Abstract

We use a hemispheric sapphire lens in combination with an off-axis parabolic mirror to demonstrate high-resolution vibrationally resonant sum-frequency generation (VR-SFG) microscopy in the mid-infrared range. With the sapphire lens as an immersed solid medium, the numerical aperture (NA) of the parabolic mirror objective is enhanced by a factor of 1.72, from 0.42 to 0.72, close to the theoretical value of 1.76 ( = nsapphire). The measured lateral resolution is as high as 0.64 μm. We show the practical utility of the sapphire immersion lens by imaging collagen-rich tissues with and without the solid immersion lens.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, Boca Raton, 2011).
  2. F. Garczarek and K. Gerwert, “Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy,” Nature439(7072), 109–112 (2006).
    [CrossRef] [PubMed]
  3. R. Mendelsohn, H. C. Chen, M. E. Rerek, and D. J. Moore, “Infrared microspectroscopic imaging maps the spatial distribution of exogenous molecules in skin,” J. Biomed. Opt.8(2), 185–190 (2003).
    [CrossRef] [PubMed]
  4. K. Inoue, N. Bokor, S. Kogure, M. Fujii, and M. Sakai, “Two-point-separation in a sub-micron nonscanning IR super-resolution microscope based on transient fluorescence detected IR spectroscopy,” Opt. Express17(14), 12013–12018 (2009).
    [CrossRef] [PubMed]
  5. E. S. Lee and J. Y. Lee, “High resolution cellular imaging with nonlinear optical infrared microscopy,” Opt. Express19(2), 1378–1384 (2011).
    [CrossRef] [PubMed]
  6. V. Raghunathan, Y. Han, O. Korth, N. H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett.36(19), 3891–3893 (2011).
    [CrossRef] [PubMed]
  7. Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B117(20), 6149–6156 (2013).
    [CrossRef] [PubMed]
  8. M. Flörsheimer, C. Brillert, and H. Fuchs, “Chemical imaging of interfaces by sum frequency microscopy,” Langmuir15(17), 5437–5439 (1999).
    [CrossRef]
  9. K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
    [CrossRef]
  10. K. A. Cimatu and S. Baldelli, “Chemical microscopy of surfaces by sum frequency generation imaging,” J. Phys. Chem. C113(38), 16575–16588 (2009).
    [CrossRef]
  11. H. C. Hieu, N. A. Tuan, H. Li, Y. Miyauchi, and G. Mizutani, “Sum frequency generation microscopy study of cellulose fibers,” Appl. Spectrosc.65(11), 1254–1259 (2011).
    [CrossRef] [PubMed]
  12. J. H. Jang, J. Jacob, G. Santos, T. R. Lee, and S. Baldelli, “Image contrast in sum-frequency generation microscopy based on monolayer order and coverage,” J. Phys. Chem. C117(29), 15192–15202 (2013).
    [CrossRef]
  13. D. S. Grey, “A new series of microscope objectives; Preliminary investigation of catadioptric Schwarzschild systems,” J. Opt. Soc. Am.39(9), 723–728 (1949).
    [CrossRef] [PubMed]
  14. S. T. Yang, R. L. Hsieh, Y. H. Lee, R. F. W. Pease, and G. Owen, “Effect of central obscuration on image formation in projection lithography,” Proc. SPIE1264, 477–485 (1990).
    [CrossRef]
  15. N. Olivier, D. DéBarre, P. Mahou, and E. Beaurepaire, “Third-harmonic generation microscopy with Bessel beams: a numerical study,” Opt. Express20(22), 24886–24902 (2012).
    [CrossRef] [PubMed]
  16. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
    [CrossRef]
  17. L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett.72(22), 2779–2781 (1998).
    [CrossRef]
  18. Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett.83(13), 2652–2655 (1999).
    [CrossRef]
  19. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett.75(26), 4064–4066 (1999).
    [CrossRef]
  20. D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
    [CrossRef]
  21. S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78(26), 4071–4073 (2001).
    [CrossRef]
  22. K. Cohn, D. Simanovskii, T. Smith, and D. Palanker, “Transient photoinduced diffractive solid immersion lens for infrared microscopy,” Appl. Phys. Lett.81(19), 3678–3680 (2002).
    [CrossRef]
  23. B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett.68(2), 141–143 (1996).
    [CrossRef]
  24. T. D. Milster, “Near-field optical data storage: avenues for improved performance,” Opt. Eng.40(10), 2255–2260 (2001).
    [CrossRef]
  25. Y. Lu, J. Xie, J. Jhang, H. Ming, and P. Wang, “Increased the storage density of solid immersion lens system by high-pass angular spectrum filter method,” Opt. Commun.203(1-2), 87–92 (2002).
    [CrossRef]
  26. T. S. Song, H. D. Kwon, Y. J. Yoon, K. S. Jung, N. C. Park, and Y. P. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1082–1089 (2003).
    [CrossRef]
  27. M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instrum. Methods Phys. Res. B144(1-4), 246–255 (1998).
    [CrossRef]
  28. M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys.85(9), 6923–6925 (1999).
    [CrossRef]

