Abstract

Towards developing precise microsurgery tools for the clinic, we previously developed image-guided miniaturized devices using low repetition rate amplified ultrafast lasers for surgery. To improve the speed of tissue removal while reducing device diameter, here we present a new 5-mm diameter device that delivers high-repetition rate laser pulses for high speed ultrafast laser microsurgery. The device consists of an air-core photonic bandgap fiber (PBF) for the delivery of high energy pulses, a piezoelectric tube actuator for fiber scanning, and two aspheric lenses for focusing the light. Its inline optical architecture provides easy alignment and substantial size reduction to 5 mm diameter as compared to our previous MEMS-scanning devices while realizing improved intensity squared (two-photon) lateral and axial resolutions of 1.16 μm and 11.46 μm, respectively. Our study also sheds light on the maximum pulse energies that can be delivered through the air-core PBF and identifies cladding damage at the input facet of the fiber as the limiting factor. We have achieved a maximum energy delivery larger than 700 nJ at 92% coupling efficiency. An in depth analysis reveals how this value is greatly affected by possible slight misalignments of the beam during coupling and the measured small beam pointing fluctuations. In the absence of these imperfections, self-phase modulation becomes the limiting factor for the maximum energy delivery, setting the theoretical upper bound to near 2 μJ for a 1-m long, 7-μm, air-core PBF. Finally, the use of a 300 kHz repetition rate fiber laser enabled rapid ablation of 150 µm x 150 µm area within only 50 ms. Such ablation speeds can now allow the surgeons to translate the surgery device as fast as ~4 mm/s to continuously remove a thin layer of a 150 µm wide tissue. Thanks to a high optical transmission efficiency of the in-line optical architecture of the device and improved resolution, we could successfully perform ablation of scarred cheek pouch tissue, drilling through a thin slice. With further development, this device can serve as a precise and high speed ultrafast laser scalpel in the clinic.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
    [CrossRef] [PubMed]
  2. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432(7019), 822 (2004).
    [CrossRef] [PubMed]
  3. G. M. Kezirian and K. G. Stonecipher, “Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis,” J. Cataract Refract. Surg.30(4), 804–811 (2004).
    [CrossRef] [PubMed]
  4. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics2(10), 557–572 (2009).
    [CrossRef] [PubMed]
  5. D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
    [CrossRef] [PubMed]
  6. C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–14 (2014).
    [CrossRef]
  7. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express16(13), 9996–10005 (2008).
    [CrossRef] [PubMed]
  8. C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express19(11), 10536–10552 (2011).
    [CrossRef] [PubMed]
  9. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics7(11), 861–867 (2013).
    [CrossRef]
  10. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics7(11), 868–874 (2013).
    [CrossRef]
  11. M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt.18(11), 118001 (2013).
    [CrossRef] [PubMed]
  12. C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt.17(3), 038002 (2012).
    [CrossRef] [PubMed]
  13. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett.37(15), 3111–3113 (2012).
    [CrossRef] [PubMed]
  14. X. Peng, M. Mielke, and T. Booth, “High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber,” Opt. Express19(2), 923–932 (2011).
    [CrossRef] [PubMed]
  15. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics3(5-6), 385–407 (2010).
    [CrossRef] [PubMed]
  16. J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett.37(3), 362–364 (2012).
    [CrossRef] [PubMed]
  17. Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A.109(32), 12878–12883 (2012).
    [CrossRef] [PubMed]
  18. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express16(8), 5556–5564 (2008).
    [CrossRef] [PubMed]
  19. S. D. Senturia, Microsystem design (Kluwer academic publishers Boston, 2001).
  20. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Jon Wiley & Sons Ltd., 2006).
  21. M. C. Teich and B. Saleh, Fundamentals of photonics (Wiley Interscience, 1991).
  22. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
    [CrossRef] [PubMed]
  23. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1), 101–106 (1999).
    [CrossRef]
  24. R. House, J. Bettis, and A. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron.13(5), 361–363 (1977).
    [CrossRef]
  25. P. Kean, K. Smith, and W. Sibbett, “Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre,” IEE Proc., Optoelectron.134(3), 163–170 (1987).
  26. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
    [CrossRef] [PubMed]
  27. E. J. Seibel and Q. Y. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med.30(3), 177–183 (2002).
    [CrossRef] [PubMed]
  28. C. L. Hoy, N. J. Durr, and A. Ben-Yakar, “Fast-updating and nonrepeating Lissajous image reconstruction method for capturing increased dynamic information,” Appl. Opt.50(16), 2376–2382 (2011).
    [CrossRef] [PubMed]
  29. L. Zhigilei and B. Garrison, “Mechanisms of laser ablation from molecular dynamics simulations: dependence on the initial temperature and pulse duration,” Appl. Phys., A69(S1), 75–80 (1999).
    [CrossRef]
  30. M. Frentzen, W. Götz, M. Ivanenko, S. Afilal, M. Werner, and P. Hering, “Osteotomy with 80-micros CO2 laser pulses-histological results,” Lasers Med. Sci.18(2), 119–124 (2003).
    [CrossRef] [PubMed]
  31. T. Chanthasopeephan, J. P. Desai, and A. C. Lau, “Measuring forces in liver cutting: New equipment and experimental results,” Ann. Biomed. Eng.31(11), 1372–1382 (2003).
    [CrossRef] [PubMed]
  32. S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
    [CrossRef] [PubMed]
  33. M. L. Kaiser, M. Rubinstein, D. E. Vokes, J. M. Ridgway, S. Guo, M. Gu, R. L. Crumley, W. B. Armstrong, Z. Chen, and B. J. Wong, “Laryngeal epithelial thickness: a comparison between optical coherence tomography and histology,” Clin. Otolaryngol.34(5), 460–466 (2009).
    [CrossRef] [PubMed]

