Abstract

Improved Laser Speckle Contrast Imaging (LSCI) blood flow analyses that incorporate inverse models of the underlying laser-tissue interaction have been used to develop more quantitative implementations of speckle flowmetry such as Multi-Exposure Speckle Imaging (MESI). In this paper, we determine the optimal camera exposure durations required for obtaining flow information with comparable accuracy with the prevailing MESI implementation utilized in recent in vivo rodent studies. A looping leave-one-out (LOO) algorithm was used to identify exposure subsets which were analyzed for accuracy against flows obtained from analysis with the original full exposure set over 9 animals comprising n = 314 regional flow measurements. From the 15 original exposures, 6 exposures were found using the LOO process to provide comparable accuracy, defined as being no more than 10% deviant, with the original flow measurements. The optimal subset of exposures provides a basis set of camera durations for speckle flowmetry studies of the microcirculation and confers a two-fold faster acquisition rate and a 28% reduction in processing time without sacrificing accuracy. Additionally, the optimization process can be used to identify further reductions in the exposure subsets for tailoring imaging over less expansive flow distributions to enable even faster imaging.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
    [CrossRef] [PubMed]
  2. G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab.30(8), 1432–1436 (2010).
    [CrossRef] [PubMed]
  3. A. K. Dunn, “Laser Speckle Contrast Imaging of Cerebral Blood Flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
    [CrossRef] [PubMed]
  4. H. Karatas, S. E. Erdener, Y. Gursoy-Ozdemir, S. Lule, E. Eren-Koçak, Z. D. Sen, and T. Dalkara, “Spreading Depression Triggers Headache by Activating Neuronal Panx1 Channels,” Science339(6123), 1092–1095 (2013).
    [CrossRef] [PubMed]
  5. J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser Speckle Contrast Imaging: Theory, Instrumentation and Applications,” Biomed. Eng. IEEE Rev. In 6, 99–110 (2013).
  6. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16(3), 1975–1989 (2008).
    [CrossRef] [PubMed]
  7. A. B. Parthasarathy, S. M. S. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express1(1), 246–259 (2010).
    [CrossRef] [PubMed]
  8. M. Roustit and J.-L. Cracowski, “Assessment of endothelial and neurovascular function in human skin microcirculation,” Trends Pharmacol. Sci.34(7), 373–384 (2013).
    [CrossRef] [PubMed]
  9. I. I. Khludeyev, A. S. Tserakh, A. V. Smirnov, S. K. Dick, and V. P. Zorina, “Speckle optical monitoring of blood microcirculation for different types of treatment of the vascular system,” J. Appl. Spectrosc.80(2), 299–304 (2013).
    [CrossRef]
  10. Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive Blood Flow Imaging for Real-Time Feedback During Laser Therapy of Port Wine Stain Birthmarks,” Lasers Surg. Med.40(3), 167–173 (2008).
    [CrossRef] [PubMed]
  11. W. Jia, V. Sun, N. Tran, B. Choi, S. W. Liu, M. C. Mihm, T. L. Phung, and J. S. Nelson, “Long-Term Blood Vessel Removal With Combined Laser and Topical Rapamycin Antiangiogenic Therapy: Implications for Effective Port Wine Stain Treatment,” Lasers Surg. Med.42(2), 105–112 (2010).
    [CrossRef] [PubMed]
  12. J. Ren, P. Li, H. Zhao, D. Chen, J. Zhen, Y. Wang, Y. Wang, and Y. Gu, “Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study,” Lasers Med. Sci.29, 1–8 (2013).
    [PubMed]
  13. P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns40(1), 67–81 (2014).
    [CrossRef] [PubMed]
  14. B. Ruaro, A. Sulli, E. Alessandri, C. Pizzorni, G. Ferrari, and M. Cutolo, “Laser speckle contrast analysis: a new method to evaluate peripheral blood perfusion in systemic sclerosis patients,” Ann. Rheum. Dis. annrheumdis–2013–203514 (2014).
  15. L. Wang, G. A. Cull, C. Piper, C. F. Burgoyne, and B. Fortune, “Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method,” Invest. Ophthalmol. Vis. Sci.53(13), 8303–8309 (2012).
    [CrossRef] [PubMed]
  16. N. Aizawa, Y. Yokoyama, N. Chiba, K. Omodaka, M. Yasuda, T. Otomo, M. Nakamura, N. Fuse, and T. Nakazawa, “Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma,” Clin Ophthalmol5, 1171–1176 (2011).
    [PubMed]
  17. A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics2, 128 (2010).
  18. N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009).
    [CrossRef] [PubMed]
  19. A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
    [CrossRef] [PubMed]
  20. N. Hecht, J. Woitzik, S. König, P. Horn, and P. Vajkoczy, “Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures,” J. Cereb. Blood Flow Metab.33(7), 1000–1007 (2013).
    [CrossRef] [PubMed]
  21. S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
    [CrossRef] [PubMed]
  22. F. Domoki, D. Zölei, O. Oláh, V. Tóth-Szuki, B. Hopp, F. Bari, and T. Smausz, “Evaluation of laser-speckle contrast image analysis techniques in the cortical microcirculation of piglets,” Microvasc. Res.83(3), 311–317 (2012).
    [CrossRef] [PubMed]
  23. Y. Atchia, H. Levy, S. Dufour, and O. Levi, “Rapid multiexposure in vivo brain imaging system using vertical cavity surface emitting lasers as a light source,” Appl. Opt.52(7), C64–C71 (2013).
    [CrossRef] [PubMed]
  24. I. R. Winship, “Improved cerebral blood flow measurement with multiexposure speckle imaging,” J. Cereb. Blood Flow Metab.33(6), 797 (2013).
    [CrossRef] [PubMed]
  25. J. C. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. Opt. Express4(10), 1883–1889 (2013).
    [CrossRef] [PubMed]
  26. A. Nadort, R. G. Woolthuis, T. G. van Leeuwen, and D. J. Faber, “Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy,” Biomed. Opt. Express4(11), 2347–2361 (2013).
    [CrossRef] [PubMed]
  27. S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt.44(10), 1823–1830 (2005).
    [CrossRef] [PubMed]
  28. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996).
    [CrossRef] [PubMed]
  29. W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging27(12), 1728–1738 (2008).
    [CrossRef] [PubMed]
  30. R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt.20(12), 2097–2107 (1981).
    [CrossRef] [PubMed]
  31. C. Ayata, A. K. Dunn, Y. Gursoy-OZdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser Speckle Flowmetry for the Study of Cerebrovascular Physiology in Normal and Ischemic Mouse Cortex,” J. Cereb. Blood Flow Metab.24(7), 744–755 (2004).
    [CrossRef] [PubMed]
  32. A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, “Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations,” J. Cereb. Blood Flow Metab.26(5), 645–653 (2006).
    [CrossRef] [PubMed]
  33. E. L. Towle, L. M. Richards, S. M. S. Kazmi, D. J. Fox, and A. K. Dunn, “Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion,” Neurosurgery71(5), 1023–1030 (2012).
    [CrossRef] [PubMed]
  34. A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
    [CrossRef] [PubMed]
  35. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
    [CrossRef]
  36. W. I. Rosenblum, “Erythrocyte Velocity and a Velocity Pulse in Minute Blood Vessels on the Surface of the Mouse Brain,” Circ. Res.24(6), 887–892 (1969).
    [CrossRef] [PubMed]
  37. D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
    [CrossRef] [PubMed]
  38. N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010).
    [CrossRef] [PubMed]
  39. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage27(2), 279–290 (2005).
    [CrossRef] [PubMed]
  40. T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
    [CrossRef] [PubMed]

