Abstract

Point spread function (PSF) phantoms based on unstructured distributions of sub-resolution particles in a transparent matrix have been demonstrated as a useful tool for evaluating resolution and its spatial variation across image volumes in optical coherence tomography (OCT) systems. Measurements based on PSF phantoms have the potential to become a standard test method for consistent, objective and quantitative inter-comparison of OCT system performance. Towards this end, we have evaluated three PSF phantoms and investigated their ability to compare the performance of four OCT systems. The phantoms are based on 260-nm-diameter gold nanoshells, 400-nm-diameter iron oxide particles and 1.5-micron-diameter silica particles. The OCT systems included spectral-domain and swept source systems in free-beam geometries as well as a time-domain system in both free-beam and fiberoptic probe geometries. Results indicated that iron oxide particles and gold nanoshells were most effective for measuring spatial variations in the magnitude and shape of PSFs across the image volume. The intensity of individual particles was also used to evaluate spatial variations in signal intensity uniformity. Significant system-to-system differences in resolution and signal intensity and their spatial variation were readily quantified. The phantoms proved useful for identification and characterization of irregularities such as astigmatism. Our multi-system results provide evidence of the practical utility of PSF-phantom-based test methods for quantitative inter-comparison of OCT system resolution and signal uniformity.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q (2008).
    [CrossRef]
  2. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010).
    [CrossRef] [PubMed]
  3. G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express3(6), 1381–1398 (2012).
    [CrossRef] [PubMed]
  4. A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express19(20), 19480–19485 (2011).
    [CrossRef] [PubMed]
  5. T. S. Rowe and R. J. Zawadzki, “New developments in eye models with retina tissue phantoms for ophthalmic optical coherence tomography,” Proc. SPIE8229, 822913 (2012).
    [CrossRef]
  6. S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new fourier-domain optical coherence tomography,” EuroIntervention6(7), 875–882 (2011).
    [CrossRef] [PubMed]
  7. A. Agrawal, C.-W. Chen, J. Baxi, Y. Chen, and T. J. Pfefer, “Multilayer thin-film phantoms for axial contrast transfer function measurement in optical coherence tomography,” Biomed. Opt. Express4(7), 1166–1175 (2013).
    [CrossRef] [PubMed]
  8. P. H. Tomlins, R. A. Ferguson, C. Hart, and P. D. Woolliams, “Point-spread function phantoms for optical coherence tomography,” (NPL Report OP 2, Teddington, Middlesex, UK, 2009).
  9. T. J. Pfefer and A. Agrawal, “A review of consensus test methods for established medical imaging modalities and their implications for optical coherence tomography,” Proc. SPIE8215, 82150D (2012).
    [CrossRef]
  10. E. A. Berns, R. E. Hendrick, and G. R. Cutter, “Performance comparison of full-field digital mammography to screen-film mammography in clinical practice,” Med. Phys.29(5), 830–834 (2002).
    [CrossRef] [PubMed]
  11. C.-C. Chen, Y.-L. Wan, Y.-Y. Wai, and H.-L. Liu, “Quality assurance of clinical MRI scanners using ACR MRI phantom: Preliminary results,” J. Digit. Imaging17(4), 279–284 (2004).
    [CrossRef] [PubMed]
  12. D. A. Jaffray and J. H. Siewerdsen, “Cone-beam computed tomography with a flat-panel imager: Initial performance characterization,” Med. Phys.27(6), 1311–1323 (2000).
    [CrossRef] [PubMed]
  13. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: A review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
    [CrossRef] [PubMed]
  14. International Electrotechnical Commission, “Ultrasonics – pulse-echo scanners – part 1: Techniques for calibrating spatial measurement systems and measurement of system point-spread function response,” STD-568116 (Swedish Standards Institute, Geneva, Switzerland, 2006).
  15. G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, and N. Nanninga, “Three-dimensional imaging by confocal scanning fluorescence microscopy,” Ann. N. Y. Acad. Sci.483(1 Recent Advanc), 405–415 (1986).
    [CrossRef] [PubMed]
  16. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt.39(7), 1194–1201 (2000).
    [CrossRef] [PubMed]
  17. S. Hell, “Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering,” in Topics in Fluorescence Spectroscopy; volume 5: Nonlinear and Two-Photon-Induced Fluorescence, J. Lakowicz, ed. (Plenum Press, New York, 1997).
  18. A. Agrawal, M. Connors, A. Beylin, C.-P. Liang, D. Barton, Y. Chen, R. A. Drezek, and T. J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” Biomed. Opt. Express3(5), 1116–1126 (2012).
    [CrossRef] [PubMed]
  19. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010).
    [CrossRef] [PubMed]
  20. P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol.22(6), 065502 (2011).
    [CrossRef]
  21. E. F. Schubert, “Refractive index and extinction coefficient of materials” (2004), retrieved 11/1/2013, http://homepages.rpi.edu/~schubert/Educational-resources/Materials-Refractive-index-and-extinction-coefficient.pdf .
  22. P. Patnaik, Handbook of Inorganic Chemicals (The McGraw-Hill Companies, Inc., 2002).
  23. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55(10), 1205–1209 (1965).
    [CrossRef]
  24. Q. Li, M. L. Onozato, P. M. Andrews, C.-W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (oct),” Opt. Express17(18), 16000–16016 (2009).
    [CrossRef] [PubMed]
  25. D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: An adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
    [CrossRef] [PubMed]
  26. A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
    [CrossRef] [PubMed]
  27. S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: Polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007).
    [CrossRef] [PubMed]
  28. S. Prahl, “Mie scattering calculator (web site)” (2012), retrieved 10/16/2013, http://omlc.ogi.edu/calc/mie_calc.html .
  29. J. Pfefer, A. Fouad, C.-W. Chen, W. Gong, P. Tomlins, P. Woolliams, R. Drezek, A. Agrawal, and Y. Chen, “Multi-system comparison of optical coherence tomography performance with point spread function phantoms,” Proc. SPIE8573, 85730C (2013).
    [CrossRef]
  30. B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004).
    [CrossRef] [PubMed]
  31. S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, “Measurement of the 4pi‐confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett.64(11), 1335–1337 (1994).
    [CrossRef]
  32. A. C. Akcay, J. P. Rolland, and J. M. Eichenholz, “Spectral shaping to improve the point spread function in optical coherence tomography,” Opt. Lett.28(20), 1921–1923 (2003).
    [CrossRef] [PubMed]