2014 (1)

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–14 (2014).
[CrossRef]

2013 (3)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics7(11), 861–867 (2013).
[CrossRef]

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics7(11), 868–874 (2013).
[CrossRef]

M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt.18(11), 118001 (2013).
[CrossRef] [PubMed]

2012 (4)

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt.17(3), 038002 (2012).
[CrossRef] [PubMed]

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A.109(32), 12878–12883 (2012).
[CrossRef] [PubMed]

J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett.37(3), 362–364 (2012).
[CrossRef] [PubMed]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett.37(15), 3111–3113 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (3)

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

2009 (2)

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics2(10), 557–572 (2009).
[CrossRef] [PubMed]

M. L. Kaiser, M. Rubinstein, D. E. Vokes, J. M. Ridgway, S. Guo, M. Gu, R. L. Crumley, W. B. Armstrong, Z. Chen, and B. J. Wong, “Laryngeal epithelial thickness: a comparison between optical coherence tomography and histology,” Clin. Otolaryngol.34(5), 460–466 (2009).
[CrossRef] [PubMed]

2008 (2)

2004 (2)

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432(7019), 822 (2004).
[CrossRef] [PubMed]

G. M. Kezirian and K. G. Stonecipher, “Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis,” J. Cataract Refract. Surg.30(4), 804–811 (2004).
[CrossRef] [PubMed]

2003 (4)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

M. Frentzen, W. Götz, M. Ivanenko, S. Afilal, M. Werner, and P. Hering, “Osteotomy with 80-micros CO2 laser pulses-histological results,” Lasers Med. Sci.18(2), 119–124 (2003).
[CrossRef] [PubMed]

T. Chanthasopeephan, J. P. Desai, and A. C. Lau, “Measuring forces in liver cutting: New equipment and experimental results,” Ann. Biomed. Eng.31(11), 1372–1382 (2003).
[CrossRef] [PubMed]

2002 (1)

E. J. Seibel and Q. Y. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med.30(3), 177–183 (2002).
[CrossRef] [PubMed]

1999 (2)

L. Zhigilei and B. Garrison, “Mechanisms of laser ablation from molecular dynamics simulations: dependence on the initial temperature and pulse duration,” Appl. Phys., A69(S1), 75–80 (1999).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1), 101–106 (1999).
[CrossRef]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

1987 (1)

P. Kean, K. Smith, and W. Sibbett, “Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre,” IEE Proc., Optoelectron.134(3), 163–170 (1987).

1977 (1)

R. House, J. Bettis, and A. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron.13(5), 361–363 (1977).
[CrossRef]

Afilal, S.