2014 (1)

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns40(1), 67–81 (2014).
[CrossRef] [PubMed]

2013 (10)

J. Ren, P. Li, H. Zhao, D. Chen, J. Zhen, Y. Wang, Y. Wang, and Y. Gu, “Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study,” Lasers Med. Sci.29, 1–8 (2013).
[PubMed]

N. Hecht, J. Woitzik, S. König, P. Horn, and P. Vajkoczy, “Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures,” J. Cereb. Blood Flow Metab.33(7), 1000–1007 (2013).
[CrossRef] [PubMed]

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
[CrossRef] [PubMed]

H. Karatas, S. E. Erdener, Y. Gursoy-Ozdemir, S. Lule, E. Eren-Koçak, Z. D. Sen, and T. Dalkara, “Spreading Depression Triggers Headache by Activating Neuronal Panx1 Channels,” Science339(6123), 1092–1095 (2013).
[CrossRef] [PubMed]

M. Roustit and J.-L. Cracowski, “Assessment of endothelial and neurovascular function in human skin microcirculation,” Trends Pharmacol. Sci.34(7), 373–384 (2013).
[CrossRef] [PubMed]

I. I. Khludeyev, A. S. Tserakh, A. V. Smirnov, S. K. Dick, and V. P. Zorina, “Speckle optical monitoring of blood microcirculation for different types of treatment of the vascular system,” J. Appl. Spectrosc.80(2), 299–304 (2013).
[CrossRef]

Y. Atchia, H. Levy, S. Dufour, and O. Levi, “Rapid multiexposure in vivo brain imaging system using vertical cavity surface emitting lasers as a light source,” Appl. Opt.52(7), C64–C71 (2013).
[CrossRef] [PubMed]

I. R. Winship, “Improved cerebral blood flow measurement with multiexposure speckle imaging,” J. Cereb. Blood Flow Metab.33(6), 797 (2013).
[CrossRef] [PubMed]

J. C. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. Opt. Express4(10), 1883–1889 (2013).
[CrossRef] [PubMed]

A. Nadort, R. G. Woolthuis, T. G. van Leeuwen, and D. J. Faber, “Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy,” Biomed. Opt. Express4(11), 2347–2361 (2013).
[CrossRef] [PubMed]

2012 (4)

E. L. Towle, L. M. Richards, S. M. S. Kazmi, D. J. Fox, and A. K. Dunn, “Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion,” Neurosurgery71(5), 1023–1030 (2012).
[CrossRef] [PubMed]

A. K. Dunn, “Laser Speckle Contrast Imaging of Cerebral Blood Flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
[CrossRef] [PubMed]

F. Domoki, D. Zölei, O. Oláh, V. Tóth-Szuki, B. Hopp, F. Bari, and T. Smausz, “Evaluation of laser-speckle contrast image analysis techniques in the cortical microcirculation of piglets,” Microvasc. Res.83(3), 311–317 (2012).
[CrossRef] [PubMed]

L. Wang, G. A. Cull, C. Piper, C. F. Burgoyne, and B. Fortune, “Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method,” Invest. Ophthalmol. Vis. Sci.53(13), 8303–8309 (2012).
[CrossRef] [PubMed]

2011 (2)

N. Aizawa, Y. Yokoyama, N. Chiba, K. Omodaka, M. Yasuda, T. Otomo, M. Nakamura, N. Fuse, and T. Nakazawa, “Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma,” Clin Ophthalmol5, 1171–1176 (2011).
[PubMed]

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
[CrossRef] [PubMed]

2010 (8)

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics2, 128 (2010).

W. Jia, V. Sun, N. Tran, B. Choi, S. W. Liu, M. C. Mihm, T. L. Phung, and J. S. Nelson, “Long-Term Blood Vessel Removal With Combined Laser and Topical Rapamycin Antiangiogenic Therapy: Implications for Effective Port Wine Stain Treatment,” Lasers Surg. Med.42(2), 105–112 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, S. M. S. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express1(1), 246–259 (2010).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab.30(8), 1432–1436 (2010).
[CrossRef] [PubMed]

2009 (1)

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009).
[CrossRef] [PubMed]

2008 (3)

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16(3), 1975–1989 (2008).
[CrossRef] [PubMed]

Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive Blood Flow Imaging for Real-Time Feedback During Laser Therapy of Port Wine Stain Birthmarks,” Lasers Surg. Med.40(3), 167–173 (2008).
[CrossRef] [PubMed]

W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging27(12), 1728–1738 (2008).
[CrossRef] [PubMed]

2006 (1)

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, “Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations,” J. Cereb. Blood Flow Metab.26(5), 645–653 (2006).
[CrossRef] [PubMed]

2005 (2)

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt.44(10), 1823–1830 (2005).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage27(2), 279–290 (2005).
[CrossRef] [PubMed]

2004 (2)

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

C. Ayata, A. K. Dunn, Y. Gursoy-OZdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser Speckle Flowmetry for the Study of Cerebrovascular Physiology in Normal and Ischemic Mouse Cortex,” J. Cereb. Blood Flow Metab.24(7), 744–755 (2004).
[CrossRef] [PubMed]

1996 (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996).
[CrossRef] [PubMed]

1981 (2)

R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt.20(12), 2097–2107 (1981).
[CrossRef] [PubMed]

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

1969 (1)

W. I. Rosenblum, “Erythrocyte Velocity and a Velocity Pulse in Minute Blood Vessels on the Surface of the Mouse Brain,” Circ. Res.24(6), 887–892 (1969).
[CrossRef] [PubMed]

Aizawa, N.

