CrossRef] [PubMed]

Feder, Y.

Y. Feder, E. Nesher, A. Ogran, A. Kreinin, E. Malatynska, G. Yadid, and A. Pinhasov, “Selective breeding for dominant and submissive behavior in Sabra mice,” J. Affect. Disord.126(1-2), 214–222 (2010).
[CrossRef] [PubMed]

Feng, Z.

S. B. Chen, Z. Feng, P. C. Li, S. L. Jacques, S. Q. Zeng, and Q. M. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt.11(3), 034002 (2006).
[CrossRef] [PubMed]

Ferri, F.

M. Costantini, A. Di Vacri, A. M. Chiarelli, F. Ferri, G. Luca Romani, and A. Merla, “Studying social cognition using near-infrared spectroscopy: the case of social Simon effect,” J. Biomed. Opt.18(2), 025005 (2013).
[CrossRef] [PubMed]

Fleck, M. P.

M. T. Berlim, M. P. Fleck, and G. Turecki, “Current trends in the assessment and somatic treatment of resistant/refractory major depression: an overview,” Ann. Med.40(2), 149–159 (2008).
[CrossRef] [PubMed]

Formenti, F.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, “Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse,” J. Opt. A, Pure Appl. Opt.8(7), 528 (2006).
[CrossRef]

Fossati, P.

P. Delaveau, M. Jabourian, C. Lemogne, S. Guionnet, L. Bergouignan, and P. Fossati, “Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies,” J. Affect. Disord.130(1-2), 66–74 (2011).
[CrossRef] [PubMed]

Frahm, J.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000).
[CrossRef] [PubMed]

Franceschini, M. A.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol.46(1), 41–62 (2001).
[CrossRef] [PubMed]

Friebel, M.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
[CrossRef] [PubMed]

Frostig, R. D.

C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci.27(17), 4572–4586 (2007).
[CrossRef] [PubMed]

Fukuda, M.

K. Matsuo, T. Kato, M. Fukuda, and N. Kato, “Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy,” J. Neuropsychiatry Clin. Neurosci.12(4), 465–471 (2000).
[CrossRef] [PubMed]

Geneslaw, A.

M. R. Zhao, M. A. Suh, H. T. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia48(11), 2059–2067 (2007).
[CrossRef] [PubMed]

George, J. S.

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” Neuroimage26(2), 619–627 (2005).
[CrossRef] [PubMed]

Gillette, R.

Goodwin, G. M.

C. J. Harmer, G. M. Goodwin, and P. J. Cowen, “Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action,” Br. J. Psychiatry195(2), 102–108 (2009).
[CrossRef] [PubMed]

Gratton, G.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
[CrossRef] [PubMed]

Gross, M.

E. Nesher, M. Gross, S. Lisson, T. Tikhonov, G. Yadid, and A. Pinhasov, “Differential responses to distinct psychotropic agents of selectively bred dominant and submissive animals,” Behav. Brain Res.236(1), 225–235 (2013).
[PubMed]

A. Moussaieff, M. Gross, E. Nesher, T. Tikhonov, G. Yadid, and A. Pinhasov, “Incensole acetate reduces depressive-like behavior and modulates hippocampal BDNF and CRF expression of submissive animals,” J. Psychopharmacol. (Oxford)26(12), 1584–1593 (2012).
[CrossRef] [PubMed]

Grubb, R. L.

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974).
[CrossRef] [PubMed]

Guionnet, S.

P. Delaveau, M. Jabourian, C. Lemogne, S. Guionnet, L. Bergouignan, and P. Fossati, “Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies,” J. Affect. Disord.130(1-2), 66–74 (2011).
[CrossRef] [PubMed]

Guiou, M.

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” Neuroimage19(3), 884–894 (2003).
[CrossRef] [PubMed]

Hahn, A.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
[CrossRef] [PubMed]

Hale, G. M.

Harmer, C. J.

C. J. Harmer, G. M. Goodwin, and P. J. Cowen, “Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action,” Br. J. Psychiatry195(2), 102–108 (2009).
[CrossRef] [PubMed]

Heidbreder, C.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, “Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse,” J. Opt. A, Pure Appl. Opt.8(7), 528 (2006).
[CrossRef]

Hendriks, B. H. W.

Hickeson, M.

R. Rakheja, A. Ciarallo, Y. Z. Alabed, and M. Hickeson, “Intravenous administration of diazepam significantly reduces brown fat activity on 18F-FDG PET/CT,” Am. J. Nucl. Med. Mol. Imaging1(1), 29–35 (2011).
[PubMed]

Hielscher, A. H.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys.22(8), 1209–1217 (1995).
[CrossRef] [PubMed]

Hillman, E. M. C.

E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007).
[CrossRef] [PubMed]

Hintz, S. R.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000).
[CrossRef] [PubMed]

Hirth, C.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000).
[CrossRef] [PubMed]

Hood, D. C.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
[CrossRef] [PubMed]

Hsu, C. K.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt.17(7), 077005 (2012).
[CrossRef] [PubMed]

Hueber, D. M.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol.46(1), 41–62 (2001).
[CrossRef] [PubMed]

Hyman, B. T.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt.13(4), 044007 (2008).
[CrossRef] [PubMed]

Iidaka, T.

K. Kohmura, K. Iwamoto, B. Aleksic, K. Sasada, N. Kawano, H. Katayama, Y. Noda, A. Noda, T. Iidaka, and N. Ozaki, “Effects of sedative antidepressants on prefrontal cortex activity during verbal fluency task in healthy subjects: a near-infrared spectroscopy study,” Psychopharmacology (Berl.)226(1), 75–81 (2013).
[CrossRef] [PubMed]

Iwamoto, K.

K. Kohmura, K. Iwamoto, B. Aleksic, K. Sasada, N. Kawano, H. Katayama, Y. Noda, A. Noda, T. Iidaka, and N. Ozaki, “Effects of sedative antidepressants on prefrontal cortex activity during verbal fluency task in healthy subjects: a near-infrared spectroscopy study,” Psychopharmacology (Berl.)226(1), 75–81 (2013).
[CrossRef] [PubMed]

Izzetoglu, K.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
[CrossRef] [PubMed]

Izzetoglu, M.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
[CrossRef] [PubMed]

Jaafar, M. S.

F. H. Mustafa and M. S. Jaafar, “Shaving area of unwanted hair before laser operation is useful in cosmetic procedure: A simulation study,” J. Saudi Society Dermat. Surg. (Article in Press).

Jabourian, M.