M. Frentzen, W. Götz, M. Ivanenko, S. Afilal, M. Werner, and P. Hering, “Osteotomy with 80-micros CO2 laser pulses-histological results,” Lasers Med. Sci.18(2), 119–124 (2003).
[CrossRef] [PubMed]

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Akins, M. L.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A.109(32), 12878–12883 (2012).
[CrossRef] [PubMed]

Alharbi, M.

Alman, B. A.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Amini-Nik, S.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Andersen, D.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Angeley, D.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Armstrong, W. B.

M. L. Kaiser, M. Rubinstein, D. E. Vokes, J. M. Ridgway, S. Guo, M. Gu, R. L. Crumley, W. B. Armstrong, Z. Chen, and B. J. Wong, “Laryngeal epithelial thickness: a comparison between optical coherence tomography and histology,” Clin. Otolaryngol.34(5), 460–466 (2009).
[CrossRef] [PubMed]

Ashkenasi, D.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1), 101–106 (1999).
[CrossRef]

Batlle, J.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Benabid, F.

Ben-Yakar, A.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–14 (2014).
[CrossRef]

M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt.18(11), 118001 (2013).
[CrossRef] [PubMed]

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt.17(3), 038002 (2012).
[CrossRef] [PubMed]

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express19(11), 10536–10552 (2011).
[CrossRef] [PubMed]

C. L. Hoy, N. J. Durr, and A. Ben-Yakar, “Fast-updating and nonrepeating Lissajous image reconstruction method for capturing increased dynamic information,” Appl. Opt.50(16), 2376–2382 (2011).
[CrossRef] [PubMed]

C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express16(13), 9996–10005 (2008).
[CrossRef] [PubMed]

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432(7019), 822 (2004).
[CrossRef] [PubMed]

Bettis, J.

R. House, J. Bettis, and A. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron.13(5), 361–363 (1977).
[CrossRef]

Blumenkranz, M. S.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Booth, T.

Bradley, T. D.

Chan, K. M. C.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–14 (2014).
[CrossRef]

Chanthasopeephan, T.

T. Chanthasopeephan, J. P. Desai, and A. C. Lau, “Measuring forces in liver cutting: New equipment and experimental results,” Ann. Biomed. Eng.31(11), 1372–1382 (2003).
[CrossRef] [PubMed]

Chen, P.

Chen, Y.

Chen, Z.

M. L. Kaiser, M. Rubinstein, D. E. Vokes, J. M. Ridgway, S. Guo, M. Gu, R. L. Crumley, W. B. Armstrong, Z. Chen, and B. J. Wong, “Laryngeal epithelial thickness: a comparison between optical coherence tomography and histology,” Clin. Otolaryngol.34(5), 460–466 (2009).
[CrossRef] [PubMed]

Chisholm, A. D.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432(7019), 822 (2004).
[CrossRef] [PubMed]

Chung, S. H.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics2(10), 557–572 (2009).
[CrossRef] [PubMed]

Cinar, H.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432(7019), 822 (2004).
[CrossRef] [PubMed]

Cinar, H. N.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432(7019), 822 (2004).
[CrossRef] [PubMed]

Cowan, M. L.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Crumley, R. L.

M. L. Kaiser, M. Rubinstein, D. E. Vokes, J. M. Ridgway, S. Guo, M. Gu, R. L. Crumley, W. B. Armstrong, Z. Chen, and B. J. Wong, “Laryngeal epithelial thickness: a comparison between optical coherence tomography and histology,” Clin. Otolaryngol.34(5), 460–466 (2009).
[CrossRef] [PubMed]

Culbertson, W.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Desai, J. P.

T. Chanthasopeephan, J. P. Desai, and A. C. Lau, “Measuring forces in liver cutting: New equipment and experimental results,” Ann. Biomed. Eng.31(11), 1372–1382 (2003).
[CrossRef] [PubMed]

Durr, N. J.

Dutin, C. F.

Engelbrecht, C. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express16(8), 5556–5564 (2008).
[CrossRef] [PubMed]

Everett, W. N.

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt.17(3), 038002 (2012).
[CrossRef] [PubMed]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Feliz, R.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Ferhanoglu, O.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–14 (2014).
[CrossRef]

M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt.18(11), 118001 (2013).
[CrossRef] [PubMed]

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express19(11), 10536–10552 (2011).
[CrossRef] [PubMed]

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics7(11), 868–874 (2013).
[CrossRef]

Frentzen, M.