N. Aizawa, Y. Yokoyama, N. Chiba, K. Omodaka, M. Yasuda, T. Otomo, M. Nakamura, N. Fuse, and T. Nakazawa, “Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma,” Clin Ophthalmol5, 1171–1176 (2011).
[PubMed]

Anderson, P. J. B.

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, “Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations,” J. Cereb. Blood Flow Metab.26(5), 645–653 (2006).
[CrossRef] [PubMed]

Armitage, G. A.

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab.30(8), 1432–1436 (2010).
[CrossRef] [PubMed]

Atchia, Y.

Ayata, C.

C. Ayata, A. K. Dunn, Y. Gursoy-OZdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser Speckle Flowmetry for the Study of Cerebrovascular Physiology in Normal and Ischemic Mouse Cortex,” J. Cereb. Blood Flow Metab.24(7), 744–755 (2004).
[CrossRef] [PubMed]

Bari, F.

F. Domoki, D. Zölei, O. Oláh, V. Tóth-Szuki, B. Hopp, F. Bari, and T. Smausz, “Evaluation of laser-speckle contrast image analysis techniques in the cortical microcirculation of piglets,” Microvasc. Res.83(3), 311–317 (2012).
[CrossRef] [PubMed]

Bezzina, E. L.

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, “Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations,” J. Cereb. Blood Flow Metab.26(5), 645–653 (2006).
[CrossRef] [PubMed]

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt.44(10), 1823–1830 (2005).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage27(2), 279–290 (2005).
[CrossRef] [PubMed]

C. Ayata, A. K. Dunn, Y. Gursoy-OZdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser Speckle Flowmetry for the Study of Cerebrovascular Physiology in Normal and Ischemic Mouse Cortex,” J. Cereb. Blood Flow Metab.24(7), 744–755 (2004).
[CrossRef] [PubMed]

Bonner, R.

Boutelle, M. G.

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, “Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations,” J. Cereb. Blood Flow Metab.26(5), 645–653 (2006).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996).
[CrossRef] [PubMed]

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Burgoyne, C. F.

L. Wang, G. A. Cull, C. Piper, C. F. Burgoyne, and B. Fortune, “Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method,” Invest. Ophthalmol. Vis. Sci.53(13), 8303–8309 (2012).
[CrossRef] [PubMed]

Burnett, M. G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Cardwell, N.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns40(1), 67–81 (2014).
[CrossRef] [PubMed]

Chen, D.

J. Ren, P. Li, H. Zhao, D. Chen, J. Zhen, Y. Wang, Y. Wang, and Y. Gu, “Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study,” Lasers Med. Sci.29, 1–8 (2013).
[PubMed]

Chiba, N.

N. Aizawa, Y. Yokoyama, N. Chiba, K. Omodaka, M. Yasuda, T. Otomo, M. Nakamura, N. Fuse, and T. Nakazawa, “Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma,” Clin Ophthalmol5, 1171–1176 (2011).
[PubMed]

Choi, B.

J. C. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. Opt. Express4(10), 1883–1889 (2013).
[CrossRef] [PubMed]

W. Jia, V. Sun, N. Tran, B. Choi, S. W. Liu, M. C. Mihm, T. L. Phung, and J. S. Nelson, “Long-Term Blood Vessel Removal With Combined Laser and Topical Rapamycin Antiangiogenic Therapy: Implications for Effective Port Wine Stain Treatment,” Lasers Surg. Med.42(2), 105–112 (2010).
[CrossRef] [PubMed]

Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive Blood Flow Imaging for Real-Time Feedback During Laser Therapy of Port Wine Stain Birthmarks,” Lasers Surg. Med.40(3), 167–173 (2008).
[CrossRef] [PubMed]

Cracowski, J.-L.

M. Roustit and J.-L. Cracowski, “Assessment of endothelial and neurovascular function in human skin microcirculation,” Trends Pharmacol. Sci.34(7), 373–384 (2013).
[CrossRef] [PubMed]

Cull, G. A.

L. Wang, G. A. Cull, C. Piper, C. F. Burgoyne, and B. Fortune, “Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method,” Invest. Ophthalmol. Vis. Sci.53(13), 8303–8309 (2012).
[CrossRef] [PubMed]

Dale, A. M.

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage27(2), 279–290 (2005).
[CrossRef] [PubMed]

Dalkara, T.

H. Karatas, S. E. Erdener, Y. Gursoy-Ozdemir, S. Lule, E. Eren-Koçak, Z. D. Sen, and T. Dalkara, “Spreading Depression Triggers Headache by Activating Neuronal Panx1 Channels,” Science339(6123), 1092–1095 (2013).
[CrossRef] [PubMed]

Detre, J. A.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Devor, A.

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage27(2), 279–290 (2005).
[CrossRef] [PubMed]

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt.44(10), 1823–1830 (2005).
[CrossRef] [PubMed]

Dick, S. K.

I. I. Khludeyev, A. S. Tserakh, A. V. Smirnov, S. K. Dick, and V. P. Zorina, “Speckle optical monitoring of blood microcirculation for different types of treatment of the vascular system,” J. Appl. Spectrosc.80(2), 299–304 (2013).
[CrossRef]

Domoki, F.

F. Domoki, D. Zölei, O. Oláh, V. Tóth-Szuki, B. Hopp, F. Bari, and T. Smausz, “Evaluation of laser-speckle contrast image analysis techniques in the cortical microcirculation of piglets,” Microvasc. Res.83(3), 311–317 (2012).
[CrossRef] [PubMed]

Dreier, J. P.

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009).
[CrossRef] [PubMed]

Dufour, S.