P. Delaveau, M. Jabourian, C. Lemogne, S. Guionnet, L. Bergouignan, and P. Fossati, “Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies,” J. Affect. Disord.130(1-2), 66–74 (2011).
[CrossRef] [PubMed]

Jacques, S. L.

S. B. Chen, Z. Feng, P. C. Li, S. L. Jacques, S. Q. Zeng, and Q. M. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt.11(3), 034002 (2006).
[CrossRef] [PubMed]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys.22(8), 1209–1217 (1995).
[CrossRef] [PubMed]

Jin, R.

R. C. Kessler, P. Berglund, O. Demler, R. Jin, K. R. Merikangas, and E. E. Walters, “Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication,” Arch. Gen. Psychiatry62(6), 593–602 (2005).
[CrossRef] [PubMed]

Johnston, D.

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab.22(6), 670–679 (2002).
[CrossRef] [PubMed]

Jones, M.

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab.22(6), 670–679 (2002).
[CrossRef] [PubMed]

Jones, P. B.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt.13(4), 044007 (2008).
[CrossRef] [PubMed]

Katayama, H.

K. Kohmura, K. Iwamoto, B. Aleksic, K. Sasada, N. Kawano, H. Katayama, Y. Noda, A. Noda, T. Iidaka, and N. Ozaki, “Effects of sedative antidepressants on prefrontal cortex activity during verbal fluency task in healthy subjects: a near-infrared spectroscopy study,” Psychopharmacology (Berl.)226(1), 75–81 (2013).
[CrossRef] [PubMed]

Kato, N.

K. Matsuo, T. Kato, M. Fukuda, and N. Kato, “Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy,” J. Neuropsychiatry Clin. Neurosci.12(4), 465–471 (2000).
[CrossRef] [PubMed]

Kato, T.

K. Matsuo, T. Kato, M. Fukuda, and N. Kato, “Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy,” J. Neuropsychiatry Clin. Neurosci.12(4), 465–471 (2000).
[CrossRef] [PubMed]

Kawaguchi, F.

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt.5(3), 287–290 (2000).
[CrossRef] [PubMed]

Kawano, N.

K. Kohmura, K. Iwamoto, B. Aleksic, K. Sasada, N. Kawano, H. Katayama, Y. Noda, A. Noda, T. Iidaka, and N. Ozaki, “Effects of sedative antidepressants on prefrontal cortex activity during verbal fluency task in healthy subjects: a near-infrared spectroscopy study,” Psychopharmacology (Berl.)226(1), 75–81 (2013).
[CrossRef] [PubMed]

Kawauchi, S.

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt.18(1), 015003 (2013).
[CrossRef] [PubMed]

Kennan, R. P.

R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp.16(3), 183–189 (2002).
[CrossRef] [PubMed]

Kermit, E. L.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000).
[CrossRef] [PubMed]

Kessler, R. C.

R. C. Kessler, A. M. Ruscio, K. Shear, and H. U. Wittchen, “Epidemiology of anxiety disorders,” Curr. Top. Behav. Neurosci.2, 21–35 (2009).
[CrossRef] [PubMed]

R. C. Kessler, P. Berglund, O. Demler, R. Jin, K. R. Merikangas, and E. E. Walters, “Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication,” Arch. Gen. Psychiatry62(6), 593–602 (2005).
[CrossRef] [PubMed]

Kim, D.

R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp.16(3), 183–189 (2002).
[CrossRef] [PubMed]

Kleinschmidt, A.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000).
[CrossRef] [PubMed]

Kohmura, K.

K. Kohmura, K. Iwamoto, B. Aleksic, K. Sasada, N. Kawano, H. Katayama, Y. Noda, A. Noda, T. Iidaka, and N. Ozaki, “Effects of sedative antidepressants on prefrontal cortex activity during verbal fluency task in healthy subjects: a near-infrared spectroscopy study,” Psychopharmacology (Berl.)226(1), 75–81 (2013).
[CrossRef] [PubMed]

Koizumi, H.

R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp.16(3), 183–189 (2002).
[CrossRef] [PubMed]

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt.5(3), 287–290 (2000).
[CrossRef] [PubMed]

Kooi, E. M.

E. A. Verhagen, E. M. Kooi, P. P. van den Berg, and A. F. Bos, “Maternal antihypertensive drugs may influence cerebral oxygen extraction in preterm infants during the first days after birth,” J. Matern. Fetal Neonatal Med.26(9), 871–876 (2013).
[CrossRef] [PubMed]

Kreinin, A.

Y. Feder, E. Nesher, A. Ogran, A. Kreinin, E. Malatynska, G. Yadid, and A. Pinhasov, “Selective breeding for dominant and submissive behavior in Sabra mice,” J. Affect. Disord.126(1-2), 214–222 (2010).
[CrossRef] [PubMed]

Krishnan, V.

V. Krishnan and E. J. Nestler, “The molecular neurobiology of depression,” Nature455(7215), 894–902 (2008).
[CrossRef] [PubMed]

Lazebnik, M.

Leigh, J.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem.195(2), 330–351 (1991).
[CrossRef] [PubMed]

Lemogne, C.

P. Delaveau, M. Jabourian, C. Lemogne, S. Guionnet, L. Bergouignan, and P. Fossati, “Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies,” J. Affect. Disord.130(1-2), 66–74 (2011).
[CrossRef] [PubMed]

Li, P. C.

S. B. Chen, Z. Feng, P. C. Li, S. L. Jacques, S. Q. Zeng, and Q. M. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt.11(3), 034002 (2006).
[CrossRef] [PubMed]

Liaw, Y. K.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt.17(7), 077005 (2012).
[CrossRef] [PubMed]

Lisson, S.

E. Nesher, M. Gross, S. Lisson, T. Tikhonov, G. Yadid, and A. Pinhasov, “Differential responses to distinct psychotropic agents of selectively bred dominant and submissive animals,” Behav. Brain Res.236(1), 225–235 (2013).
[PubMed]

Liu, H.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys.22(8), 1209–1217 (1995).
[CrossRef] [PubMed]

Lubomirski, M. S.

E. Malatynska, A. Pinhasov, C. J. Creighton, J. J. Crooke, A. B. Reitz, D. E. Brenneman, and M. S. Lubomirski, “Assessing activity onset time and efficacy for clinically effective antidepressant and antimanic drugs in animal models based on dominant-submissive relationships,” Neurosci. Biobehav. Rev.31(6), 904–919 (2007).
[CrossRef] [PubMed]

Luca Romani, G.