2013 (2)

J. Pfefer, A. Fouad, C.-W. Chen, W. Gong, P. Tomlins, P. Woolliams, R. Drezek, A. Agrawal, and Y. Chen, “Multi-system comparison of optical coherence tomography performance with point spread function phantoms,” Proc. SPIE8573, 85730C (2013).
[CrossRef]

A. Agrawal, C.-W. Chen, J. Baxi, Y. Chen, and T. J. Pfefer, “Multilayer thin-film phantoms for axial contrast transfer function measurement in optical coherence tomography,” Biomed. Opt. Express4(7), 1166–1175 (2013).
[CrossRef] [PubMed]

2012 (4)

2011 (3)

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new fourier-domain optical coherence tomography,” EuroIntervention6(7), 875–882 (2011).
[CrossRef] [PubMed]

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol.22(6), 065502 (2011).
[CrossRef]

A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express19(20), 19480–19485 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (1)

2008 (2)

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: An adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q (2008).
[CrossRef]

2007 (2)

S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: Polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007).
[CrossRef] [PubMed]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: A review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

2006 (1)

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

2002 (1)

E. A. Berns, R. E. Hendrick, and G. R. Cutter, “Performance comparison of full-field digital mammography to screen-film mammography in clinical practice,” Med. Phys.29(5), 830–834 (2002).
[CrossRef] [PubMed]

2000 (2)

D. A. Jaffray and J. H. Siewerdsen, “Cone-beam computed tomography with a flat-panel imager: Initial performance characterization,” Med. Phys.27(6), 1311–1323 (2000).
[CrossRef] [PubMed]

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt.39(7), 1194–1201 (2000).
[CrossRef] [PubMed]

1994 (1)

S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, “Measurement of the 4pi‐confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett.64(11), 1335–1337 (1994).
[CrossRef]

1986 (1)

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, and N. Nanninga, “Three-dimensional imaging by confocal scanning fluorescence microscopy,” Ann. N. Y. Acad. Sci.483(1 Recent Advanc), 405–415 (1986).
[CrossRef] [PubMed]

1965 (1)

Agrawal, A.

