Abstract

A multi-center study has been set up to accurately characterize the optical properties of diffusive liquid phantoms based on Intralipid and India ink at near-infrared (NIR) wavelengths. Nine research laboratories from six countries adopting different measurement techniques, instrumental set-ups, and data analysis methods determined at their best the optical properties and relative uncertainties of diffusive dilutions prepared with common samples of the two compounds. By exploiting a suitable statistical model, comprehensive reference values at three NIR wavelengths for the intrinsic absorption coefficient of India ink and the intrinsic reduced scattering coefficient of Intralipid-20% were determined with an uncertainty of about 2% or better, depending on the wavelength considered, and 1%, respectively. Even if in this study we focused on particular batches of India ink and Intralipid, the reference values determined here represent a solid and useful starting point for preparing diffusive liquid phantoms with accurately defined optical properties. Furthermore, due to the ready availability, low cost, long-term stability and batch-to-batch reproducibility of these compounds, they provide a unique fundamental tool for the calibration and performance assessment of diffuse optical spectroscopy instrumentation intended to be used in laboratory or clinical environment. Finally, the collaborative work presented here demonstrates that the accuracy level attained in this work for optical properties of diffusive phantoms is reliable.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
    [CrossRef]
  2. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and other Diffusive Media: Theory, Solutions and Software (SPIE Press, Washington, USA, 2010).
    [CrossRef]
  3. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Mller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44, 2104–2114 (2005).
    [CrossRef] [PubMed]
  4. H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
    [CrossRef]
  5. A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express3, 966–971 (2012).
    [CrossRef] [PubMed]
  6. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11, 041102 (2006).
    [CrossRef] [PubMed]
  7. H. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt.30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  8. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12, 510–519 (1992).
    [CrossRef] [PubMed]
  9. P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56, N21–N28 (2011).
    [CrossRef]
  10. P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express18, 26854–26865 (2010).
    [CrossRef]
  11. P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt.51, 7176–7182 (2012).
    [CrossRef] [PubMed]
  12. L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.
  13. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16, 5907–5925 (2008).
    [CrossRef] [PubMed]
  14. A. Ishimaru and Y. Kuga, “Attenuation constant of a coherent field in a dense distribution of particles,” J. Opt. Soc. Am.72, 1317–1320 (1982).
    [CrossRef]
  15. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high density media,” Appl. Opt.42, 4023–4030 (2003).
    [CrossRef] [PubMed]
  16. P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express2, 2265–2278 (2011).
    [CrossRef] [PubMed]
  17. L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express15, 6589–6604 (2007).
    [CrossRef] [PubMed]
  18. J.-P. Bouchard, I. Veilleux, R. Jedidi, I. Noiseux, M. Fortin, and O. Mermut, “Reference optical phantoms for diffuse optical spectroscopy. Part 1 - Error analysis of a time resolved transmittance characterization method,” Opt. Express18, 11495–11507 (2010).
    [CrossRef] [PubMed]
  19. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt.42, 5785–5792 (2003).
    [CrossRef] [PubMed]
  20. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt.32, 559–568 (1993).
    [CrossRef] [PubMed]
  21. F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method,” Opt. Express15, 486–500 (2007).
    [CrossRef] [PubMed]
  22. F. Foschum and A. Kienle, “Broadband absorption spectroscopy of turbid media using a dual step steady-state method,” J. Biomed. Opt.17, 037009 (2012).
    [CrossRef] [PubMed]
  23. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36, 4587–4599 (1997).
    [CrossRef] [PubMed]
  24. A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16, 046011 (2011).
    [CrossRef] [PubMed]
  25. A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt.8, 512–516 (2003).
    [CrossRef] [PubMed]
  26. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32, 399–410 (1993).
    [CrossRef] [PubMed]
  27. S. A. Prahl, “Inverse adding-doubling,” http://omlc.ogi.edu/software/iad/ (2011). See in particular the IAD manual where single sphere measurements are described.
  28. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes - The Art of Scientific Computing, 3rd ed. (Cambridge University Press, 2007), chap. 15 - Modeling of data.
  29. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37, 1531–1560 (1992).
    [CrossRef] [PubMed]
  30. L. Spinelli, F. Martelli, A. Torricelli, A. Pifferi, and G. Zaccanti, “Nonlinear fitting procedure for accurate time-resolved measurements in diffusive media,” in “Diffuse Optical Imaging II,” vol. 7369 of Proc. SPIE, R. Cubeddu and A. H. Hielscher, eds. (2009), p. 73691C.
    [CrossRef]
  31. F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum.82, 103104 (2011).
    [CrossRef] [PubMed]
  32. T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80, 063105 (2009).
    [CrossRef]
  33. D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, S. Sparen, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges,” Opt. Express21, 20941–20953 (2013).
    [CrossRef] [PubMed]
  34. E. Alerstam, S. Andersson-Engels, and T. Svensson, “White monte carlo for time-resolved photon migration,” J. Biomed. Opt.13, 041304 (2008).
    [CrossRef] [PubMed]
  35. C. Elster and B. Toman, “Analysis of key comparisons: estimating laboratories biases by a fixed effects model using Bayesian model averaging,” Metrologia47, 113–119 (2010).
    [CrossRef]
  36. P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Olivera, “Thermal stability of Intralipid optical phantoms,” Appl. Spectrosc.67, 993–996 (2013).
    [CrossRef] [PubMed]
  37. L. Mercatelli, E. Sani, A. Giannini, P. Di Ninni, F. Martelli, and G. Zaccanti, “Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo,” Nanoscale Research Letters7, 96–105 (2012).
    [CrossRef] [PubMed]