M. Costantini, A. Di Vacri, A. M. Chiarelli, F. Ferri, G. Luca Romani, and A. Merla, “Studying social cognition using near-infrared spectroscopy: the case of social Simon effect,” J. Biomed. Opt.18(2), 025005 (2013).
[CrossRef] [PubMed]

Lujan, B. J.

R. G. Wise, B. J. Lujan, P. Schweinhardt, G. D. Peskett, R. Rogers, and I. Tracey, “The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI,” Magn. Reson. Imaging25(6), 801–810 (2007).
[CrossRef] [PubMed]

Luo, Q. M.

S. B. Chen, Z. Feng, P. C. Li, S. L. Jacques, S. Q. Zeng, and Q. M. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt.11(3), 034002 (2006).
[CrossRef] [PubMed]

Luo, Z. C.

Ma, H. T.

M. R. Zhao, M. A. Suh, H. T. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia48(11), 2059–2067 (2007).
[CrossRef] [PubMed]

Ma, H. Y.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol.46(1), 41–62 (2001).
[CrossRef] [PubMed]

Maki, A.

R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp.16(3), 183–189 (2002).
[CrossRef] [PubMed]

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt.5(3), 287–290 (2000).
[CrossRef] [PubMed]

Malatynska, E.

Y. Feder, E. Nesher, A. Ogran, A. Kreinin, E. Malatynska, G. Yadid, and A. Pinhasov, “Selective breeding for dominant and submissive behavior in Sabra mice,” J. Affect. Disord.126(1-2), 214–222 (2010).
[CrossRef] [PubMed]

E. Malatynska, A. Pinhasov, J. J. Crooke, V. L. Smith-Swintosky, and D. E. Brenneman, “Reduction of dominant or submissive behaviors as models for antimanic or antidepressant drug testing: technical considerations,” J. Neurosci. Methods165(2), 175–182 (2007).
[CrossRef] [PubMed]

E. Malatynska, A. Pinhasov, C. J. Creighton, J. J. Crooke, A. B. Reitz, D. E. Brenneman, and M. S. Lubomirski, “Assessing activity onset time and efficacy for clinically effective antidepressant and antimanic drugs in animal models based on dominant-submissive relationships,” Neurosci. Biobehav. Rev.31(6), 904–919 (2007).
[CrossRef] [PubMed]

A. Pinhasov, J. Crooke, D. Rosenthal, D. Brenneman, and E. Malatynska, “Reduction of Submissive Behavior Model for antidepressant drug activity testing: study using a video-tracking system,” Behav. Pharmacol.16(8), 657–664 (2005).
[CrossRef] [PubMed]

Mandos, L.

K. Rickels, E. Schweizer, N. DeMartinis, L. Mandos, and C. Mercer, “Gepirone and diazepam in generalized anxiety disorder: a placebo-controlled trial,” J. Clin. Psychopharmacol.17(4), 272–277 (1997).
[CrossRef] [PubMed]

Maris, M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem.195(2), 330–351 (1991).
[CrossRef] [PubMed]

Marks, D. L.

Marschner, S. R.

J. T. Moon and S. R. Marschner, “Simulating multiple scattering in hair using a photon mapping approach,” ACM Trans. Graph.25(3), 1067–1074 (2006).
[CrossRef]

Martin, C.

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab.22(6), 670–679 (2002).
[CrossRef] [PubMed]

Martindale, J.

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab.22(6), 670–679 (2002).
[CrossRef] [PubMed]

Matsuo, K.

K. Matsuo, T. Kato, M. Fukuda, and N. Kato, “Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy,” J. Neuropsychiatry Clin. Neurosci.12(4), 465–471 (2000).
[CrossRef] [PubMed]

Mayanagi, Y.

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt.5(3), 287–290 (2000).
[CrossRef] [PubMed]

Mayhew, J.

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab.22(6), 670–679 (2002).
[CrossRef] [PubMed]

McClelland, G. R.

G. R. McClelland and P. Raptopoulos, “EEG and blood level of the potential antidepressant paroxetine after a single oral dose to normal volunteers,” Psychopharmacology (Berl.)83(4), 327–329 (1984).
[CrossRef] [PubMed]

Mercer, C.

K. Rickels, E. Schweizer, N. DeMartinis, L. Mandos, and C. Mercer, “Gepirone and diazepam in generalized anxiety disorder: a placebo-controlled trial,” J. Clin. Psychopharmacol.17(4), 272–277 (1997).
[CrossRef] [PubMed]

Merikangas, K. R.

R. C. Kessler, P. Berglund, O. Demler, R. Jin, K. R. Merikangas, and E. E. Walters, “Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication,” Arch. Gen. Psychiatry62(6), 593–602 (2005).
[CrossRef] [PubMed]

Merla, A.

M. Costantini, A. Di Vacri, A. M. Chiarelli, F. Ferri, G. Luca Romani, and A. Merla, “Studying social cognition using near-infrared spectroscopy: the case of social Simon effect,” J. Biomed. Opt.18(2), 025005 (2013).
[CrossRef] [PubMed]

Milic, M.

J. Divljaković, M. Milić, T. Timić, and M. M. Savić, “Tolerance liability of diazepam is dependent on the dose used for protracted treatment,” Pharmacol. Rep.64(5), 1116–1125 (2012).
[CrossRef] [PubMed]

Moon, J. T.

J. T. Moon and S. R. Marschner, “Simulating multiple scattering in hair using a photon mapping approach,” ACM Trans. Graph.25(3), 1067–1074 (2006).
[CrossRef]

Moskowitz, M. A.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt.13(4), 044007 (2008).
[CrossRef] [PubMed]

Moussaieff, A.

A. Moussaieff, M. Gross, E. Nesher, T. Tikhonov, G. Yadid, and A. Pinhasov, “Incensole acetate reduces depressive-like behavior and modulates hippocampal BDNF and CRF expression of submissive animals,” J. Psychopharmacol. (Oxford)26(12), 1584–1593 (2012).
[CrossRef] [PubMed]

Mu Ller, G.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
[CrossRef] [PubMed]

Mustafa, F. H.

F. H. Mustafa and M. S. Jaafar, “Shaving area of unwanted hair before laser operation is useful in cosmetic procedure: A simulation study,” J. Saudi Society Dermat. Surg. (Article in Press).

Nachabé, R.

Nawashiro, H.

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt.18(1), 015003 (2013).
[CrossRef] [PubMed]

Nemoto, M.

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” Neuroimage19(3), 884–894 (2003).
[CrossRef] [PubMed]

Nesher, E.