M. Frentzen, W. Götz, M. Ivanenko, S. Afilal, M. Werner, and P. Hering, “Osteotomy with 80-micros CO2 laser pulses-histological results,” Lasers Med. Sci.18(2), 119–124 (2003).
[CrossRef] [PubMed]

Friedman, N. J.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Garrison, B.

L. Zhigilei and B. Garrison, “Mechanisms of laser ablation from molecular dynamics simulations: dependence on the initial temperature and pulse duration,” Appl. Phys., A69(S1), 75–80 (1999).
[CrossRef]

Gérôme, F.

Gooding, P.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Götz, W.

M. Frentzen, W. Götz, M. Ivanenko, S. Afilal, M. Werner, and P. Hering, “Osteotomy with 80-micros CO2 laser pulses-histological results,” Lasers Med. Sci.18(2), 119–124 (2003).
[CrossRef] [PubMed]

Gu, M.

M. L. Kaiser, M. Rubinstein, D. E. Vokes, J. M. Ridgway, S. Guo, M. Gu, R. L. Crumley, W. B. Armstrong, Z. Chen, and B. J. Wong, “Laryngeal epithelial thickness: a comparison between optical coherence tomography and histology,” Clin. Otolaryngol.34(5), 460–466 (2009).
[CrossRef] [PubMed]

Guenther, A.

R. House, J. Bettis, and A. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron.13(5), 361–363 (1977).
[CrossRef]

Gunaratne, K.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Guo, S.

M. L. Kaiser, M. Rubinstein, D. E. Vokes, J. M. Ridgway, S. Guo, M. Gu, R. L. Crumley, W. B. Armstrong, Z. Chen, and B. J. Wong, “Laryngeal epithelial thickness: a comparison between optical coherence tomography and histology,” Clin. Otolaryngol.34(5), 460–466 (2009).
[CrossRef] [PubMed]

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics7(11), 868–874 (2013).
[CrossRef]

Helmchen, F.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express16(8), 5556–5564 (2008).
[CrossRef] [PubMed]

Hering, P.

M. Frentzen, W. Götz, M. Ivanenko, S. Afilal, M. Werner, and P. Hering, “Osteotomy with 80-micros CO2 laser pulses-histological results,” Lasers Med. Sci.18(2), 119–124 (2003).
[CrossRef] [PubMed]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

House, R.

R. House, J. Bettis, and A. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron.13(5), 361–363 (1977).
[CrossRef]

Hoy, C. L.

Ivanenko, M.

M. Frentzen, W. Götz, M. Ivanenko, S. Afilal, M. Werner, and P. Hering, “Osteotomy with 80-micros CO2 laser pulses-histological results,” Lasers Med. Sci.18(2), 119–124 (2003).
[CrossRef] [PubMed]

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics7(11), 861–867 (2013).
[CrossRef]

Jin, Y.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432(7019), 822 (2004).
[CrossRef] [PubMed]

Johnston, R. S.

Kaiser, M. L.

M. L. Kaiser, M. Rubinstein, D. E. Vokes, J. M. Ridgway, S. Guo, M. Gu, R. L. Crumley, W. B. Armstrong, Z. Chen, and B. J. Wong, “Laryngeal epithelial thickness: a comparison between optical coherence tomography and histology,” Clin. Otolaryngol.34(5), 460–466 (2009).
[CrossRef] [PubMed]

Karajanagi, S. S.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–14 (2014).
[CrossRef]

Kean, P.

P. Kean, K. Smith, and W. Sibbett, “Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre,” IEE Proc., Optoelectron.134(3), 163–170 (1987).

Kezirian, G. M.

G. M. Kezirian and K. G. Stonecipher, “Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis,” J. Cataract Refract. Surg.30(4), 804–811 (2004).
[CrossRef] [PubMed]

Kim, K. H.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–14 (2014).
[CrossRef]

Kobler, J.

M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt.18(11), 118001 (2013).
[CrossRef] [PubMed]

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt.17(3), 038002 (2012).
[CrossRef] [PubMed]

Kobler, J. B.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–14 (2014).
[CrossRef]

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Kraemer, D.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Lau, A. C.