2013 (2)

2012 (4)

L. Mercatelli, E. Sani, A. Giannini, P. Di Ninni, F. Martelli, and G. Zaccanti, “Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo,” Nanoscale Research Letters7, 96–105 (2012).
[CrossRef] [PubMed]

A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express3, 966–971 (2012).
[CrossRef] [PubMed]

P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt.51, 7176–7182 (2012).
[CrossRef] [PubMed]

F. Foschum and A. Kienle, “Broadband absorption spectroscopy of turbid media using a dual step steady-state method,” J. Biomed. Opt.17, 037009 (2012).
[CrossRef] [PubMed]

2011 (4)

P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express2, 2265–2278 (2011).
[CrossRef] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56, N21–N28 (2011).
[CrossRef]

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum.82, 103104 (2011).
[CrossRef] [PubMed]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16, 046011 (2011).
[CrossRef] [PubMed]

2010 (4)

C. Elster and B. Toman, “Analysis of key comparisons: estimating laboratories biases by a fixed effects model using Bayesian model averaging,” Metrologia47, 113–119 (2010).
[CrossRef]

P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express18, 26854–26865 (2010).
[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

J.-P. Bouchard, I. Veilleux, R. Jedidi, I. Noiseux, M. Fortin, and O. Mermut, “Reference optical phantoms for diffuse optical spectroscopy. Part 1 - Error analysis of a time resolved transmittance characterization method,” Opt. Express18, 11495–11507 (2010).
[CrossRef] [PubMed]

2009 (1)

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80, 063105 (2009).
[CrossRef]

2008 (2)

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White monte carlo for time-resolved photon migration,” J. Biomed. Opt.13, 041304 (2008).
[CrossRef] [PubMed]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16, 5907–5925 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11, 041102 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (3)

1997 (1)

1993 (2)

1992 (2)

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37, 1531–1560 (1992).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12, 510–519 (1992).
[CrossRef] [PubMed]

1991 (1)

1982 (1)

Alerstam, E.

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80, 063105 (2009).
[CrossRef]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White monte carlo for time-resolved photon migration,” J. Biomed. Opt.13, 041304 (2008).
[CrossRef] [PubMed]

Andersson-Engels, S.

Arridge, S. R.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37, 1531–1560 (1992).
[CrossRef] [PubMed]

Avrillier, S.

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Bassi, A.

Beek, J. F.

Bérubé-Lauzière, Y.

Botwicz, M.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16, 046011 (2011).
[CrossRef] [PubMed]

Bouchard, J.-P.

Cerussi, A. E.

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Contini, D.

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36, 4587–4599 (1997).
[CrossRef] [PubMed]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

Cope, M.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37, 1531–1560 (1992).
[CrossRef] [PubMed]

Cubeddu, R.