E. Nesher, M. Gross, S. Lisson, T. Tikhonov, G. Yadid, and A. Pinhasov, “Differential responses to distinct psychotropic agents of selectively bred dominant and submissive animals,” Behav. Brain Res.236(1), 225–235 (2013).
[PubMed]

A. Moussaieff, M. Gross, E. Nesher, T. Tikhonov, G. Yadid, and A. Pinhasov, “Incensole acetate reduces depressive-like behavior and modulates hippocampal BDNF and CRF expression of submissive animals,” J. Psychopharmacol. (Oxford)26(12), 1584–1593 (2012).
[CrossRef] [PubMed]

E. Nesher, V. Peskov, A. Rylova, O. Raz, and A. Pinhasov, “Comparative analysis of the behavioral and biomolecular parameters of four mouse strains,” J. Mol. Neurosci.46(2), 276–284 (2012).
[CrossRef] [PubMed]

Y. Feder, E. Nesher, A. Ogran, A. Kreinin, E. Malatynska, G. Yadid, and A. Pinhasov, “Selective breeding for dominant and submissive behavior in Sabra mice,” J. Affect. Disord.126(1-2), 214–222 (2010).
[CrossRef] [PubMed]

Nestler, E. J.

V. Krishnan and E. J. Nestler, “The molecular neurobiology of depression,” Nature455(7215), 894–902 (2008).
[CrossRef] [PubMed]

Nioka, S.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem.195(2), 330–351 (1991).
[CrossRef] [PubMed]

Nishidate, I.

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt.18(1), 015003 (2013).
[CrossRef] [PubMed]

Noda, A.

K. Kohmura, K. Iwamoto, B. Aleksic, K. Sasada, N. Kawano, H. Katayama, Y. Noda, A. Noda, T. Iidaka, and N. Ozaki, “Effects of sedative antidepressants on prefrontal cortex activity during verbal fluency task in healthy subjects: a near-infrared spectroscopy study,” Psychopharmacology (Berl.)226(1), 75–81 (2013).
[CrossRef] [PubMed]

Noda, Y.

K. Kohmura, K. Iwamoto, B. Aleksic, K. Sasada, N. Kawano, H. Katayama, Y. Noda, A. Noda, T. Iidaka, and N. Ozaki, “Effects of sedative antidepressants on prefrontal cortex activity during verbal fluency task in healthy subjects: a near-infrared spectroscopy study,” Psychopharmacology (Berl.)226(1), 75–81 (2013).
[CrossRef] [PubMed]

Ntziachristos, V.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol.46(1), 41–62 (2001).
[CrossRef] [PubMed]

Obrig, H.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000).
[CrossRef] [PubMed]

Ogran, A.

Y. Feder, E. Nesher, A. Ogran, A. Kreinin, E. Malatynska, G. Yadid, and A. Pinhasov, “Selective breeding for dominant and submissive behavior in Sabra mice,” J. Affect. Disord.126(1-2), 214–222 (2010).
[CrossRef] [PubMed]

Onaral, B.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
[CrossRef] [PubMed]

Ozaki, N.

K. Kohmura, K. Iwamoto, B. Aleksic, K. Sasada, N. Kawano, H. Katayama, Y. Noda, A. Noda, T. Iidaka, and N. Ozaki, “Effects of sedative antidepressants on prefrontal cortex activity during verbal fluency task in healthy subjects: a near-infrared spectroscopy study,” Psychopharmacology (Berl.)226(1), 75–81 (2013).
[CrossRef] [PubMed]

Pan, Y. T.

Peppers, M. P.

M. P. Peppers, “Benzodiazepines for alcohol withdrawal in the elderly and in patients with liver disease,” Pharmacotherapy16(1), 49–57 (1996).
[PubMed]

Perry, C.

M. R. Zhao, M. A. Suh, H. T. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia48(11), 2059–2067 (2007).
[CrossRef] [PubMed]

Peskett, G. D.

R. G. Wise, B. J. Lujan, P. Schweinhardt, G. D. Peskett, R. Rogers, and I. Tracey, “The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI,” Magn. Reson. Imaging25(6), 801–810 (2007).
[CrossRef] [PubMed]

Peskov, V.

E. Nesher, V. Peskov, A. Rylova, O. Raz, and A. Pinhasov, “Comparative analysis of the behavioral and biomolecular parameters of four mouse strains,” J. Mol. Neurosci.46(2), 276–284 (2012).
[CrossRef] [PubMed]

Pinhasov, A.

E. Nesher, M. Gross, S. Lisson, T. Tikhonov, G. Yadid, and A. Pinhasov, “Differential responses to distinct psychotropic agents of selectively bred dominant and submissive animals,” Behav. Brain Res.236(1), 225–235 (2013).
[PubMed]

A. Moussaieff, M. Gross, E. Nesher, T. Tikhonov, G. Yadid, and A. Pinhasov, “Incensole acetate reduces depressive-like behavior and modulates hippocampal BDNF and CRF expression of submissive animals,” J. Psychopharmacol. (Oxford)26(12), 1584–1593 (2012).
[CrossRef] [PubMed]

E. Nesher, V. Peskov, A. Rylova, O. Raz, and A. Pinhasov, “Comparative analysis of the behavioral and biomolecular parameters of four mouse strains,” J. Mol. Neurosci.46(2), 276–284 (2012).
[CrossRef] [PubMed]

Y. Feder, E. Nesher, A. Ogran, A. Kreinin, E. Malatynska, G. Yadid, and A. Pinhasov, “Selective breeding for dominant and submissive behavior in Sabra mice,” J. Affect. Disord.126(1-2), 214–222 (2010).
[CrossRef] [PubMed]

E. Malatynska, A. Pinhasov, J. J. Crooke, V. L. Smith-Swintosky, and D. E. Brenneman, “Reduction of dominant or submissive behaviors as models for antimanic or antidepressant drug testing: technical considerations,” J. Neurosci. Methods165(2), 175–182 (2007).
[CrossRef] [PubMed]

E. Malatynska, A. Pinhasov, C. J. Creighton, J. J. Crooke, A. B. Reitz, D. E. Brenneman, and M. S. Lubomirski, “Assessing activity onset time and efficacy for clinically effective antidepressant and antimanic drugs in animal models based on dominant-submissive relationships,” Neurosci. Biobehav. Rev.31(6), 904–919 (2007).
[CrossRef] [PubMed]

A. Pinhasov, J. Crooke, D. Rosenthal, D. Brenneman, and E. Malatynska, “Reduction of Submissive Behavior Model for antidepressant drug activity testing: study using a video-tracking system,” Behav. Pharmacol.16(8), 657–664 (2005).
[CrossRef] [PubMed]

Potgieter, K.