2013 (2)

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B117(20), 6149–6156 (2013).
[CrossRef] [PubMed]

J. H. Jang, J. Jacob, G. Santos, T. R. Lee, and S. Baldelli, “Image contrast in sum-frequency generation microscopy based on monolayer order and coverage,” J. Phys. Chem. C117(29), 15192–15202 (2013).
[CrossRef]

2012 (1)

2011 (3)

2009 (2)

2006 (1)

F. Garczarek and K. Gerwert, “Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy,” Nature439(7072), 109–112 (2006).
[CrossRef] [PubMed]

2003 (3)

R. Mendelsohn, H. C. Chen, M. E. Rerek, and D. J. Moore, “Infrared microspectroscopic imaging maps the spatial distribution of exogenous molecules in skin,” J. Biomed. Opt.8(2), 185–190 (2003).
[CrossRef] [PubMed]

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
[CrossRef]

T. S. Song, H. D. Kwon, Y. J. Yoon, K. S. Jung, N. C. Park, and Y. P. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1082–1089 (2003).
[CrossRef]

2002 (2)

K. Cohn, D. Simanovskii, T. Smith, and D. Palanker, “Transient photoinduced diffractive solid immersion lens for infrared microscopy,” Appl. Phys. Lett.81(19), 3678–3680 (2002).
[CrossRef]

Y. Lu, J. Xie, J. Jhang, H. Ming, and P. Wang, “Increased the storage density of solid immersion lens system by high-pass angular spectrum filter method,” Opt. Commun.203(1-2), 87–92 (2002).
[CrossRef]

2001 (2)

T. D. Milster, “Near-field optical data storage: avenues for improved performance,” Opt. Eng.40(10), 2255–2260 (2001).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78(26), 4071–4073 (2001).
[CrossRef]

2000 (1)

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

1999 (4)

Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett.83(13), 2652–2655 (1999).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett.75(26), 4064–4066 (1999).
[CrossRef]

M. Flörsheimer, C. Brillert, and H. Fuchs, “Chemical imaging of interfaces by sum frequency microscopy,” Langmuir15(17), 5437–5439 (1999).
[CrossRef]

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys.85(9), 6923–6925 (1999).
[CrossRef]

1998 (2)

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instrum. Methods Phys. Res. B144(1-4), 246–255 (1998).
[CrossRef]

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett.72(22), 2779–2781 (1998).
[CrossRef]

1996 (1)

B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett.68(2), 141–143 (1996).
[CrossRef]

1990 (2)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

S. T. Yang, R. L. Hsieh, Y. H. Lee, R. F. W. Pease, and G. Owen, “Effect of central obscuration on image formation in projection lithography,” Proc. SPIE1264, 477–485 (1990).
[CrossRef]

1949 (1)

Akiyama, H.