J. Pfefer, A. Fouad, C.-W. Chen, W. Gong, P. Tomlins, P. Woolliams, R. Drezek, A. Agrawal, and Y. Chen, “Multi-system comparison of optical coherence tomography performance with point spread function phantoms,” Proc. SPIE8573, 85730C (2013).
[CrossRef]

A. Agrawal, C.-W. Chen, J. Baxi, Y. Chen, and T. J. Pfefer, “Multilayer thin-film phantoms for axial contrast transfer function measurement in optical coherence tomography,” Biomed. Opt. Express4(7), 1166–1175 (2013).
[CrossRef] [PubMed]

A. Agrawal, M. Connors, A. Beylin, C.-P. Liang, D. Barton, Y. Chen, R. A. Drezek, and T. J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” Biomed. Opt. Express3(5), 1116–1126 (2012).
[CrossRef] [PubMed]

T. J. Pfefer and A. Agrawal, “A review of consensus test methods for established medical imaging modalities and their implications for optical coherence tomography,” Proc. SPIE8215, 82150D (2012).
[CrossRef]

A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010).
[CrossRef] [PubMed]

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

Akcay, A. C.

Andrews, P. M.

Baibars, M.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new fourier-domain optical coherence tomography,” EuroIntervention6(7), 875–882 (2011).
[CrossRef] [PubMed]

Barnaby, A. M.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: An adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

Barton, D.

Barton, J. K.

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

Baxi, J.

Beaumont, A.

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q (2008).
[CrossRef]

Berns, E. A.

E. A. Berns, R. E. Hendrick, and G. R. Cutter, “Performance comparison of full-field digital mammography to screen-film mammography in clinical practice,” Med. Phys.29(5), 830–834 (2002).
[CrossRef] [PubMed]

Berns, M. W.

Beylin, A.

Bezerra, H. G.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new fourier-domain optical coherence tomography,” EuroIntervention6(7), 875–882 (2011).
[CrossRef] [PubMed]

Bigelow, C. E.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: An adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

Bisaillon, C.-E.

Boppart, S. A.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: A review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

Bouma, B.

Brakenhoff, G. J.

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, and N. Nanninga, “Three-dimensional imaging by confocal scanning fluorescence microscopy,” Ann. N. Y. Acad. Sci.483(1 Recent Advanc), 405–415 (1986).
[CrossRef] [PubMed]

Cable, A.

Campbell, G.

Cense, B.

Chen, C.-C.

C.-C. Chen, Y.-L. Wan, Y.-Y. Wai, and H.-L. Liu, “Quality assurance of clinical MRI scanners using ACR MRI phantom: Preliminary results,” J. Digit. Imaging17(4), 279–284 (2004).
[CrossRef] [PubMed]

Chen, C.-W.

Chen, T.

Chen, Y.

Coleno, M.

Connors, M.

Costa, M. A.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new fourier-domain optical coherence tomography,” EuroIntervention6(7), 875–882 (2011).
[CrossRef] [PubMed]

Cremer, C.

S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, “Measurement of the 4pi‐confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett.64(11), 1335–1337 (1994).
[CrossRef]

Curatolo, A.

Cutter, G. R.

E. A. Berns, R. E. Hendrick, and G. R. Cutter, “Performance comparison of full-field digital mammography to screen-film mammography in clinical practice,” Med. Phys.29(5), 830–834 (2002).
[CrossRef] [PubMed]

de Boer, J.

Drezek, R.