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express15, 6589–6604 (2007).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Mller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44, 2104–2114 (2005).
[CrossRef] [PubMed]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

Del Bianco, S.

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high density media,” Appl. Opt.42, 4023–4030 (2003).
[CrossRef] [PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and other Diffusive Media: Theory, Solutions and Software (SPIE Press, Washington, USA, 2010).
[CrossRef]

Delpy, D. T.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37, 1531–1560 (1992).
[CrossRef] [PubMed]

Di Ninni, P.

L. Mercatelli, E. Sani, A. Giannini, P. Di Ninni, F. Martelli, and G. Zaccanti, “Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo,” Nanoscale Research Letters7, 96–105 (2012).
[CrossRef] [PubMed]

P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt.51, 7176–7182 (2012).
[CrossRef] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56, N21–N28 (2011).
[CrossRef]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express2, 2265–2278 (2011).
[CrossRef] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express18, 26854–26865 (2010).
[CrossRef]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

Durduran, T.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Durkin, A. F.

Elster, C.

C. Elster and B. Toman, “Analysis of key comparisons: estimating laboratories biases by a fixed effects model using Bayesian model averaging,” Metrologia47, 113–119 (2010).
[CrossRef]

Farina, A.

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes - The Art of Scientific Computing, 3rd ed. (Cambridge University Press, 2007), chap. 15 - Modeling of data.

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12, 510–519 (1992).
[CrossRef] [PubMed]

Folestad, S.

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80, 063105 (2009).
[CrossRef]

Fortin, M.

Foschum, F.

F. Foschum and A. Kienle, “Broadband absorption spectroscopy of turbid media using a dual step steady-state method,” J. Biomed. Opt.17, 037009 (2012).
[CrossRef] [PubMed]

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum.82, 103104 (2011).
[CrossRef] [PubMed]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16, 5907–5925 (2008).
[CrossRef] [PubMed]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

Fronczewska, K.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16, 046011 (2011).
[CrossRef] [PubMed]

Giannini, A.

L. Mercatelli, E. Sani, A. Giannini, P. Di Ninni, F. Martelli, and G. Zaccanti, “Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo,” Nanoscale Research Letters7, 96–105 (2012).
[CrossRef] [PubMed]

Grosenick, D.

Haghany, H.

Hebden, J. C.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

Hill, B.

Ishimaru, A.

Ismaelli, A.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and other Diffusive Media: Theory, Solutions and Software (SPIE Press, Washington, USA, 2010).
[CrossRef]

Jacques, S. L.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12, 510–519 (1992).
[CrossRef] [PubMed]

Jäger, M.

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum.82, 103104 (2011).
[CrossRef] [PubMed]

Jedidi, R.

Jelzow, A.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

Johansson, J.

D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, S. Sparen, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges,” Opt. Express21, 20941–20953 (2013).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80, 063105 (2009).
[CrossRef]

Johansson, S.

Kacprzak, M.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16, 046011 (2011).
[CrossRef] [PubMed]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

Keene, S.

Khoptyar, D.

D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, S. Sparen, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges,” Opt. Express21, 20941–20953 (2013).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80, 063105 (2009).
[CrossRef]

Kienle, A.

F. Foschum and A. Kienle, “Broadband absorption spectroscopy of turbid media using a dual step steady-state method,” J. Biomed. Opt.17, 037009 (2012).
[CrossRef] [PubMed]

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum.82, 103104 (2011).
[CrossRef] [PubMed]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16, 5907–5925 (2008).
[CrossRef] [PubMed]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

Krolicki, L.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16, 046011 (2011).
[CrossRef] [PubMed]

Kuga, Y.

Künnemeyer, R.

Leproux, A.

Liebert, A.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16, 046011 (2011).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt.42, 5785–5792 (2003).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt.8, 512–516 (2003).
[CrossRef] [PubMed]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

Macdonald, R.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Mller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44, 2104–2114 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt.42, 5785–5792 (2003).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt.8, 512–516 (2003).
[CrossRef] [PubMed]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

Maczewska, J.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16, 046011 (2011).
[CrossRef] [PubMed]

Magazov, S.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

Maniewski, R.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16, 046011 (2011).
[CrossRef] [PubMed]

Mantulin, W. M.