Pouratian, N.

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” Neuroimage19(3), 884–894 (2003).
[CrossRef] [PubMed]

Pourrezaei, K.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
[CrossRef] [PubMed]

Qin, J.

Querry, M. R.

Raichle, M. E.

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974).
[CrossRef] [PubMed]

Rakheja, R.

R. Rakheja, A. Ciarallo, Y. Z. Alabed, and M. Hickeson, “Intravenous administration of diazepam significantly reduces brown fat activity on 18F-FDG PET/CT,” Am. J. Nucl. Med. Mol. Imaging1(1), 29–35 (2011).
[PubMed]

Raptopoulos, P.

G. R. McClelland and P. Raptopoulos, “EEG and blood level of the potential antidepressant paroxetine after a single oral dose to normal volunteers,” Psychopharmacology (Berl.)83(4), 327–329 (1984).
[CrossRef] [PubMed]

Raz, O.

E. Nesher, V. Peskov, A. Rylova, O. Raz, and A. Pinhasov, “Comparative analysis of the behavioral and biomolecular parameters of four mouse strains,” J. Mol. Neurosci.46(2), 276–284 (2012).
[CrossRef] [PubMed]

Rector, D. M.

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” Neuroimage26(2), 619–627 (2005).
[CrossRef] [PubMed]

Redgrave, P.

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab.22(6), 670–679 (2002).
[CrossRef] [PubMed]

Reif, R.

Reitz, A. B.

E. Malatynska, A. Pinhasov, C. J. Creighton, J. J. Crooke, A. B. Reitz, D. E. Brenneman, and M. S. Lubomirski, “Assessing activity onset time and efficacy for clinically effective antidepressant and antimanic drugs in animal models based on dominant-submissive relationships,” Neurosci. Biobehav. Rev.31(6), 904–919 (2007).
[CrossRef] [PubMed]

Rickels, K.

K. Rickels, E. Schweizer, N. DeMartinis, L. Mandos, and C. Mercer, “Gepirone and diazepam in generalized anxiety disorder: a placebo-controlled trial,” J. Clin. Psychopharmacol.17(4), 272–277 (1997).
[CrossRef] [PubMed]

Ricker, J. H.

P. M. Arenth, J. H. Ricker, and M. T. Schultheis, “Applications of functional near-infrared spectroscopy (fNIRS) to Neurorehabilitation of cognitive disabilities,” Clin. Neuropsychol.21(1), 38–57 (2007).
[CrossRef] [PubMed]

Rogers, R.

R. G. Wise, B. J. Lujan, P. Schweinhardt, G. D. Peskett, R. Rogers, and I. Tracey, “The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI,” Magn. Reson. Imaging25(6), 801–810 (2007).
[CrossRef] [PubMed]

Roggan, A.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
[CrossRef] [PubMed]

Rosenthal, D.

A. Pinhasov, J. Crooke, D. Rosenthal, D. Brenneman, and E. Malatynska, “Reduction of Submissive Behavior Model for antidepressant drug activity testing: study using a video-tracking system,” Behav. Pharmacol.16(8), 657–664 (2005).
[CrossRef] [PubMed]

Rovati, L.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, “Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse,” J. Opt. A, Pure Appl. Opt.8(7), 528 (2006).
[CrossRef]

Ruscio, A. M.

R. C. Kessler, A. M. Ruscio, K. Shear, and H. U. Wittchen, “Epidemiology of anxiety disorders,” Curr. Top. Behav. Neurosci.2, 21–35 (2009).
[CrossRef] [PubMed]

Rylova, A.

E. Nesher, V. Peskov, A. Rylova, O. Raz, and A. Pinhasov, “Comparative analysis of the behavioral and biomolecular parameters of four mouse strains,” J. Mol. Neurosci.46(2), 276–284 (2012).
[CrossRef] [PubMed]

Sasada, K.

K. Kohmura, K. Iwamoto, B. Aleksic, K. Sasada, N. Kawano, H. Katayama, Y. Noda, A. Noda, T. Iidaka, and N. Ozaki, “Effects of sedative antidepressants on prefrontal cortex activity during verbal fluency task in healthy subjects: a near-infrared spectroscopy study,” Psychopharmacology (Berl.)226(1), 75–81 (2013).
[CrossRef] [PubMed]

Sato, S.

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt.18(1), 015003 (2013).
[CrossRef] [PubMed]

Savic, M. M.

J. Divljaković, M. Milić, T. Timić, and M. M. Savić, “Tolerance liability of diazepam is dependent on the dose used for protracted treatment,” Pharmacol. Rep.64(5), 1116–1125 (2012).
[CrossRef] [PubMed]

Schultheis, M. T.

P. M. Arenth, J. H. Ricker, and M. T. Schultheis, “Applications of functional near-infrared spectroscopy (fNIRS) to Neurorehabilitation of cognitive disabilities,” Clin. Neuropsychol.21(1), 38–57 (2007).
[CrossRef] [PubMed]

Schwartz, T. H.

M. R. Zhao, M. A. Suh, H. T. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia48(11), 2059–2067 (2007).
[CrossRef] [PubMed]

Schweinhardt, P.

R. G. Wise, B. J. Lujan, P. Schweinhardt, G. D. Peskett, R. Rogers, and I. Tracey, “The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI,” Magn. Reson. Imaging25(6), 801–810 (2007).
[CrossRef] [PubMed]

Schweizer, E.

K. Rickels, E. Schweizer, N. DeMartinis, L. Mandos, and C. Mercer, “Gepirone and diazepam in generalized anxiety disorder: a placebo-controlled trial,” J. Clin. Psychopharmacol.17(4), 272–277 (1997).
[CrossRef] [PubMed]

Sevick, E. M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem.195(2), 330–351 (1991).
[CrossRef] [PubMed]

Shear, K.

R. C. Kessler, A. M. Ruscio, K. Shear, and H. U. Wittchen, “Epidemiology of anxiety disorders,” Curr. Top. Behav. Neurosci.2, 21–35 (2009).
[CrossRef] [PubMed]

Sheth, S.

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” Neuroimage19(3), 884–894 (2003).
[CrossRef] [PubMed]

Shi, L.

Shin, H. K.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt.13(4), 044007 (2008).
[CrossRef] [PubMed]

Smith-Swintosky, V. L.