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys.85(9), 6923–6925 (1999).
[CrossRef]

Baba, M.

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys.85(9), 6923–6925 (1999).
[CrossRef]

Baldelli, S.

J. H. Jang, J. Jacob, G. Santos, T. R. Lee, and S. Baldelli, “Image contrast in sum-frequency generation microscopy based on monolayer order and coverage,” J. Phys. Chem. C117(29), 15192–15202 (2013).
[CrossRef]

K. A. Cimatu and S. Baldelli, “Chemical microscopy of surfaces by sum frequency generation imaging,” J. Phys. Chem. C113(38), 16575–16588 (2009).
[CrossRef]

Beaurepaire, E.

Bittner, A. M.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
[CrossRef]

Bokor, N.

Brillert, C.

M. Flörsheimer, C. Brillert, and H. Fuchs, “Chemical imaging of interfaces by sum frequency microscopy,” Langmuir15(17), 5437–5439 (1999).
[CrossRef]

Chen, H. C.

R. Mendelsohn, H. C. Chen, M. E. Rerek, and D. J. Moore, “Infrared microspectroscopic imaging maps the spatial distribution of exogenous molecules in skin,” J. Biomed. Opt.8(2), 185–190 (2003).
[CrossRef] [PubMed]

Chung, C. Y.

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B117(20), 6149–6156 (2013).
[CrossRef] [PubMed]

Cimatu, K. A.

K. A. Cimatu and S. Baldelli, “Chemical microscopy of surfaces by sum frequency generation imaging,” J. Phys. Chem. C113(38), 16575–16588 (2009).
[CrossRef]

Cohn, K.

K. Cohn, D. Simanovskii, T. Smith, and D. Palanker, “Transient photoinduced diffractive solid immersion lens for infrared microscopy,” Appl. Phys. Lett.81(19), 3678–3680 (2002).
[CrossRef]

Crozier, K. B.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

DéBarre, D.

Dokholyan, N. V.

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instrum. Methods Phys. Res. B144(1-4), 246–255 (1998).
[CrossRef]

Elings, V. B.

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett.72(22), 2779–2781 (1998).
[CrossRef]

Erramilli, S.

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instrum. Methods Phys. Res. B144(1-4), 246–255 (1998).
[CrossRef]

Feke, G. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett.75(26), 4064–4066 (1999).
[CrossRef]

Feng, R. R.

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B117(20), 6149–6156 (2013).
[CrossRef] [PubMed]

Feng, Y.

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B117(20), 6149–6156 (2013).
[CrossRef] [PubMed]

Fletcher, D. A.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

Flörsheimer, M.

M. Flörsheimer, C. Brillert, and H. Fuchs, “Chemical imaging of interfaces by sum frequency microscopy,” Langmuir15(17), 5437–5439 (1999).
[CrossRef]

Fuchs, H.

M. Flörsheimer, C. Brillert, and H. Fuchs, “Chemical imaging of interfaces by sum frequency microscopy,” Langmuir15(17), 5437–5439 (1999).
[CrossRef]

Fujii, M.

Gammon, D.

Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett.83(13), 2652–2655 (1999).
[CrossRef]

Garczarek, F.

F. Garczarek and K. Gerwert, “Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy,” Nature439(7072), 109–112 (2006).
[CrossRef] [PubMed]

Ge, N. H.

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B117(20), 6149–6156 (2013).
[CrossRef] [PubMed]

V. Raghunathan, Y. Han, O. Korth, N. H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett.36(19), 3891–3893 (2011).
[CrossRef] [PubMed]

Gerwert, K.

F. Garczarek and K. Gerwert, “Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy,” Nature439(7072), 109–112 (2006).
[CrossRef] [PubMed]

Ghislain, L. P.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett.75(26), 4064–4066 (1999).
[CrossRef]

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett.72(22), 2779–2781 (1998).
[CrossRef]

Goldberg, B. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78(26), 4071–4073 (2001).
[CrossRef]

Goodson, K. E.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

Grey, D. S.