Martelli, F.

P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt.51, 7176–7182 (2012).
[CrossRef] [PubMed]

L. Mercatelli, E. Sani, A. Giannini, P. Di Ninni, F. Martelli, and G. Zaccanti, “Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo,” Nanoscale Research Letters7, 96–105 (2012).
[CrossRef] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56, N21–N28 (2011).
[CrossRef]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express2, 2265–2278 (2011).
[CrossRef] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express18, 26854–26865 (2010).
[CrossRef]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express15, 6589–6604 (2007).
[CrossRef] [PubMed]

F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method,” Opt. Express15, 486–500 (2007).
[CrossRef] [PubMed]

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high density media,” Appl. Opt.42, 4023–4030 (2003).
[CrossRef] [PubMed]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36, 4587–4599 (1997).
[CrossRef] [PubMed]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and other Diffusive Media: Theory, Solutions and Software (SPIE Press, Washington, USA, 2010).
[CrossRef]

L. Spinelli, F. Martelli, A. Torricelli, A. Pifferi, and G. Zaccanti, “Nonlinear fitting procedure for accurate time-resolved measurements in diffusive media,” in “Diffuse Optical Imaging II,” vol. 7369 of Proc. SPIE, R. Cubeddu and A. H. Hielscher, eds. (2009), p. 73691C.
[CrossRef]

Martinsen, P.

Mayzner-Zawadzka, E.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16, 046011 (2011).
[CrossRef] [PubMed]

Mazurenka, M.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

McGlone, A.

Mercatelli, L.

L. Mercatelli, E. Sani, A. Giannini, P. Di Ninni, F. Martelli, and G. Zaccanti, “Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo,” Nanoscale Research Letters7, 96–105 (2012).
[CrossRef] [PubMed]

P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt.51, 7176–7182 (2012).
[CrossRef] [PubMed]

Mermut, O.

Michels, R.

Milej, D.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16, 046011 (2011).
[CrossRef] [PubMed]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

Mller, M.

Moes, C. J. M.

Möller, M.

Nghiem, H. L.

Noiseux, I.

O’Sullivan, T.

Olivera, R.

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11, 041102 (2006).
[CrossRef] [PubMed]

Pickering, J. W.

Pifferi, A.

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express15, 6589–6604 (2007).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Mller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44, 2104–2114 (2005).
[CrossRef] [PubMed]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

L. Spinelli, F. Martelli, A. Torricelli, A. Pifferi, and G. Zaccanti, “Nonlinear fitting procedure for accurate time-resolved measurements in diffusive media,” in “Diffuse Optical Imaging II,” vol. 7369 of Proc. SPIE, R. Cubeddu and A. H. Hielscher, eds. (2009), p. 73691C.
[CrossRef]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11, 041102 (2006).
[CrossRef] [PubMed]

Prahl, S. A.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes - The Art of Scientific Computing, 3rd ed. (Cambridge University Press, 2007), chap. 15 - Modeling of data.

Quang, T.

Rinneberg, H.

Roblyer, D.

Rowe, P. I.

Saleem, M.

Sani, E.

L. Mercatelli, E. Sani, A. Giannini, P. Di Ninni, F. Martelli, and G. Zaccanti, “Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo,” Nanoscale Research Letters7, 96–105 (2012).
[CrossRef] [PubMed]

P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt.51, 7176–7182 (2012).
[CrossRef] [PubMed]

Sawosz, P.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16, 046011 (2011).
[CrossRef] [PubMed]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

Sparen, S.

Spinelli, L.

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express15, 6589–6604 (2007).
[CrossRef] [PubMed]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

L. Spinelli, F. Martelli, A. Torricelli, A. Pifferi, and G. Zaccanti, “Nonlinear fitting procedure for accurate time-resolved measurements in diffusive media,” in “Diffuse Optical Imaging II,” vol. 7369 of Proc. SPIE, R. Cubeddu and A. H. Hielscher, eds. (2009), p. 73691C.
[CrossRef]

Stamm, H.

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12, 510–519 (1992).
[CrossRef] [PubMed]

Steinkellner, O.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

Sterenborg, H. J. C. M.