J. Pfefer, A. Fouad, C.-W. Chen, W. Gong, P. Tomlins, P. Woolliams, R. Drezek, A. Agrawal, and Y. Chen, “Multi-system comparison of optical coherence tomography performance with point spread function phantoms,” Proc. SPIE8573, 85730C (2013).
[CrossRef]

A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010).
[CrossRef] [PubMed]

Drezek, R. A.

A. Agrawal, M. Connors, A. Beylin, C.-P. Liang, D. Barton, Y. Chen, R. A. Drezek, and T. J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” Biomed. Opt. Express3(5), 1116–1126 (2012).
[CrossRef] [PubMed]

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

Dunn, A. K.

Eichenholz, J. M.

Ferguson, R. A.

Ferguson, R. D.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: An adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

Fouad, A.

J. Pfefer, A. Fouad, C.-W. Chen, W. Gong, P. Tomlins, P. Woolliams, R. Drezek, A. Agrawal, and Y. Chen, “Multi-system comparison of optical coherence tomography performance with point spread function phantoms,” Proc. SPIE8573, 85730C (2013).
[CrossRef]

Fulton, A. B.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: An adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

Gilani, N.

Gong, W.

J. Pfefer, A. Fouad, C.-W. Chen, W. Gong, P. Tomlins, P. Woolliams, R. Drezek, A. Agrawal, and Y. Chen, “Multi-system comparison of optical coherence tomography performance with point spread function phantoms,” Proc. SPIE8573, 85730C (2013).
[CrossRef]

Grimwood, A.

Hammer, D. X.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: An adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

Hart, C.

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010).
[CrossRef] [PubMed]

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q (2008).
[CrossRef]

Hell, S. W.

S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, “Measurement of the 4pi‐confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett.64(11), 1335–1337 (1994).
[CrossRef]

Hendrick, R. E.

E. A. Berns, R. E. Hendrick, and G. R. Cutter, “Performance comparison of full-field digital mammography to screen-film mammography in clinical practice,” Med. Phys.29(5), 830–834 (2002).
[CrossRef] [PubMed]

Huang, S.

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

Iftimia, N. V.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: An adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

Jaffray, D. A.

D. A. Jaffray and J. H. Siewerdsen, “Cone-beam computed tomography with a flat-panel imager: Initial performance characterization,” Med. Phys.27(6), 1311–1323 (2000).
[CrossRef] [PubMed]

Jiang, J.

Kennedy, B. F.

Kennedy, K. M.

Kyono, H.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new fourier-domain optical coherence tomography,” EuroIntervention6(7), 875–882 (2011).
[CrossRef] [PubMed]

Lamouche, G.

Lee, M. H.

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

Li, Q.

Liang, C.-P.

Lindek, S.

S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, “Measurement of the 4pi‐confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett.64(11), 1335–1337 (1994).
[CrossRef]

Liu, H.-L.

C.-C. Chen, Y.-L. Wan, Y.-Y. Wai, and H.-L. Liu, “Quality assurance of clinical MRI scanners using ACR MRI phantom: Preliminary results,” J. Digit. Imaging17(4), 279–284 (2004).
[CrossRef] [PubMed]

Lu, J. R.

S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: Polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007).
[CrossRef] [PubMed]

Malitson, I. H.

Marks, D. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: A review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

Mehanna, E.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new fourier-domain optical coherence tomography,” EuroIntervention6(7), 875–882 (2011).
[CrossRef] [PubMed]

Nanninga, N.

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, and N. Nanninga, “Three-dimensional imaging by confocal scanning fluorescence microscopy,” Ann. N. Y. Acad. Sci.483(1 Recent Advanc), 405–415 (1986).
[CrossRef] [PubMed]

Naphas, R.

Nassif, N.

Nguyen, F. T.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: A review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

Oldenburg, A. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: A review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

Onozato, M. L.

Paek, A.

Park, B.

Pazos, V.

Petersen, C. L.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new fourier-domain optical coherence tomography,” EuroIntervention6(7), 875–882 (2011).
[CrossRef] [PubMed]

Pfefer, J.