Duncan, D. D.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

Dunn, A. K.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
[CrossRef] [PubMed]

A. K. Dunn, “Laser Speckle Contrast Imaging of Cerebral Blood Flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
[CrossRef] [PubMed]

E. L. Towle, L. M. Richards, S. M. S. Kazmi, D. J. Fox, and A. K. Dunn, “Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion,” Neurosurgery71(5), 1023–1030 (2012).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, S. M. S. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express1(1), 246–259 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging27(12), 1728–1738 (2008).
[CrossRef] [PubMed]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16(3), 1975–1989 (2008).
[CrossRef] [PubMed]

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, “Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations,” J. Cereb. Blood Flow Metab.26(5), 645–653 (2006).
[CrossRef] [PubMed]

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt.44(10), 1823–1830 (2005).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage27(2), 279–290 (2005).
[CrossRef] [PubMed]

C. Ayata, A. K. Dunn, Y. Gursoy-OZdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser Speckle Flowmetry for the Study of Cerebrovascular Physiology in Normal and Ischemic Mouse Cortex,” J. Cereb. Blood Flow Metab.24(7), 744–755 (2004).
[CrossRef] [PubMed]

Durduran, T.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Erdener, S. E.

H. Karatas, S. E. Erdener, Y. Gursoy-Ozdemir, S. Lule, E. Eren-Koçak, Z. D. Sen, and T. Dalkara, “Spreading Depression Triggers Headache by Activating Neuronal Panx1 Channels,” Science339(6123), 1092–1095 (2013).
[CrossRef] [PubMed]

Eren-Koçak, E.

H. Karatas, S. E. Erdener, Y. Gursoy-Ozdemir, S. Lule, E. Eren-Koçak, Z. D. Sen, and T. Dalkara, “Spreading Depression Triggers Headache by Activating Neuronal Panx1 Channels,” Science339(6123), 1092–1095 (2013).
[CrossRef] [PubMed]

Faber, D. J.

Fercher, A. F.

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Fortune, B.

L. Wang, G. A. Cull, C. Piper, C. F. Burgoyne, and B. Fortune, “Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method,” Invest. Ophthalmol. Vis. Sci.53(13), 8303–8309 (2012).
[CrossRef] [PubMed]

Fox, D. J.

E. L. Towle, L. M. Richards, S. M. S. Kazmi, D. J. Fox, and A. K. Dunn, “Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion,” Neurosurgery71(5), 1023–1030 (2012).
[CrossRef] [PubMed]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

Fuentes-Garcia, A.

Furuya, D.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Fuse, N.

N. Aizawa, Y. Yokoyama, N. Chiba, K. Omodaka, M. Yasuda, T. Otomo, M. Nakamura, N. Fuse, and T. Nakazawa, “Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma,” Clin Ophthalmol5, 1171–1176 (2011).
[PubMed]

Ganapathy, P.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns40(1), 67–81 (2014).
[CrossRef] [PubMed]

Gopal, A.

Greenberg, J. H.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Gu, Y.

J. Ren, P. Li, H. Zhao, D. Chen, J. Zhen, Y. Wang, Y. Wang, and Y. Gu, “Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study,” Lasers Med. Sci.29, 1–8 (2013).
[PubMed]

Gursoy-Ozdemir, Y.

H. Karatas, S. E. Erdener, Y. Gursoy-Ozdemir, S. Lule, E. Eren-Koçak, Z. D. Sen, and T. Dalkara, “Spreading Depression Triggers Headache by Activating Neuronal Panx1 Channels,” Science339(6123), 1092–1095 (2013).
[CrossRef] [PubMed]

C. Ayata, A. K. Dunn, Y. Gursoy-OZdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser Speckle Flowmetry for the Study of Cerebrovascular Physiology in Normal and Ischemic Mouse Cortex,” J. Cereb. Blood Flow Metab.24(7), 744–755 (2004).
[CrossRef] [PubMed]

Hecht, N.

N. Hecht, J. Woitzik, S. König, P. Horn, and P. Vajkoczy, “Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures,” J. Cereb. Blood Flow Metab.33(7), 1000–1007 (2013).
[CrossRef] [PubMed]

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009).
[CrossRef] [PubMed]

Hiller, M.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

Hopp, B.

F. Domoki, D. Zölei, O. Oláh, V. Tóth-Szuki, B. Hopp, F. Bari, and T. Smausz, “Evaluation of laser-speckle contrast image analysis techniques in the cortical microcirculation of piglets,” Microvasc. Res.83(3), 311–317 (2012).
[CrossRef] [PubMed]

Hopwood, S. E.

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, “Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations,” J. Cereb. Blood Flow Metab.26(5), 645–653 (2006).
[CrossRef] [PubMed]

Horn, P.

N. Hecht, J. Woitzik, S. König, P. Horn, and P. Vajkoczy, “Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures,” J. Cereb. Blood Flow Metab.33(7), 1000–1007 (2013).
[CrossRef] [PubMed]

Huang, Y.-C.

Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive Blood Flow Imaging for Real-Time Feedback During Laser Therapy of Port Wine Stain Birthmarks,” Lasers Surg. Med.40(3), 167–173 (2008).
[CrossRef] [PubMed]

Huang, Z.

C. Ayata, A. K. Dunn, Y. Gursoy-OZdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser Speckle Flowmetry for the Study of Cerebrovascular Physiology in Normal and Ischemic Mouse Cortex,” J. Cereb. Blood Flow Metab.24(7), 744–755 (2004).
[CrossRef] [PubMed]

Iadecola, C.

N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010).
[CrossRef] [PubMed]

Ibrahim, M.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

Jia, W.

W. Jia, V. Sun, N. Tran, B. Choi, S. W. Liu, M. C. Mihm, T. L. Phung, and J. S. Nelson, “Long-Term Blood Vessel Removal With Combined Laser and Topical Rapamycin Antiangiogenic Therapy: Implications for Effective Port Wine Stain Treatment,” Lasers Surg. Med.42(2), 105–112 (2010).
[CrossRef] [PubMed]

Jones, T. A.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
[CrossRef] [PubMed]

Karatas, H.

H. Karatas, S. E. Erdener, Y. Gursoy-Ozdemir, S. Lule, E. Eren-Koçak, Z. D. Sen, and T. Dalkara, “Spreading Depression Triggers Headache by Activating Neuronal Panx1 Channels,” Science339(6123), 1092–1095 (2013).
[CrossRef] [PubMed]

Kazmi, S. M. S.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
[CrossRef] [PubMed]

E. L. Towle, L. M. Richards, S. M. S. Kazmi, D. J. Fox, and A. K. Dunn, “Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion,” Neurosurgery71(5), 1023–1030 (2012).
[CrossRef] [PubMed]

A. B. Parthasarathy, S. M. S. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express1(1), 246–259 (2010).
[CrossRef] [PubMed]

Khludeyev, I. I.

I. I. Khludeyev, A. S. Tserakh, A. V. Smirnov, S. K. Dick, and V. P. Zorina, “Speckle optical monitoring of blood microcirculation for different types of treatment of the vascular system,” J. Appl. Spectrosc.80(2), 299–304 (2013).
[CrossRef]

König, S.