Grober, R. D.

Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett.83(13), 2652–2655 (1999).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett.75(26), 4064–4066 (1999).
[CrossRef]

Han, Y.

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B117(20), 6149–6156 (2013).
[CrossRef] [PubMed]

V. Raghunathan, Y. Han, O. Korth, N. H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett.36(19), 3891–3893 (2011).
[CrossRef] [PubMed]

Hieu, H. C.

Hoffmann, D. M. P.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
[CrossRef]

Hong, M. K.

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instrum. Methods Phys. Res. B144(1-4), 246–255 (1998).
[CrossRef]

Hsieh, R. L.

S. T. Yang, R. L. Hsieh, Y. H. Lee, R. F. W. Pease, and G. Owen, “Effect of central obscuration on image formation in projection lithography,” Proc. SPIE1264, 477–485 (1990).
[CrossRef]

Huie, P.

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instrum. Methods Phys. Res. B144(1-4), 246–255 (1998).
[CrossRef]

Inoue, K.

Ippolito, S. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78(26), 4071–4073 (2001).
[CrossRef]

Jacob, J.

J. H. Jang, J. Jacob, G. Santos, T. R. Lee, and S. Baldelli, “Image contrast in sum-frequency generation microscopy based on monolayer order and coverage,” J. Phys. Chem. C117(29), 15192–15202 (2013).
[CrossRef]

Jang, J. H.

J. H. Jang, J. Jacob, G. Santos, T. R. Lee, and S. Baldelli, “Image contrast in sum-frequency generation microscopy based on monolayer order and coverage,” J. Phys. Chem. C117(29), 15192–15202 (2013).
[CrossRef]

Jeung, A. G.

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instrum. Methods Phys. Res. B144(1-4), 246–255 (1998).
[CrossRef]

Jhang, J.

Y. Lu, J. Xie, J. Jhang, H. Ming, and P. Wang, “Increased the storage density of solid immersion lens system by high-pass angular spectrum filter method,” Opt. Commun.203(1-2), 87–92 (2002).
[CrossRef]

Jung, K. S.

T. S. Song, H. D. Kwon, Y. J. Yoon, K. S. Jung, N. C. Park, and Y. P. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1082–1089 (2003).
[CrossRef]

Katzer, D. S.

Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett.83(13), 2652–2655 (1999).
[CrossRef]

Kern, K.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
[CrossRef]

Kino, G. S.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

Kogure, S.

Korth, O.

Kuhnke, K.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
[CrossRef]

Kwon, H. D.

T. S. Song, H. D. Kwon, Y. J. Yoon, K. S. Jung, N. C. Park, and Y. P. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1082–1089 (2003).
[CrossRef]

Lee, E. S.

Lee, J. Y.

Lee, T. R.

J. H. Jang, J. Jacob, G. Santos, T. R. Lee, and S. Baldelli, “Image contrast in sum-frequency generation microscopy based on monolayer order and coverage,” J. Phys. Chem. C117(29), 15192–15202 (2013).
[CrossRef]

Lee, Y. H.

S. T. Yang, R. L. Hsieh, Y. H. Lee, R. F. W. Pease, and G. Owen, “Effect of central obscuration on image formation in projection lithography,” Proc. SPIE1264, 477–485 (1990).
[CrossRef]

Li, H.

Lu, Y.

Y. Lu, J. Xie, J. Jhang, H. Ming, and P. Wang, “Increased the storage density of solid immersion lens system by high-pass angular spectrum filter method,” Opt. Commun.203(1-2), 87–92 (2002).
[CrossRef]

Maekawa, H.

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B117(20), 6149–6156 (2013).
[CrossRef] [PubMed]

Mahou, P.

Mamin, H. J.

B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett.68(2), 141–143 (1996).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

Mendelsohn, R.