E. Malatynska, A. Pinhasov, J. J. Crooke, V. L. Smith-Swintosky, and D. E. Brenneman, “Reduction of dominant or submissive behaviors as models for antimanic or antidepressant drug testing: technical considerations,” J. Neurosci. Methods165(2), 175–182 (2007).
[CrossRef] [PubMed]

Sonntag, V.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, “Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse,” J. Opt. A, Pure Appl. Opt.8(7), 528 (2006).
[CrossRef]

Sterenborg, H. J. C. M.

Stevenson, D. K.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000).
[CrossRef] [PubMed]

Strangman, G.

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry52(7), 679–693 (2002).
[CrossRef] [PubMed]

Suh, M. A.

M. R. Zhao, M. A. Suh, H. T. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia48(11), 2059–2067 (2007).
[CrossRef] [PubMed]

Sutton, J. P.

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry52(7), 679–693 (2002).
[CrossRef] [PubMed]

Ter-Pogossian, M. M.

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974).
[CrossRef] [PubMed]

Tikhonov, T.

E. Nesher, M. Gross, S. Lisson, T. Tikhonov, G. Yadid, and A. Pinhasov, “Differential responses to distinct psychotropic agents of selectively bred dominant and submissive animals,” Behav. Brain Res.236(1), 225–235 (2013).
[PubMed]

A. Moussaieff, M. Gross, E. Nesher, T. Tikhonov, G. Yadid, and A. Pinhasov, “Incensole acetate reduces depressive-like behavior and modulates hippocampal BDNF and CRF expression of submissive animals,” J. Psychopharmacol. (Oxford)26(12), 1584–1593 (2012).
[CrossRef] [PubMed]

Timic, T.

J. Divljaković, M. Milić, T. Timić, and M. M. Savić, “Tolerance liability of diazepam is dependent on the dose used for protracted treatment,” Pharmacol. Rep.64(5), 1116–1125 (2012).
[CrossRef] [PubMed]

Tittel, F. K.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys.22(8), 1209–1217 (1995).
[CrossRef] [PubMed]

Toga, A. W.

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” Neuroimage19(3), 884–894 (2003).
[CrossRef] [PubMed]

Tracey, I.

R. G. Wise, B. J. Lujan, P. Schweinhardt, G. D. Peskett, R. Rogers, and I. Tracey, “The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI,” Magn. Reson. Imaging25(6), 801–810 (2007).
[CrossRef] [PubMed]

Tseng, S. H.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt.17(7), 077005 (2012).
[CrossRef] [PubMed]

Turecki, G.

M. T. Berlim, M. P. Fleck, and G. Turecki, “Current trends in the assessment and somatic treatment of resistant/refractory major depression: an overview,” Ann. Med.40(2), 149–159 (2008).
[CrossRef] [PubMed]

Tzeng, S. Y.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt.17(7), 077005 (2012).
[CrossRef] [PubMed]

Ulbert, I.

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron39(2), 353–359 (2003).
[CrossRef] [PubMed]

Uozumi, Y.

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt.18(1), 015003 (2013).
[CrossRef] [PubMed]

van den Berg, P. P.

E. A. Verhagen, E. M. Kooi, P. P. van den Berg, and A. F. Bos, “Maternal antihypertensive drugs may influence cerebral oxygen extraction in preterm infants during the first days after birth,” J. Matern. Fetal Neonatal Med.26(9), 871–876 (2013).
[CrossRef] [PubMed]

van der Voort, M.

van Houten, J. C.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000).
[CrossRef] [PubMed]

Verhagen, E. A.

E. A. Verhagen, E. M. Kooi, P. P. van den Berg, and A. F. Bos, “Maternal antihypertensive drugs may influence cerebral oxygen extraction in preterm infants during the first days after birth,” J. Matern. Fetal Neonatal Med.26(9), 871–876 (2013).
[CrossRef] [PubMed]

Villringer, A.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000).
[CrossRef] [PubMed]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20(10), 435–442 (1997).
[CrossRef] [PubMed]

Volegov, P. L.

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” Neuroimage26(2), 619–627 (2005).
[CrossRef] [PubMed]

Walker, M.

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” Neuroimage19(3), 884–894 (2003).
[CrossRef] [PubMed]

Wallace, D.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol.46(1), 41–62 (2001).
[CrossRef] [PubMed]

Walters, E. E.

R. C. Kessler, P. Berglund, O. Demler, R. Jin, K. R. Merikangas, and E. E. Walters, “Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication,” Arch. Gen. Psychiatry62(6), 593–602 (2005).
[CrossRef] [PubMed]

Wang, R. K.

Watanabe, E.

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt.5(3), 287–290 (2000).
[CrossRef] [PubMed]

Wise, R. G.

R. G. Wise, B. J. Lujan, P. Schweinhardt, G. D. Peskett, R. Rogers, and I. Tracey, “The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI,” Magn. Reson. Imaging25(6), 801–810 (2007).
[CrossRef] [PubMed]

Wittchen, H. U.

R. C. Kessler, A. M. Ruscio, K. Shear, and H. U. Wittchen, “Epidemiology of anxiety disorders,” Curr. Top. Behav. Neurosci.2, 21–35 (2009).
[CrossRef] [PubMed]

Xiong, Y.

C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci.27(17), 4572–4586 (2007).
[CrossRef] [PubMed]

Yadid, G.

E. Nesher, M. Gross, S. Lisson, T. Tikhonov, G. Yadid, and A. Pinhasov, “Differential responses to distinct psychotropic agents of selectively bred dominant and submissive animals,” Behav. Brain Res.236(1), 225–235 (2013).
[PubMed]

A. Moussaieff, M. Gross, E. Nesher, T. Tikhonov, G. Yadid, and A. Pinhasov, “Incensole acetate reduces depressive-like behavior and modulates hippocampal BDNF and CRF expression of submissive animals,” J. Psychopharmacol. (Oxford)26(12), 1584–1593 (2012).
[CrossRef] [PubMed]

Y. Feder, E. Nesher, A. Ogran, A. Kreinin, E. Malatynska, G. Yadid, and A. Pinhasov, “Selective breeding for dominant and submissive behavior in Sabra mice,” J. Affect. Disord.126(1-2), 214–222 (2010).
[CrossRef] [PubMed]

Yamashita, Y.

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt.5(3), 287–290 (2000).
[CrossRef] [PubMed]

Yuan, Z. J.

Yu-Yun Lee, J.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt.17(7), 077005 (2012).
[CrossRef] [PubMed]

Zeng, S. Q.

S. B. Chen, Z. Feng, P. C. Li, S. L. Jacques, S. Q. Zeng, and Q. M. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt.11(3), 034002 (2006).
[CrossRef] [PubMed]

Zhang, Q.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol.46(1), 41–62 (2001).
[CrossRef] [PubMed]

Zhao, M. R.