N. Hecht, J. Woitzik, S. König, P. Horn, and P. Vajkoczy, “Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures,” J. Cereb. Blood Flow Metab.33(7), 1000–1007 (2013).
[CrossRef] [PubMed]

Kurth-Nelson, Z. L.

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics2, 128 (2010).

Lemaillet, P.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

Levi, O.

Levy, H.

Li, P.

J. Ren, P. Li, H. Zhao, D. Chen, J. Zhen, Y. Wang, Y. Wang, and Y. Gu, “Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study,” Lasers Med. Sci.29, 1–8 (2013).
[PubMed]

Liu, S. W.

W. Jia, V. Sun, N. Tran, B. Choi, S. W. Liu, M. C. Mihm, T. L. Phung, and J. S. Nelson, “Long-Term Blood Vessel Removal With Combined Laser and Topical Rapamycin Antiangiogenic Therapy: Implications for Effective Port Wine Stain Treatment,” Lasers Surg. Med.42(2), 105–112 (2010).
[CrossRef] [PubMed]

Lule, S.

H. Karatas, S. E. Erdener, Y. Gursoy-Ozdemir, S. Lule, E. Eren-Koçak, Z. D. Sen, and T. Dalkara, “Spreading Depression Triggers Headache by Activating Neuronal Panx1 Channels,” Science339(6123), 1092–1095 (2013).
[CrossRef] [PubMed]

Mendez-Aguilar, E.

Mihm, M. C.

W. Jia, V. Sun, N. Tran, B. Choi, S. W. Liu, M. C. Mihm, T. L. Phung, and J. S. Nelson, “Long-Term Blood Vessel Removal With Combined Laser and Topical Rapamycin Antiangiogenic Therapy: Implications for Effective Port Wine Stain Treatment,” Lasers Surg. Med.42(2), 105–112 (2010).
[CrossRef] [PubMed]

Moskowitz, M. A.

C. Ayata, A. K. Dunn, Y. Gursoy-OZdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser Speckle Flowmetry for the Study of Cerebrovascular Physiology in Normal and Ischemic Mouse Cortex,” J. Cereb. Blood Flow Metab.24(7), 744–755 (2004).
[CrossRef] [PubMed]

Murari, K.

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
[CrossRef] [PubMed]

Nadort, A.

Nakamura, M.

N. Aizawa, Y. Yokoyama, N. Chiba, K. Omodaka, M. Yasuda, T. Otomo, M. Nakamura, N. Fuse, and T. Nakazawa, “Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma,” Clin Ophthalmol5, 1171–1176 (2011).
[PubMed]

Nakazawa, T.

N. Aizawa, Y. Yokoyama, N. Chiba, K. Omodaka, M. Yasuda, T. Otomo, M. Nakamura, N. Fuse, and T. Nakazawa, “Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma,” Clin Ophthalmol5, 1171–1176 (2011).
[PubMed]

Nanney, L.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns40(1), 67–81 (2014).
[CrossRef] [PubMed]

Nelson, J. S.

W. Jia, V. Sun, N. Tran, B. Choi, S. W. Liu, M. C. Mihm, T. L. Phung, and J. S. Nelson, “Long-Term Blood Vessel Removal With Combined Laser and Topical Rapamycin Antiangiogenic Therapy: Implications for Effective Port Wine Stain Treatment,” Lasers Surg. Med.42(2), 105–112 (2010).
[CrossRef] [PubMed]

Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive Blood Flow Imaging for Real-Time Feedback During Laser Therapy of Port Wine Stain Birthmarks,” Lasers Surg. Med.40(3), 167–173 (2008).
[CrossRef] [PubMed]

Newman, E. A.

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics2, 128 (2010).

Nguyen, Q. D.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

Nishimura, N.

N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010).
[CrossRef] [PubMed]

Nossal, R.

Oláh, O.

F. Domoki, D. Zölei, O. Oláh, V. Tóth-Szuki, B. Hopp, F. Bari, and T. Smausz, “Evaluation of laser-speckle contrast image analysis techniques in the cortical microcirculation of piglets,” Microvasc. Res.83(3), 311–317 (2012).
[CrossRef] [PubMed]

Omodaka, K.

N. Aizawa, Y. Yokoyama, N. Chiba, K. Omodaka, M. Yasuda, T. Otomo, M. Nakamura, N. Fuse, and T. Nakazawa, “Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma,” Clin Ophthalmol5, 1171–1176 (2011).
[PubMed]

Otomo, T.

N. Aizawa, Y. Yokoyama, N. Chiba, K. Omodaka, M. Yasuda, T. Otomo, M. Nakamura, N. Fuse, and T. Nakazawa, “Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma,” Clin Ophthalmol5, 1171–1176 (2011).
[PubMed]

Parthasarathy, A. B.

Parthasarthy, A. B.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
[CrossRef] [PubMed]

Pathak, A. P.

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
[CrossRef] [PubMed]

Phung, T. L.

W. Jia, V. Sun, N. Tran, B. Choi, S. W. Liu, M. C. Mihm, T. L. Phung, and J. S. Nelson, “Long-Term Blood Vessel Removal With Combined Laser and Topical Rapamycin Antiangiogenic Therapy: Implications for Effective Port Wine Stain Treatment,” Lasers Surg. Med.42(2), 105–112 (2010).
[CrossRef] [PubMed]

Piper, C.

L. Wang, G. A. Cull, C. Piper, C. F. Burgoyne, and B. Fortune, “Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method,” Invest. Ophthalmol. Vis. Sci.53(13), 8303–8309 (2012).
[CrossRef] [PubMed]

Pollins, A.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns40(1), 67–81 (2014).
[CrossRef] [PubMed]

Ponticorvo, A.

W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging27(12), 1728–1738 (2008).
[CrossRef] [PubMed]

Qin, Y.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns40(1), 67–81 (2014).
[CrossRef] [PubMed]

Ramella-Roman, J.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

Ramirez-San-Juan, J. C.

Ramos-Garcia, R.

Rege, A.

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
[CrossRef] [PubMed]

Ren, J.

J. Ren, P. Li, H. Zhao, D. Chen, J. Zhen, Y. Wang, Y. Wang, and Y. Gu, “Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study,” Lasers Med. Sci.29, 1–8 (2013).
[PubMed]

Richards, L. M.