R. Mendelsohn, H. C. Chen, M. E. Rerek, and D. J. Moore, “Infrared microspectroscopic imaging maps the spatial distribution of exogenous molecules in skin,” J. Biomed. Opt.8(2), 185–190 (2003).
[CrossRef] [PubMed]

Milster, T. D.

T. D. Milster, “Near-field optical data storage: avenues for improved performance,” Opt. Eng.40(10), 2255–2260 (2001).
[CrossRef]

Ming, H.

Y. Lu, J. Xie, J. Jhang, H. Ming, and P. Wang, “Increased the storage density of solid immersion lens system by high-pass angular spectrum filter method,” Opt. Commun.203(1-2), 87–92 (2002).
[CrossRef]

Miyauchi, Y.

Mizutani, G.

Moore, D. J.

R. Mendelsohn, H. C. Chen, M. E. Rerek, and D. J. Moore, “Infrared microspectroscopic imaging maps the spatial distribution of exogenous molecules in skin,” J. Biomed. Opt.8(2), 185–190 (2003).
[CrossRef] [PubMed]

Olivier, N.

Owen, G.

S. T. Yang, R. L. Hsieh, Y. H. Lee, R. F. W. Pease, and G. Owen, “Effect of central obscuration on image formation in projection lithography,” Proc. SPIE1264, 477–485 (1990).
[CrossRef]

Palanker, D.

K. Cohn, D. Simanovskii, T. Smith, and D. Palanker, “Transient photoinduced diffractive solid immersion lens for infrared microscopy,” Appl. Phys. Lett.81(19), 3678–3680 (2002).
[CrossRef]

Palanker, D. V.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

Park, N. C.

T. S. Song, H. D. Kwon, Y. J. Yoon, K. S. Jung, N. C. Park, and Y. P. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1082–1089 (2003).
[CrossRef]

Park, Y. P.

T. S. Song, H. D. Kwon, Y. J. Yoon, K. S. Jung, N. C. Park, and Y. P. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1082–1089 (2003).
[CrossRef]

Pease, R. F. W.

S. T. Yang, R. L. Hsieh, Y. H. Lee, R. F. W. Pease, and G. Owen, “Effect of central obscuration on image formation in projection lithography,” Proc. SPIE1264, 477–485 (1990).
[CrossRef]

Potma, E. O.

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B117(20), 6149–6156 (2013).
[CrossRef] [PubMed]

V. Raghunathan, Y. Han, O. Korth, N. H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett.36(19), 3891–3893 (2011).
[CrossRef] [PubMed]

Quate, C. F.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

Raghunathan, V.

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B117(20), 6149–6156 (2013).
[CrossRef] [PubMed]

V. Raghunathan, Y. Han, O. Korth, N. H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett.36(19), 3891–3893 (2011).
[CrossRef] [PubMed]

Rerek, M. E.

R. Mendelsohn, H. C. Chen, M. E. Rerek, and D. J. Moore, “Infrared microspectroscopic imaging maps the spatial distribution of exogenous molecules in skin,” J. Biomed. Opt.8(2), 185–190 (2003).
[CrossRef] [PubMed]

Rugar, D.

B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett.68(2), 141–143 (1996).
[CrossRef]

Sakai, M.

Santos, G.

J. H. Jang, J. Jacob, G. Santos, T. R. Lee, and S. Baldelli, “Image contrast in sum-frequency generation microscopy based on monolayer order and coverage,” J. Phys. Chem. C117(29), 15192–15202 (2013).
[CrossRef]

Sasaki, T.

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys.85(9), 6923–6925 (1999).
[CrossRef]

Schwettman, H. A.

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instrum. Methods Phys. Res. B144(1-4), 246–255 (1998).
[CrossRef]

Simanovskii, D.

K. Cohn, D. Simanovskii, T. Smith, and D. Palanker, “Transient photoinduced diffractive solid immersion lens for infrared microscopy,” Appl. Phys. Lett.81(19), 3678–3680 (2002).
[CrossRef]

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

Smith, T.