Subash, A. A.

Svensson, T.

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80, 063105 (2009).
[CrossRef]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White monte carlo for time-resolved photon migration,” J. Biomed. Opt.13, 041304 (2008).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Mller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44, 2104–2114 (2005).
[CrossRef] [PubMed]

Swartling, J.

Talele, S.

Taroni, P.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes - The Art of Scientific Computing, 3rd ed. (Cambridge University Press, 2007), chap. 15 - Modeling of data.

Tinet, E.

Toman, B.

C. Elster and B. Toman, “Analysis of key comparisons: estimating laboratories biases by a fixed effects model using Bayesian model averaging,” Metrologia47, 113–119 (2010).
[CrossRef]

Torricelli, A.

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express15, 6589–6604 (2007).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Mller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44, 2104–2114 (2005).
[CrossRef] [PubMed]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

L. Spinelli, F. Martelli, A. Torricelli, A. Pifferi, and G. Zaccanti, “Nonlinear fitting procedure for accurate time-resolved measurements in diffusive media,” in “Diffuse Optical Imaging II,” vol. 7369 of Proc. SPIE, R. Cubeddu and A. H. Hielscher, eds. (2009), p. 73691C.
[CrossRef]

Tromberg, B. J.

Tualle, J. M.

van Gemert, M. J. C.

van Marle, J.

van Staveren, H.

van Veen, R. L. P.

van Wieringen, N.

Veilleux, I.

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes - The Art of Scientific Computing, 3rd ed. (Cambridge University Press, 2007), chap. 15 - Modeling of data.

Wabnitz, H.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Mller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44, 2104–2114 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt.42, 5785–5792 (2003).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt.8, 512–516 (2003).
[CrossRef] [PubMed]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

Warren, R.

Weigl, W.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16, 046011 (2011).
[CrossRef] [PubMed]

Welch, A. J.

Whelan, M.

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12, 510–519 (1992).
[CrossRef] [PubMed]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Zaccanti, G.

L. Mercatelli, E. Sani, A. Giannini, P. Di Ninni, F. Martelli, and G. Zaccanti, “Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo,” Nanoscale Research Letters7, 96–105 (2012).
[CrossRef] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56, N21–N28 (2011).
[CrossRef]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express2, 2265–2278 (2011).
[CrossRef] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express18, 26854–26865 (2010).
[CrossRef]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express15, 6589–6604 (2007).
[CrossRef] [PubMed]

F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method,” Opt. Express15, 486–500 (2007).
[CrossRef] [PubMed]

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high density media,” Appl. Opt.42, 4023–4030 (2003).
[CrossRef] [PubMed]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36, 4587–4599 (1997).
[CrossRef] [PubMed]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and other Diffusive Media: Theory, Solutions and Software (SPIE Press, Washington, USA, 2010).
[CrossRef]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

L. Spinelli, F. Martelli, A. Torricelli, A. Pifferi, and G. Zaccanti, “Nonlinear fitting procedure for accurate time-resolved measurements in diffusive media,” in “Diffuse Optical Imaging II,” vol. 7369 of Proc. SPIE, R. Cubeddu and A. H. Hielscher, eds. (2009), p. 73691C.
[CrossRef]

Zolek, N.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

Zucchelli, L. M. G.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

Appl. Opt. (8)

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Mller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44, 2104–2114 (2005).
[CrossRef] [PubMed]

H. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt.30, 4507–4514 (1991).
[CrossRef] [PubMed]

P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt.51, 7176–7182 (2012).
[CrossRef] [PubMed]

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high density media,” Appl. Opt.42, 4023–4030 (2003).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt.42, 5785–5792 (2003).
[CrossRef] [PubMed]

S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt.32, 559–568 (1993).
[CrossRef] [PubMed]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36, 4587–4599 (1997).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32, 399–410 (1993).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

Biomed. Opt. Express (2)

J. Biomed. Opt. (5)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11, 041102 (2006).
[CrossRef] [PubMed]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White monte carlo for time-resolved photon migration,” J. Biomed. Opt.13, 041304 (2008).
[CrossRef] [PubMed]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16, 046011 (2011).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt.8, 512–516 (2003).
[CrossRef] [PubMed]