E. L. Towle, L. M. Richards, S. M. S. Kazmi, D. J. Fox, and A. K. Dunn, “Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion,” Neurosurgery71(5), 1023–1030 (2012).
[CrossRef] [PubMed]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

Ringold, T. L.

Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive Blood Flow Imaging for Real-Time Feedback During Laser Therapy of Port Wine Stain Birthmarks,” Lasers Surg. Med.40(3), 167–173 (2008).
[CrossRef] [PubMed]

Rosenblum, W. I.

W. I. Rosenblum, “Erythrocyte Velocity and a Velocity Pulse in Minute Blood Vessels on the Surface of the Mouse Brain,” Circ. Res.24(6), 887–892 (1969).
[CrossRef] [PubMed]

Rosidi, N. L.

N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010).
[CrossRef] [PubMed]

Roustit, M.

M. Roustit and J.-L. Cracowski, “Assessment of endothelial and neurovascular function in human skin microcirculation,” Trends Pharmacol. Sci.34(7), 373–384 (2013).
[CrossRef] [PubMed]

Salazar-Hermenegildo, N.

Schaffer, C. B.

N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010).
[CrossRef] [PubMed]

Seifert, A.

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
[CrossRef] [PubMed]

Sen, Z. D.

H. Karatas, S. E. Erdener, Y. Gursoy-Ozdemir, S. Lule, E. Eren-Koçak, Z. D. Sen, and T. Dalkara, “Spreading Depression Triggers Headache by Activating Neuronal Panx1 Channels,” Science339(6123), 1092–1095 (2013).
[CrossRef] [PubMed]

Sexton, K.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns40(1), 67–81 (2014).
[CrossRef] [PubMed]

Shuaib, A.

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab.30(8), 1432–1436 (2010).
[CrossRef] [PubMed]

Smausz, T.

F. Domoki, D. Zölei, O. Oláh, V. Tóth-Szuki, B. Hopp, F. Bari, and T. Smausz, “Evaluation of laser-speckle contrast image analysis techniques in the cortical microcirculation of piglets,” Microvasc. Res.83(3), 311–317 (2012).
[CrossRef] [PubMed]

Smirnov, A. V.

I. I. Khludeyev, A. S. Tserakh, A. V. Smirnov, S. K. Dick, and V. P. Zorina, “Speckle optical monitoring of blood microcirculation for different types of treatment of the vascular system,” J. Appl. Spectrosc.80(2), 299–304 (2013).
[CrossRef]

Song, N. E.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
[CrossRef] [PubMed]

Srienc, A. I.

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics2, 128 (2010).

Strong, A. J.

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, “Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations,” J. Cereb. Blood Flow Metab.26(5), 645–653 (2006).
[CrossRef] [PubMed]

Sun, V.

W. Jia, V. Sun, N. Tran, B. Choi, S. W. Liu, M. C. Mihm, T. L. Phung, and J. S. Nelson, “Long-Term Blood Vessel Removal With Combined Laser and Topical Rapamycin Antiangiogenic Therapy: Implications for Effective Port Wine Stain Treatment,” Lasers Surg. Med.42(2), 105–112 (2010).
[CrossRef] [PubMed]

Tamminedi, T.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns40(1), 67–81 (2014).
[CrossRef] [PubMed]

Thakor, N. V.

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
[CrossRef] [PubMed]

Todd, K. G.

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab.30(8), 1432–1436 (2010).
[CrossRef] [PubMed]

Tom, W. J.

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16(3), 1975–1989 (2008).
[CrossRef] [PubMed]

W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging27(12), 1728–1738 (2008).
[CrossRef] [PubMed]

Tóth-Szuki, V.

F. Domoki, D. Zölei, O. Oláh, V. Tóth-Szuki, B. Hopp, F. Bari, and T. Smausz, “Evaluation of laser-speckle contrast image analysis techniques in the cortical microcirculation of piglets,” Microvasc. Res.83(3), 311–317 (2012).
[CrossRef] [PubMed]

Towle, E. L.

E. L. Towle, L. M. Richards, S. M. S. Kazmi, D. J. Fox, and A. K. Dunn, “Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion,” Neurosurgery71(5), 1023–1030 (2012).
[CrossRef] [PubMed]

Tran, N.

W. Jia, V. Sun, N. Tran, B. Choi, S. W. Liu, M. C. Mihm, T. L. Phung, and J. S. Nelson, “Long-Term Blood Vessel Removal With Combined Laser and Topical Rapamycin Antiangiogenic Therapy: Implications for Effective Port Wine Stain Treatment,” Lasers Surg. Med.42(2), 105–112 (2010).
[CrossRef] [PubMed]

Tserakh, A. S.

I. I. Khludeyev, A. S. Tserakh, A. V. Smirnov, S. K. Dick, and V. P. Zorina, “Speckle optical monitoring of blood microcirculation for different types of treatment of the vascular system,” J. Appl. Spectrosc.80(2), 299–304 (2013).
[CrossRef]

Vajkoczy, P.

N. Hecht, J. Woitzik, S. König, P. Horn, and P. Vajkoczy, “Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures,” J. Cereb. Blood Flow Metab.33(7), 1000–1007 (2013).
[CrossRef] [PubMed]

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009).
[CrossRef] [PubMed]

van Leeuwen, T. G.

Wang, L.

L. Wang, G. A. Cull, C. Piper, C. F. Burgoyne, and B. Fortune, “Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method,” Invest. Ophthalmol. Vis. Sci.53(13), 8303–8309 (2012).
[CrossRef] [PubMed]

Wang, Y.

J. Ren, P. Li, H. Zhao, D. Chen, J. Zhen, Y. Wang, Y. Wang, and Y. Gu, “Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study,” Lasers Med. Sci.29, 1–8 (2013).
[PubMed]

J. Ren, P. Li, H. Zhao, D. Chen, J. Zhen, Y. Wang, Y. Wang, and Y. Gu, “Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study,” Lasers Med. Sci.29, 1–8 (2013).
[PubMed]

Weber, E. L.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996).
[CrossRef] [PubMed]

Winship, I. R.

I. R. Winship, “Improved cerebral blood flow measurement with multiexposure speckle imaging,” J. Cereb. Blood Flow Metab.33(6), 797 (2013).
[CrossRef] [PubMed]

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab.30(8), 1432–1436 (2010).
[CrossRef] [PubMed]

Woitzik, J.