K. Cohn, D. Simanovskii, T. Smith, and D. Palanker, “Transient photoinduced diffractive solid immersion lens for infrared microscopy,” Appl. Phys. Lett.81(19), 3678–3680 (2002).
[CrossRef]

Smith, T. I.

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instrum. Methods Phys. Res. B144(1-4), 246–255 (1998).
[CrossRef]

Song, T. S.

T. S. Song, H. D. Kwon, Y. J. Yoon, K. S. Jung, N. C. Park, and Y. P. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1082–1089 (2003).
[CrossRef]

Terris, B. D.

B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett.68(2), 141–143 (1996).
[CrossRef]

Tuan, N. A.

Unlu, M. S.

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78(26), 4071–4073 (2001).
[CrossRef]

Wang, P.

Y. Lu, J. Xie, J. Jhang, H. Ming, and P. Wang, “Increased the storage density of solid immersion lens system by high-pass angular spectrum filter method,” Opt. Commun.203(1-2), 87–92 (2002).
[CrossRef]

Wu, Q.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett.75(26), 4064–4066 (1999).
[CrossRef]

Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett.83(13), 2652–2655 (1999).
[CrossRef]

Wu, X. C.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
[CrossRef]

Xie, J.

Y. Lu, J. Xie, J. Jhang, H. Ming, and P. Wang, “Increased the storage density of solid immersion lens system by high-pass angular spectrum filter method,” Opt. Commun.203(1-2), 87–92 (2002).
[CrossRef]

Yang, S. T.

S. T. Yang, R. L. Hsieh, Y. H. Lee, R. F. W. Pease, and G. Owen, “Effect of central obscuration on image formation in projection lithography,” Proc. SPIE1264, 477–485 (1990).
[CrossRef]

Yoon, Y. J.

T. S. Song, H. D. Kwon, Y. J. Yoon, K. S. Jung, N. C. Park, and Y. P. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1082–1089 (2003).
[CrossRef]

Yoshita, M.

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys.85(9), 6923–6925 (1999).
[CrossRef]

Appl. Phys. Lett. (8)

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
[CrossRef]

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett.72(22), 2779–2781 (1998).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett.75(26), 4064–4066 (1999).
[CrossRef]

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78(26), 4071–4073 (2001).
[CrossRef]

K. Cohn, D. Simanovskii, T. Smith, and D. Palanker, “Transient photoinduced diffractive solid immersion lens for infrared microscopy,” Appl. Phys. Lett.81(19), 3678–3680 (2002).
[CrossRef]

B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett.68(2), 141–143 (1996).
[CrossRef]

Appl. Spectrosc. (1)

J. Appl. Phys. (1)

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys.85(9), 6923–6925 (1999).
[CrossRef]

J. Biomed. Opt. (1)

R. Mendelsohn, H. C. Chen, M. E. Rerek, and D. J. Moore, “Infrared microspectroscopic imaging maps the spatial distribution of exogenous molecules in skin,” J. Biomed. Opt.8(2), 185–190 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B117(20), 6149–6156 (2013).
[CrossRef] [PubMed]

J. Phys. Chem. C (2)

K. A. Cimatu and S. Baldelli, “Chemical microscopy of surfaces by sum frequency generation imaging,” J. Phys. Chem. C113(38), 16575–16588 (2009).
[CrossRef]

J. H. Jang, J. Jacob, G. Santos, T. R. Lee, and S. Baldelli, “Image contrast in sum-frequency generation microscopy based on monolayer order and coverage,” J. Phys. Chem. C117(29), 15192–15202 (2013).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. S. Song, H. D. Kwon, Y. J. Yoon, K. S. Jung, N. C. Park, and Y. P. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1082–1089 (2003).
[CrossRef]

Langmuir (1)