J. Pfefer, A. Fouad, C.-W. Chen, W. Gong, P. Tomlins, P. Woolliams, R. Drezek, A. Agrawal, and Y. Chen, “Multi-system comparison of optical coherence tomography performance with point spread function phantoms,” Proc. SPIE8573, 85730C (2013).
[CrossRef]

Pfefer, T. J.

Pierce, M.

Pokras, S.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new fourier-domain optical coherence tomography,” EuroIntervention6(7), 875–882 (2011).
[CrossRef] [PubMed]

Rogers, S. S.

S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: Polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007).
[CrossRef] [PubMed]

Rolland, J. P.

Rowe, T. S.

T. S. Rowe and R. J. Zawadzki, “New developments in eye models with retina tissue phantoms for ophthalmic optical coherence tomography,” Proc. SPIE8229, 822913 (2012).
[CrossRef]

Sampson, D. D.

Siewerdsen, J. H.

D. A. Jaffray and J. H. Siewerdsen, “Cone-beam computed tomography with a flat-panel imager: Initial performance characterization,” Med. Phys.27(6), 1311–1323 (2000).
[CrossRef] [PubMed]

Stelzer, E. H. K.

S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, “Measurement of the 4pi‐confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett.64(11), 1335–1337 (1994).
[CrossRef]

Tahara, S.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new fourier-domain optical coherence tomography,” EuroIntervention6(7), 875–882 (2011).
[CrossRef] [PubMed]

Tearney, G.

Tedaldi, M.

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q (2008).
[CrossRef]

Tomlins, P.

J. Pfefer, A. Fouad, C.-W. Chen, W. Gong, P. Tomlins, P. Woolliams, R. Drezek, A. Agrawal, and Y. Chen, “Multi-system comparison of optical coherence tomography performance with point spread function phantoms,” Proc. SPIE8573, 85730C (2013).
[CrossRef]

Tomlins, P. H.

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol.22(6), 065502 (2011).
[CrossRef]

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010).
[CrossRef] [PubMed]

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q (2008).
[CrossRef]

Tromberg, B. J.

Ustun, T. E.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: An adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

van der Voort, H. T. M.

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, and N. Nanninga, “Three-dimensional imaging by confocal scanning fluorescence microscopy,” Ann. N. Y. Acad. Sci.483(1 Recent Advanc), 405–415 (1986).
[CrossRef] [PubMed]

van Spronsen, E. A.

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, and N. Nanninga, “Three-dimensional imaging by confocal scanning fluorescence microscopy,” Ann. N. Y. Acad. Sci.483(1 Recent Advanc), 405–415 (1986).
[CrossRef] [PubMed]

Wai, Y.-Y.

C.-C. Chen, Y.-L. Wan, Y.-Y. Wai, and H.-L. Liu, “Quality assurance of clinical MRI scanners using ACR MRI phantom: Preliminary results,” J. Digit. Imaging17(4), 279–284 (2004).
[CrossRef] [PubMed]

Waigh, T. A.

S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: Polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007).
[CrossRef] [PubMed]

Wallace, V. P.

Wan, Y.-L.

C.-C. Chen, Y.-L. Wan, Y.-Y. Wai, and H.-L. Liu, “Quality assurance of clinical MRI scanners using ACR MRI phantom: Preliminary results,” J. Digit. Imaging17(4), 279–284 (2004).
[CrossRef] [PubMed]

Wang, W.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new fourier-domain optical coherence tomography,” EuroIntervention6(7), 875–882 (2011).
[CrossRef] [PubMed]

Wei Haw Lin, A.

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

Woolliams, P.

J. Pfefer, A. Fouad, C.-W. Chen, W. Gong, P. Tomlins, P. Woolliams, R. Drezek, A. Agrawal, and Y. Chen, “Multi-system comparison of optical coherence tomography performance with point spread function phantoms,” Proc. SPIE8573, 85730C (2013).
[CrossRef]

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q (2008).
[CrossRef]

Woolliams, P. D.

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol.22(6), 065502 (2011).
[CrossRef]

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010).
[CrossRef] [PubMed]

Yuan, S.