N. Hecht, J. Woitzik, S. König, P. Horn, and P. Vajkoczy, “Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures,” J. Cereb. Blood Flow Metab.33(7), 1000–1007 (2013).
[CrossRef] [PubMed]

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009).
[CrossRef] [PubMed]

Woolthuis, R. G.

Yadegar, J.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns40(1), 67–81 (2014).
[CrossRef] [PubMed]

Yasuda, M.

N. Aizawa, Y. Yokoyama, N. Chiba, K. Omodaka, M. Yasuda, T. Otomo, M. Nakamura, N. Fuse, and T. Nakazawa, “Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma,” Clin Ophthalmol5, 1171–1176 (2011).
[PubMed]

Yodh, A. G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Yokoyama, Y.

N. Aizawa, Y. Yokoyama, N. Chiba, K. Omodaka, M. Yasuda, T. Otomo, M. Nakamura, N. Fuse, and T. Nakazawa, “Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma,” Clin Ophthalmol5, 1171–1176 (2011).
[PubMed]

Yu, G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Yuan, S.

Zhang, X.

Zhao, H.

J. Ren, P. Li, H. Zhao, D. Chen, J. Zhen, Y. Wang, Y. Wang, and Y. Gu, “Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study,” Lasers Med. Sci.29, 1–8 (2013).
[PubMed]

Zhen, J.

J. Ren, P. Li, H. Zhao, D. Chen, J. Zhen, Y. Wang, Y. Wang, and Y. Gu, “Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study,” Lasers Med. Sci.29, 1–8 (2013).
[PubMed]

Zhou, C.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Zölei, D.

F. Domoki, D. Zölei, O. Oláh, V. Tóth-Szuki, B. Hopp, F. Bari, and T. Smausz, “Evaluation of laser-speckle contrast image analysis techniques in the cortical microcirculation of piglets,” Microvasc. Res.83(3), 311–317 (2012).
[CrossRef] [PubMed]

Zorina, V. P.

I. I. Khludeyev, A. S. Tserakh, A. V. Smirnov, S. K. Dick, and V. P. Zorina, “Speckle optical monitoring of blood microcirculation for different types of treatment of the vascular system,” J. Appl. Spectrosc.80(2), 299–304 (2013).
[CrossRef]

Ann. Biomed. Eng. (1)

A. K. Dunn, “Laser Speckle Contrast Imaging of Cerebral Blood Flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
[CrossRef] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (3)

Burns (1)

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns40(1), 67–81 (2014).
[CrossRef] [PubMed]

Circ. Res. (1)

W. I. Rosenblum, “Erythrocyte Velocity and a Velocity Pulse in Minute Blood Vessels on the Surface of the Mouse Brain,” Circ. Res.24(6), 887–892 (1969).
[CrossRef] [PubMed]

Clin Ophthalmol (1)

N. Aizawa, Y. Yokoyama, N. Chiba, K. Omodaka, M. Yasuda, T. Otomo, M. Nakamura, N. Fuse, and T. Nakazawa, “Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma,” Clin Ophthalmol5, 1171–1176 (2011).
[PubMed]

Front. Neuroenergetics (1)

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics2, 128 (2010).

IEEE Trans. Med. Imaging (1)

W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging27(12), 1728–1738 (2008).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

L. Wang, G. A. Cull, C. Piper, C. F. Burgoyne, and B. Fortune, “Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method,” Invest. Ophthalmol. Vis. Sci.53(13), 8303–8309 (2012).
[CrossRef] [PubMed]

J. Appl. Spectrosc. (1)

I. I. Khludeyev, A. S. Tserakh, A. V. Smirnov, S. K. Dick, and V. P. Zorina, “Speckle optical monitoring of blood microcirculation for different types of treatment of the vascular system,” J. Appl. Spectrosc.80(2), 299–304 (2013).
[CrossRef]

J. Biomed. Opt. (5)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
[CrossRef] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996).
[CrossRef] [PubMed]

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (8)

N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

I. R. Winship, “Improved cerebral blood flow measurement with multiexposure speckle imaging,” J. Cereb. Blood Flow Metab.33(6), 797 (2013).
[CrossRef] [PubMed]

C. Ayata, A. K. Dunn, Y. Gursoy-OZdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser Speckle Flowmetry for the Study of Cerebrovascular Physiology in Normal and Ischemic Mouse Cortex,” J. Cereb. Blood Flow Metab.24(7), 744–755 (2004).
[CrossRef] [PubMed]

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, “Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations,” J. Cereb. Blood Flow Metab.26(5), 645–653 (2006).
[CrossRef] [PubMed]

N. Hecht, J. Woitzik, S. König, P. Horn, and P. Vajkoczy, “Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures,” J. Cereb. Blood Flow Metab.33(7), 1000–1007 (2013).
[CrossRef] [PubMed]

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
[CrossRef] [PubMed]

G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab.30(8), 1432–1436 (2010).
[CrossRef] [PubMed]

Lasers Med. Sci. (1)

J. Ren, P. Li, H. Zhao, D. Chen, J. Zhen, Y. Wang, Y. Wang, and Y. Gu, “Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study,” Lasers Med. Sci.29, 1–8 (2013).
[PubMed]

Lasers Surg. Med. (2)

Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive Blood Flow Imaging for Real-Time Feedback During Laser Therapy of Port Wine Stain Birthmarks,” Lasers Surg. Med.40(3), 167–173 (2008).
[CrossRef] [PubMed]

W. Jia, V. Sun, N. Tran, B. Choi, S. W. Liu, M. C. Mihm, T. L. Phung, and J. S. Nelson, “Long-Term Blood Vessel Removal With Combined Laser and Topical Rapamycin Antiangiogenic Therapy: Implications for Effective Port Wine Stain Treatment,” Lasers Surg. Med.42(2), 105–112 (2010).
[CrossRef] [PubMed]

Microvasc. Res. (1)

F. Domoki, D. Zölei, O. Oláh, V. Tóth-Szuki, B. Hopp, F. Bari, and T. Smausz, “Evaluation of laser-speckle contrast image analysis techniques in the cortical microcirculation of piglets,” Microvasc. Res.83(3), 311–317 (2012).
[CrossRef] [PubMed]

Neuroimage (1)

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage27(2), 279–290 (2005).
[CrossRef] [PubMed]

Neurosurg. Focus (1)

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009).
[CrossRef] [PubMed]

Neurosurgery (1)

E. L. Towle, L. M. Richards, S. M. S. Kazmi, D. J. Fox, and A. K. Dunn, “Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion,” Neurosurgery71(5), 1023–1030 (2012).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Opt. Express (1)

Science (1)

H. Karatas, S. E. Erdener, Y. Gursoy-Ozdemir, S. Lule, E. Eren-Koçak, Z. D. Sen, and T. Dalkara, “Spreading Depression Triggers Headache by Activating Neuronal Panx1 Channels,” Science339(6123), 1092–1095 (2013).
[CrossRef] [PubMed]

Trends Pharmacol. Sci. (1)

M. Roustit and J.-L. Cracowski, “Assessment of endothelial and neurovascular function in human skin microcirculation,” Trends Pharmacol. Sci.34(7), 373–384 (2013).
[CrossRef] [PubMed]

Other (2)

J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser Speckle Contrast Imaging: Theory, Instrumentation and Applications,” Biomed. Eng. IEEE Rev. In 6, 99–110 (2013).