M. R. Zhao, M. A. Suh, H. T. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia48(11), 2059–2067 (2007).
[CrossRef] [PubMed]

Zheng, Y.

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab.22(6), 670–679 (2002).
[CrossRef] [PubMed]

ACM Trans. Graph. (1)

J. T. Moon and S. R. Marschner, “Simulating multiple scattering in hair using a photon mapping approach,” ACM Trans. Graph.25(3), 1067–1074 (2006).
[CrossRef]

Am. J. Nucl. Med. Mol. Imaging (1)

R. Rakheja, A. Ciarallo, Y. Z. Alabed, and M. Hickeson, “Intravenous administration of diazepam significantly reduces brown fat activity on 18F-FDG PET/CT,” Am. J. Nucl. Med. Mol. Imaging1(1), 29–35 (2011).
[PubMed]

Anal. Biochem. (1)

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem.195(2), 330–351 (1991).
[CrossRef] [PubMed]

Ann. Med. (1)

M. T. Berlim, M. P. Fleck, and G. Turecki, “Current trends in the assessment and somatic treatment of resistant/refractory major depression: an overview,” Ann. Med.40(2), 149–159 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Arch. Gen. Psychiatry (1)

R. C. Kessler, P. Berglund, O. Demler, R. Jin, K. R. Merikangas, and E. E. Walters, “Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication,” Arch. Gen. Psychiatry62(6), 593–602 (2005).
[CrossRef] [PubMed]

Behav. Brain Res. (1)

E. Nesher, M. Gross, S. Lisson, T. Tikhonov, G. Yadid, and A. Pinhasov, “Differential responses to distinct psychotropic agents of selectively bred dominant and submissive animals,” Behav. Brain Res.236(1), 225–235 (2013).
[PubMed]

Behav. Pharmacol. (1)

A. Pinhasov, J. Crooke, D. Rosenthal, D. Brenneman, and E. Malatynska, “Reduction of Submissive Behavior Model for antidepressant drug activity testing: study using a video-tracking system,” Behav. Pharmacol.16(8), 657–664 (2005).
[CrossRef] [PubMed]

Biol. Psychiatry (1)

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry52(7), 679–693 (2002).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Br. J. Psychiatry (1)

C. J. Harmer, G. M. Goodwin, and P. J. Cowen, “Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action,” Br. J. Psychiatry195(2), 102–108 (2009).
[CrossRef] [PubMed]

Clin. Neuropsychol. (1)

P. M. Arenth, J. H. Ricker, and M. T. Schultheis, “Applications of functional near-infrared spectroscopy (fNIRS) to Neurorehabilitation of cognitive disabilities,” Clin. Neuropsychol.21(1), 38–57 (2007).
[CrossRef] [PubMed]

Curr. Top. Behav. Neurosci. (1)

R. C. Kessler, A. M. Ruscio, K. Shear, and H. U. Wittchen, “Epidemiology of anxiety disorders,” Curr. Top. Behav. Neurosci.2, 21–35 (2009).
[CrossRef] [PubMed]

Epilepsia (1)

M. R. Zhao, M. A. Suh, H. T. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia48(11), 2059–2067 (2007).
[CrossRef] [PubMed]

Hum. Brain Mapp. (1)

R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp.16(3), 183–189 (2002).
[CrossRef] [PubMed]

IEEE Eng. Med. Biol. Mag. (1)

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
[CrossRef] [PubMed]

J. Affect. Disord. (2)

Y. Feder, E. Nesher, A. Ogran, A. Kreinin, E. Malatynska, G. Yadid, and A. Pinhasov, “Selective breeding for dominant and submissive behavior in Sabra mice,” J. Affect. Disord.126(1-2), 214–222 (2010).
[CrossRef] [PubMed]

P. Delaveau, M. Jabourian, C. Lemogne, S. Guionnet, L. Bergouignan, and P. Fossati, “Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies,” J. Affect. Disord.130(1-2), 66–74 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (8)

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt.17(7), 077005 (2012).
[CrossRef] [PubMed]

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
[CrossRef] [PubMed]

E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007).
[CrossRef] [PubMed]

S. B. Chen, Z. Feng, P. C. Li, S. L. Jacques, S. Q. Zeng, and Q. M. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt.11(3), 034002 (2006).
[CrossRef] [PubMed]

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt.13(4), 044007 (2008).
[CrossRef] [PubMed]

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt.18(1), 015003 (2013).
[CrossRef] [PubMed]

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt.5(3), 287–290 (2000).
[CrossRef] [PubMed]

M. Costantini, A. Di Vacri, A. M. Chiarelli, F. Ferri, G. Luca Romani, and A. Merla, “Studying social cognition using near-infrared spectroscopy: the case of social Simon effect,” J. Biomed. Opt.18(2), 025005 (2013).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (2)

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000).
[CrossRef] [PubMed]

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab.22(6), 670–679 (2002).
[CrossRef] [PubMed]

J. Clin. Psychopharmacol. (1)

K. Rickels, E. Schweizer, N. DeMartinis, L. Mandos, and C. Mercer, “Gepirone and diazepam in generalized anxiety disorder: a placebo-controlled trial,” J. Clin. Psychopharmacol.17(4), 272–277 (1997).
[CrossRef] [PubMed]

J. Matern. Fetal Neonatal Med. (1)

E. A. Verhagen, E. M. Kooi, P. P. van den Berg, and A. F. Bos, “Maternal antihypertensive drugs may influence cerebral oxygen extraction in preterm infants during the first days after birth,” J. Matern. Fetal Neonatal Med.26(9), 871–876 (2013).
[CrossRef] [PubMed]

J. Mol. Neurosci. (1)

E. Nesher, V. Peskov, A. Rylova, O. Raz, and A. Pinhasov, “Comparative analysis of the behavioral and biomolecular parameters of four mouse strains,” J. Mol. Neurosci.46(2), 276–284 (2012).
[CrossRef] [PubMed]

J. Neuropsychiatry Clin. Neurosci. (1)

K. Matsuo, T. Kato, M. Fukuda, and N. Kato, “Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy,” J. Neuropsychiatry Clin. Neurosci.12(4), 465–471 (2000).
[CrossRef] [PubMed]

J. Neurosci. (1)

C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci.27(17), 4572–4586 (2007).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