Yun, S.-H.

Zawadzki, R. J.

T. S. Rowe and R. J. Zawadzki, “New developments in eye models with retina tissue phantoms for ophthalmic optical coherence tomography,” Proc. SPIE8229, 822913 (2012).
[CrossRef]

Zhao, X.

S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: Polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007).
[CrossRef] [PubMed]

Zysk, A. M.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: A review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

Ann. N. Y. Acad. Sci. (1)

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, and N. Nanninga, “Three-dimensional imaging by confocal scanning fluorescence microscopy,” Ann. N. Y. Acad. Sci.483(1 Recent Advanc), 405–415 (1986).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, “Measurement of the 4pi‐confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett.64(11), 1335–1337 (1994).
[CrossRef]

Biomed. Opt. Express (3)

EuroIntervention (1)

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new fourier-domain optical coherence tomography,” EuroIntervention6(7), 875–882 (2011).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: An adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: A review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

J. Digit. Imaging (1)

C.-C. Chen, Y.-L. Wan, Y.-Y. Wai, and H.-L. Liu, “Quality assurance of clinical MRI scanners using ACR MRI phantom: Preliminary results,” J. Digit. Imaging17(4), 279–284 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (1)

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol.22(6), 065502 (2011).
[CrossRef]

Med. Phys. (2)

D. A. Jaffray and J. H. Siewerdsen, “Cone-beam computed tomography with a flat-panel imager: Initial performance characterization,” Med. Phys.27(6), 1311–1323 (2000).
[CrossRef] [PubMed]

E. A. Berns, R. E. Hendrick, and G. R. Cutter, “Performance comparison of full-field digital mammography to screen-film mammography in clinical practice,” Med. Phys.29(5), 830–834 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Biol. (1)

S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: Polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007).
[CrossRef] [PubMed]

Proc. SPIE (4)

T. J. Pfefer and A. Agrawal, “A review of consensus test methods for established medical imaging modalities and their implications for optical coherence tomography,” Proc. SPIE8215, 82150D (2012).
[CrossRef]

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q (2008).
[CrossRef]

T. S. Rowe and R. J. Zawadzki, “New developments in eye models with retina tissue phantoms for ophthalmic optical coherence tomography,” Proc. SPIE8229, 822913 (2012).
[CrossRef]

J. Pfefer, A. Fouad, C.-W. Chen, W. Gong, P. Tomlins, P. Woolliams, R. Drezek, A. Agrawal, and Y. Chen, “Multi-system comparison of optical coherence tomography performance with point spread function phantoms,” Proc. SPIE8573, 85730C (2013).
[CrossRef]

Other (6)

International Electrotechnical Commission, “Ultrasonics – pulse-echo scanners – part 1: Techniques for calibrating spatial measurement systems and measurement of system point-spread function response,” STD-568116 (Swedish Standards Institute, Geneva, Switzerland, 2006).

P. H. Tomlins, R. A. Ferguson, C. Hart, and P. D. Woolliams, “Point-spread function phantoms for optical coherence tomography,” (NPL Report OP 2, Teddington, Middlesex, UK, 2009).

S. Prahl, “Mie scattering calculator (web site)” (2012), retrieved 10/16/2013, http://omlc.ogi.edu/calc/mie_calc.html .

E. F. Schubert, “Refractive index and extinction coefficient of materials” (2004), retrieved 11/1/2013, http://homepages.rpi.edu/~schubert/Educational-resources/Materials-Refractive-index-and-extinction-coefficient.pdf .

P. Patnaik, Handbook of Inorganic Chemicals (The McGraw-Hill Companies, Inc., 2002).

S. Hell, “Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering,” in Topics in Fluorescence Spectroscopy; volume 5: Nonlinear and Two-Photon-Induced Fluorescence, J. Lakowicz, ed. (Plenum Press, New York, 1997).