B. Ruaro, A. Sulli, E. Alessandri, C. Pizzorni, G. Ferrari, and M. Cutolo, “Laser speckle contrast analysis: a new method to evaluate peripheral blood perfusion in systemic sclerosis patients,” Ann. Rheum. Dis. annrheumdis–2013–203514 (2014).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Multi-Exposure Speckle Imaging (MESI) schematic. (b) Representative single exposure speckle contrast images (15 exposures total, 8 shown). (c) Speckle contrast (or variance) dependence on camera exposure duration from a single vascular region of interest. (d) MESI inverse correlation time (ICT) image of flow computed from 15 exposures. Darker pixels are linearly representative of increasing flow. Scale bar = 150 µm.

Fig. 2
Fig. 2

Exposure reduction optimization protocol is shown. Data taken with the full set of exposures is mined to find the minimum number and specific exposures necessary for obtaining quantitative microvascular flow mapping with Multi-Exposure Speckle Imaging.

Fig. 3
Fig. 3

(a) Number of regions of interest (ROIs) with the corresponding inverse correlation times (ICTs) across all animals (n = 314 regions). (b) Red blood cell (RBC) speeds and their corresponding volumetric flux or flow versus vessel caliber. (c) Relative ICTs regressed against relative RBC speeds across all regions and animals. (d) Animal by animal percent deviations (yellow bars) between RBC tracking and MESI flow dynamics along with correlations of their chronic flow dynamics (gray bars). Averages ± std. dev. (errorbars) are across vascular regions.

Fig. 4
Fig. 4

(a) Speckle contrast (K) images at each of the 15 exposure durations (T). (b) Speckle variance curves, K2(T), from mouse cortical microvasculature as a function of exposure duration. Curves were collected from chronic MESI imaging of mice under baseline, occlusion, and vascular remodeling phases. A lumped variance term, υ, which combines the non-ergodic and noise variances from Eq. (2), is shown for simplicity along with the other fit parameters of τc, ρ, and β.

Fig. 5
Fig. 5

Speckle contrast sensitivities (in arbitrary units) to (a) absolute and (b) relative blood flows, shown as a function of the ratio of camera exposure duration to speckle autocorrelation time for three different fractions of dynamically scattered light, ρ. Alternatively, (c) absolute and (d) relative speckle flow sensitivities at specific exposure durations over 5 orders of inverse correlation times for a typical ρ of 0.9. Individual curves correspond to theoretical formulations in Eqs. (3) and (4) with β = 1, covering the full set of 15 camera exposures, T.

Fig. 6
Fig. 6

Absolute percent difference in the best subset computed correlation times and those from the full set of 15 exposures, as modeled by Eq. (2), from the last three iterations of the optimization loop. The 10% cutoff accentuates the pre-established uncertainty criterion. Animals 1-5 comprise baseline flows and Animals 6-9 sample substantial periods of flow reductions. Avg. ± std. dev. across ≥ 30 ROIs are shown for each animal. Exposures comprising each subset are listed (right column) beginning with the Set of 5 in black. Table 2’s third column label needs formatting so that the word Regression remains completely on one line, perhaps by removing the starting indentation.

Fig. 7
Fig. 7

Absolute percent difference in computed correlation times for each subset of 5 exposures and those from the full exposure set. Each subset is identified by the exposure removed. Removal of the 25 msec exposure resulted in the overall lowest deviation across all animals (baseline and occlusion); though omission of the 0.25, 5, or 80 msec exposures also resulted in comparably deviant exposure subsets for animals in the baseline dynamics group (Animals 1-5). Avg. ± std. dev. across at least 30 measurements are shown from each animal.

Fig. 8
Fig. 8

Speckle correlation times obtained with the optimized 6 exposure set regressed with correlation times derived from all 15 original exposures. Speckle correlation times, when expressed inversely, correlate as a flow measure. Coefficients of the regression depict the degree of one-to-one correspondence between correlation times computed from the subset of 6 exposures and the full exposure set over a large range of flows.

Fig. 9
Fig. 9

(a) Speckle contrast (K) images at each exposure from the optimal set of 6 exposure durations (TSet6). Excluded exposures are listed in lighter shade. (b) Speckle variance curves, K2(TSet6), from microvasculature as a function of the optimized set of exposure durations.

Fig. 10
Fig. 10

(a) Absolute, Sa, and (b) relative, Sr, speckle contrast sensitivities in arbitrary units to blood flows and flow dynamics, respectively over inverse correlation times encompassing flows observed in vivo. Individual curves correspond to theoretical formulations in Eqs. (2) and (3), assuming fixed camera exposures, T, for a typical ρ of 0.9. The removed exposure durations are listed in lighter shade for comparison.

Tables (3)

Tables Icon

Table 1 Camera exposure ranges typically adopted for MESI.

Tables Icon

Table 2 Relative optimality of the selected exposure set of 6.

Tables Icon

Table 3 Best Exposure Subset and Average Computational Complexity

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

K( T )= σ s ( T ) I ,
K(T, τ c )= { β ρ 2 e 2x 1+2x 2 x 2 +4βρ( 1ρ ) e x 1+x x 2 + v ne + v noise } 1/2 ,
S a =| dK d(1/ τ c ) | = β τ c 2K x 2 [ ρ(8+3ρx4x7ρ)+4ρ(ρ1)(x+2)exp(x) ρ 2 (x+1)exp(2x) ],
S r =| dK/K d(1/ τ c )/(1/ τ c ) | = β 2 K 2 x 2 [ ρ(8+3ρx4x7ρ)+4ρ(ρ1)(x+2)exp(x) ρ 2 (x+1)exp(2x) ].

Metrics