M. Flörsheimer, C. Brillert, and H. Fuchs, “Chemical imaging of interfaces by sum frequency microscopy,” Langmuir15(17), 5437–5439 (1999).
[CrossRef]

Nature (1)

F. Garczarek and K. Gerwert, “Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy,” Nature439(7072), 109–112 (2006).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. B (1)

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instrum. Methods Phys. Res. B144(1-4), 246–255 (1998).
[CrossRef]

Opt. Commun. (1)

Y. Lu, J. Xie, J. Jhang, H. Ming, and P. Wang, “Increased the storage density of solid immersion lens system by high-pass angular spectrum filter method,” Opt. Commun.203(1-2), 87–92 (2002).
[CrossRef]

Opt. Eng. (1)

T. D. Milster, “Near-field optical data storage: avenues for improved performance,” Opt. Eng.40(10), 2255–2260 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett.83(13), 2652–2655 (1999).
[CrossRef]

Proc. SPIE (1)

S. T. Yang, R. L. Hsieh, Y. H. Lee, R. F. W. Pease, and G. Owen, “Effect of central obscuration on image formation in projection lithography,” Proc. SPIE1264, 477–485 (1990).
[CrossRef]

Other (1)

B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, Boca Raton, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of solid immersion VR-SFG microscope. The collinearly overlapped MIR and NIR beams generate the sum frequency signal at 631.1 nm from the sample on the piezo stage. The hemispherical sapphire SIL is combined with the off-axis parabolic mirror (OPM3) to increase the system NA by a factor of nsapphire ( = 1.76). A lateral FWHM of 0.64 μm for the focal excitation volume is achieved in the present setup. OPM, off-axis parabolic mirror; SIL, solid immersion lens; DC, dichroic mirror; BPF, bandpass filter; CL, condenser lens; PMT, photomultiplier tube.

Fig. 2
Fig. 2

Ray tracing and PSF calculation results of solid immersion VR-SFG microscopy. Traced rays from the parabolic mirror (a) without SIL and (b),(c) with SIL. (c) represents the situation that the laser beam focuses 10 μm deep into the water medium. The ray tracing is performed at 775 nm. Focal spot intensity distributions of the corresponding cases calculated (d),(e),(f) at 775 nm and (g),(h),(i) at 3.4 μm. The scale bars are (d),(e),(f) 1 μm and (g),(h),(i) 2 μm. The ray tracings at 3.4 μm are not presented here due to the similarity with those at 775 nm. It is noticeable that no appreciable aberration is induced even though the laser beams focus far beyond the SIL surface.

Fig. 3
Fig. 3

Solid immersion VR-SFG images of barium titanate nano-particles aggregates. The single particle size is 300 nm. Due to the birefringence of sapphire, two duplicated images appeared as in (a) if measured in arbitrary polarization direction. After properly aligning the incident polarization, only a single image was obtained as in (b). The fields of view (FOV) are 60 μm x 60 μm. Notice the bright image in the bottom-left corner of (a), which falls outside the FOV of (b).

Fig. 4
Fig. 4

Point spread function measurement results of VR-SFG microscopy (a) without SIL and (b) with SIL. A single nano-particle of barium titanate was raster-scanned across the focal spot for each case. It is clearly shown that the system NA is enhanced by the sapphire SIL, close to a factor of nsapphire. The red curves are Gaussian fits to the measured data. The inset in (a) shows the focal spot shape (not scaled) encountered when the confocality of two parabolic mirrors in the beam expanding telescope is slightly broken. The fields of view are 11.4 μm x 11.4 μm for both images.

Fig. 5
Fig. 5

(b),(d) Solid immersion VR-SFG microscopic images of biological samples compared to (a),(c) the corresponding images measured without SIL. (a),(b) Rat tail tendon collagen and (c),(d) hawk cornea collagen. The fields of view are 80 μm x 80 μm. The power levels of the parallel polarized NIR and MIR beams were 16 mW and 5 mW at 775 nm and 3.4 μm, respectively.

Metrics