Supplementary Material (17)

» Media 1: MOV (901 KB)     
» Media 2: MOV (326 KB)     
» Media 3: MOV (324 KB)     
» Media 4: MOV (326 KB)     
» Media 5: MOV (330 KB)     
» Media 6: MOV (1053 KB)     
» Media 7: MOV (1032 KB)     
» Media 8: MOV (1047 KB)     
» Media 9: MOV (1057 KB)     
» Media 10: MOV (154 KB)     
» Media 11: MOV (178 KB)     
» Media 12: MOV (184 KB)     
» Media 13: MOV (170 KB)     
» Media 14: MOV (79 KB)     
» Media 15: MOV (82 KB)     
» Media 16: MOV (119 KB)     
» Media 17: MOV (117 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Representative B-scans from the SSOCT system for (a) Nano, (b) FeO and (c) Silica phantoms. Color scale represents recorded intensity in dB.

Fig. 2
Fig. 2

Comparison of all three PSF phantoms using narrow 3D scans from the SSOCT system. Data represents the mean value within ± 50 µm from the depth (Z) of each point. FWHM error bars shown for the Nano phantom are based on the standard deviation of particles in each depth bin, and are representative of the errors from other phantoms.

Fig. 3
Fig. 3

Resolution (X, Y and Z FWHM) of all four systems investigated as a function of depth below the Nano phantom surface in narrow scans. Black lines are the mean within depth bins identical to those in Fig. 2. Presented are: (a) SSOCT, (b) SDOCT, (c) TDOCT and (d) IV-TDOCT.

Fig. 4
Fig. 4

PSF intensity profile for all four systems as a function of optical depth below the surface of the Nano phantom, from the same data set as Fig. 3. Presented are: (a) SSOCT, (b) SDOCT, (c) TDOCT and (d) IV-TDOCT. Note the difference intensity scales between a-d.

Fig. 5
Fig. 5

Comparison of spatial resolution (a-c) and signal intensity uniformity (d) in all four systems with the Nano phantom. Data represents the mean value within ± 50 µm from the depth (Z) of each point. Each mean intensity curve is rescaled to fall between 0 and 1.

Fig. 6
Fig. 6

Isolated example PSFs from each system using the FeO phantom. The color scale encodes the relative, normalized intensity of each pixel within a PSF. Numerical labels indicate depth below the surface in mm. Rotating animations (Media 1) are presented for clarity.

Fig. 7
Fig. 7

3D mapping of PSF FWHM (µm) and intensity (dB) performance using the FeO phantom on the SSOCT system. Columns: PSF parameter. Top row: XY mean projections of each parameter (averaged along the Z direction). Bottom row: XZ mean projections (averaged along the Y direction). Corresponding fly-through movies for each of the eight panes (Media 2–9) are available online. White areas indicate regions where no PSFs were found. Narrow scans discussed before were taken near the lateral center of these maps.

Fig. 8
Fig. 8

3D mapping of PSF FWHM (µm) and intensity (dB) performance using the FeO phantom on the SDOCT system. Corresponding fly-through movies for each of the eight panes (Media 10–17) are available online.

Fig. 9
Fig. 9

Isolated PSFs from the SSOCT system using the Nano phantom in the present study (a), with FWHMs quantified along the E and E′ axes (b), and (c) before we replaced the scanning galvinometer [29]. The B scan direction (X) is the same in both cases. The E axis is offset from X by 45 degrees. The PSFs are 3D objects viewed axially. Scale bars are 10 µm.

Fig. 10
Fig. 10

TDOCT A-scans in the axial (Z) direction. Data is shown from a specular surface (SS) that has been progressively attenuated by the neutral density filters indicated to reveal the intensity dependence of the “raised tail”. Two PSFs from the nanoshell phantom, in focused (high intensity) and defocused (low intensity) regions, are shown as an example of this effect on phantom measurements.

Tables (4)

Tables Icon

Table 1 Summary of key phantom propertiesa

Tables Icon

Table 2 Estimated PSF density within each phantom using TDOCT imaging.

Tables Icon

Table 3 System specifications

Tables Icon

Table 4 Optimal mean resolution for each evaluated narrow-scan in the X, Y and Z directions using the nanoshell phantom (minimum average FWHM size ± standard deviation in µm).

Metrics