E. Malatynska, A. Pinhasov, J. J. Crooke, V. L. Smith-Swintosky, and D. E. Brenneman, “Reduction of dominant or submissive behaviors as models for antimanic or antidepressant drug testing: technical considerations,” J. Neurosci. Methods165(2), 175–182 (2007).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, “Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse,” J. Opt. A, Pure Appl. Opt.8(7), 528 (2006).
[CrossRef]

J. Psychopharmacol. (Oxford) (1)

A. Moussaieff, M. Gross, E. Nesher, T. Tikhonov, G. Yadid, and A. Pinhasov, “Incensole acetate reduces depressive-like behavior and modulates hippocampal BDNF and CRF expression of submissive animals,” J. Psychopharmacol. (Oxford)26(12), 1584–1593 (2012).
[CrossRef] [PubMed]

Magn. Reson. Imaging (1)

R. G. Wise, B. J. Lujan, P. Schweinhardt, G. D. Peskett, R. Rogers, and I. Tracey, “The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI,” Magn. Reson. Imaging25(6), 801–810 (2007).
[CrossRef] [PubMed]

Med. Phys. (1)

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys.22(8), 1209–1217 (1995).
[CrossRef] [PubMed]

Nature (1)

V. Krishnan and E. J. Nestler, “The molecular neurobiology of depression,” Nature455(7215), 894–902 (2008).
[CrossRef] [PubMed]

Neuroimage (2)

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” Neuroimage26(2), 619–627 (2005).
[CrossRef] [PubMed]

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” Neuroimage19(3), 884–894 (2003).
[CrossRef] [PubMed]

Neuron (1)

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron39(2), 353–359 (2003).
[CrossRef] [PubMed]

Neurosci. Biobehav. Rev. (1)

E. Malatynska, A. Pinhasov, C. J. Creighton, J. J. Crooke, A. B. Reitz, D. E. Brenneman, and M. S. Lubomirski, “Assessing activity onset time and efficacy for clinically effective antidepressant and antimanic drugs in animal models based on dominant-submissive relationships,” Neurosci. Biobehav. Rev.31(6), 904–919 (2007).
[CrossRef] [PubMed]

Opt. Lett. (3)

Pharmacol. Rep. (1)

J. Divljaković, M. Milić, T. Timić, and M. M. Savić, “Tolerance liability of diazepam is dependent on the dose used for protracted treatment,” Pharmacol. Rep.64(5), 1116–1125 (2012).
[CrossRef] [PubMed]

Pharmacotherapy (1)

M. P. Peppers, “Benzodiazepines for alcohol withdrawal in the elderly and in patients with liver disease,” Pharmacotherapy16(1), 49–57 (1996).
[PubMed]

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 649–659 (1997).
[CrossRef]

Phys. Med. Biol. (1)

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol.46(1), 41–62 (2001).
[CrossRef] [PubMed]

Psychopharmacology (Berl.) (2)

G. R. McClelland and P. Raptopoulos, “EEG and blood level of the potential antidepressant paroxetine after a single oral dose to normal volunteers,” Psychopharmacology (Berl.)83(4), 327–329 (1984).
[CrossRef] [PubMed]

K. Kohmura, K. Iwamoto, B. Aleksic, K. Sasada, N. Kawano, H. Katayama, Y. Noda, A. Noda, T. Iidaka, and N. Ozaki, “Effects of sedative antidepressants on prefrontal cortex activity during verbal fluency task in healthy subjects: a near-infrared spectroscopy study,” Psychopharmacology (Berl.)226(1), 75–81 (2013).
[CrossRef] [PubMed]

Psychophysiology (1)

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
[CrossRef] [PubMed]

Stroke (1)

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974).
[CrossRef] [PubMed]

Trends Neurosci. (1)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20(10), 435–442 (1997).
[CrossRef] [PubMed]

Other (6)

L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging. (Wiley-Interscience, Hoboken, N.J., 2007).

J. G. Fujimoto and D. L. Farkas, Biomedical Optical Imaging (Oxford University Press, Oxford; New York, 2009).

F. H. Mustafa and M. S. Jaafar, “Shaving area of unwanted hair before laser operation is useful in cosmetic procedure: A simulation study,” J. Saudi Society Dermat. Surg. (Article in Press).

D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of Biomedical Optics (CRC Press, Boca Raton, 2011).

R. D. Frostig, In vivo Optical Imaging of Brain Function, 2nd ed. (CRC Press, Boca Raton, 2009).

W. G. Zijlstra, A. Buursma, and O. Willem van Assendelft, eds., Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application. 2000, VSP. 368.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of the dual-imaging setup. BPF, band pass filter; BS, beam splitter; L, lens (f = 100 mm). Representative images with the selected ROI are shown for each channel. ROI size: 50 × 60 pixels correspond to ~5mm × 5mm. The same ROI is observed simultaneously on both cameras.

Fig. 2
Fig. 2

Changes in brain hemoglobin concentrations over time following diazepam administration in: (a) wild-type (WT, n=10), (b) dominant (Dom, n=10) and (c) submissive (Sub, n=10) animals. The change in diffuse reflectance ∆R in 470nm is proportional to HbO2 while at 650nm to Hbr. Data is presented as mean plus standard deviation (error bar) normalized to baseline. The response in diffuse reflectance to diazepam differed markedly between the three groups.

Fig. 3
Fig. 3

(a) Bar graph summarizing the mean concentrations of ΔHbO2 and ΔHbr for wild type (WT), dominant (Dom) and submissive (Sub) mice group, normalized to baseline. A significant increase in the difference between ΔHbr to ΔHbO2 in the Sub group is seen. The error bars represent standard deviation. The statistical significance between animal groups for ΔHbO2 (b) and ΔHbr (c) was assessed using one-way ANOVA with post-hoc Bonferroni test, indicated by (***) at p <0.001 (n = 10/group).

Fig. 4
Fig. 4

Time course of changes in (a) THC and (b) StO2 parameters extracted from the raw data of HbO2 and Hbr for the wild type (WT), dominant (Dom) and submissive (Sub) mice group. Each data point represents the mean ± standard deviation (error bar). These graphs highlight the difference of the submissive group in comparison to others.

Fig. 5
Fig. 5

a) Bar graph shows a comparison of the mean THC and mean StO2 pre- and post-diazepam injection for wild type (WT), dominant (Dom) and submissive (Sub) mice group. Sub animals distinctively differ from the other two groups. The statistical significances between animal groups for THC pre-injection (b) and post-injection (c), as well as for StO2 pre-injection (d) and post-injection (e) were assessed using one-way ANOVA with post-hoc Bonferroni test, indicated by (***) at p <0.001 and ns as non-significant (n=10/group).

Metrics