F. Foschum and A. Kienle, “Broadband absorption spectroscopy of turbid media using a dual step steady-state method,” J. Biomed. Opt.17, 037009 (2012).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12, 510–519 (1992).
[CrossRef] [PubMed]

Metrologia (1)

C. Elster and B. Toman, “Analysis of key comparisons: estimating laboratories biases by a fixed effects model using Bayesian model averaging,” Metrologia47, 113–119 (2010).
[CrossRef]

Nanoscale Research Letters (1)

L. Mercatelli, E. Sani, A. Giannini, P. Di Ninni, F. Martelli, and G. Zaccanti, “Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo,” Nanoscale Research Letters7, 96–105 (2012).
[CrossRef] [PubMed]

Opt. Express (6)

Phys. Med. Biol. (2)

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56, N21–N28 (2011).
[CrossRef]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37, 1531–1560 (1992).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Rev. Sci. Instrum. (2)

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum.82, 103104 (2011).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80, 063105 (2009).
[CrossRef]

Other (6)

L. Spinelli, F. Martelli, A. Torricelli, A. Pifferi, and G. Zaccanti, “Nonlinear fitting procedure for accurate time-resolved measurements in diffusive media,” in “Diffuse Optical Imaging II,” vol. 7369 of Proc. SPIE, R. Cubeddu and A. H. Hielscher, eds. (2009), p. 73691C.
[CrossRef]

S. A. Prahl, “Inverse adding-doubling,” http://omlc.ogi.edu/software/iad/ (2011). See in particular the IAD manual where single sphere measurements are described.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes - The Art of Scientific Computing, 3rd ed. (Cambridge University Press, 2007), chap. 15 - Modeling of data.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and other Diffusive Media: Theory, Solutions and Software (SPIE Press, Washington, USA, 2010).
[CrossRef]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L.
[CrossRef]

L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Photo of the scattering cell designed by UNIFI and used for phantom preparation and measurements.

Fig. 2
Fig. 2

Measurements (black symbols) as well as reference values (RV, red lines) and laboratory biases (blue symbols, shifted) and their 95% CIs, estimated by fitting the fixed effect model (see Sec. 2.4) for the intrinsic absorption coefficient of undiluted India ink εa,ink (bottom row) and the intrinsic reduced scattering coefficient of IL ε′s,il (top row) at 3 different wavelengths. The laboratories are named using the ID number reported in Table 1.

Tables (3)

Tables Icon

Table 1 Measurement techniques, wavelengths λ and analysis methods adopted by the laboratories involved in the present study: TR – Time Resolved; IS – Integrating Sphere; DM – Direct Method; CW – Continuous Wave; SR – Spatially Resolved; MC – Monte Carlo; DE – Diffusion Equation. The laboratory identification number ID is used in Fig. 2.

Tables Icon

Table 2 Results of the characterization measurements obtained by different laboratories: the intrinsic absorption coefficient εa,ink and the intrinsic reduced scattering coefficient ε′s,il with their statistical uncertainties RU ink stat and RU il stat, and the limits of their relative systematic errors, RU ink syst and RU il syst, for India ink and IL respectively, are reported at the different wavelengths λ considered.

Tables Icon

Table 3 Final reference values for εa,ink and ε′s,il with their standard deviations, σink and σil, and relative uncertainties, RUink and RUil, at the wavelengths 633, 750 and 830 nm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

μ a = ε a , ink ρ ink m + μ a BKG , μ s = ε s , il ρ il m ,
ln ( R 0 R ) = Δ μ a v t + ln ( A 0 A ) ,
ln ( R 0 R ) = 3 μ s ( r 2 r 0 2 ) 4 v t + ln ( A 0 A ) .
μ a = t 4 2 v V ( t 2 + V ) , μ s = 2 v t ( t 2 + V ) 3 r 2 V ,
T b = P b P i = exp ( μ e l ) .
R = R std P diff , R P void , R P std P void , R ,
T = P diff , T P dark P void , T P dark .
ϕ ( r ) = 3 μ s / ( 4 π r ) exp ( μ eff r ) ,
Y i = μ + α i + ε i , i = 1 , , n ,

Metrics