T. Chanthasopeephan, J. P. Desai, and A. C. Lau, “Measuring forces in liver cutting: New equipment and experimental results,” Ann. Biomed. Eng.31(11), 1372–1382 (2003).
[CrossRef] [PubMed]

Lee, C. M.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Li, M.-J.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A.109(32), 12878–12883 (2012).
[CrossRef] [PubMed]

J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett.37(3), 362–364 (2012).
[CrossRef] [PubMed]

Li, X.

J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett.37(3), 362–364 (2012).
[CrossRef] [PubMed]

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A.109(32), 12878–12883 (2012).
[CrossRef] [PubMed]

Limpert, J.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics7(11), 861–867 (2013).
[CrossRef]

Lorenz, M.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1), 101–106 (1999).
[CrossRef]

Luby-Phelps, K.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A.109(32), 12878–12883 (2012).
[CrossRef] [PubMed]

Mahendroo, M.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A.109(32), 12878–12883 (2012).
[CrossRef] [PubMed]

Marcellino, G.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Mazur, E.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics2(10), 557–572 (2009).
[CrossRef] [PubMed]

Mielke, M.

Miller, R. J.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Murari, K.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A.109(32), 12878–12883 (2012).
[CrossRef] [PubMed]

J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett.37(3), 362–364 (2012).
[CrossRef] [PubMed]

Nadesan, P.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Palanker, D. V.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Peng, X.

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Piyawattanametha, W.

Ra, H.

Ridgway, J. M.

M. L. Kaiser, M. Rubinstein, D. E. Vokes, J. M. Ridgway, S. Guo, M. Gu, R. L. Crumley, W. B. Armstrong, Z. Chen, and B. J. Wong, “Laryngeal epithelial thickness: a comparison between optical coherence tomography and histology,” Clin. Otolaryngol.34(5), 460–466 (2009).
[CrossRef] [PubMed]

Rosenfeld, A.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1), 101–106 (1999).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Rubinstein, M.

M. L. Kaiser, M. Rubinstein, D. E. Vokes, J. M. Ridgway, S. Guo, M. Gu, R. L. Crumley, W. B. Armstrong, Z. Chen, and B. J. Wong, “Laryngeal epithelial thickness: a comparison between optical coherence tomography and histology,” Clin. Otolaryngol.34(5), 460–466 (2009).
[CrossRef] [PubMed]

Schuele, G.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Seibel, B.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Seibel, E. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express16(8), 5556–5564 (2008).
[CrossRef] [PubMed]

E. J. Seibel and Q. Y. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med.30(3), 177–183 (2002).
[CrossRef] [PubMed]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Sibbett, W.

P. Kean, K. Smith, and W. Sibbett, “Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre,” IEE Proc., Optoelectron.134(3), 163–170 (1987).

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Simoneau, M.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Smith, K.

P. Kean, K. Smith, and W. Sibbett, “Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre,” IEE Proc., Optoelectron.134(3), 163–170 (1987).

Smithwick, Q. Y.

E. J. Seibel and Q. Y. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med.30(3), 177–183 (2002).
[CrossRef] [PubMed]

Solgaard, O.

Soper, T. D.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Stoian, R.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1), 101–106 (1999).
[CrossRef]

Stonecipher, K. G.

G. M. Kezirian and K. G. Stonecipher, “Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis,” J. Cataract Refract. Surg.30(4), 804–811 (2004).
[CrossRef] [PubMed]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Talamo, J.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Tünnermann, A.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics7(11), 861–867 (2013).
[CrossRef]

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

Vokes, D. E.

M. L. Kaiser, M. Rubinstein, D. E. Vokes, J. M. Ridgway, S. Guo, M. Gu, R. L. Crumley, W. B. Armstrong, Z. Chen, and B. J. Wong, “Laryngeal epithelial thickness: a comparison between optical coherence tomography and histology,” Clin. Otolaryngol.34(5), 460–466 (2009).
[CrossRef] [PubMed]

Wang, Y. Y.

Werner, M.

M. Frentzen, W. Götz, M. Ivanenko, S. Afilal, M. Werner, and P. Hering, “Osteotomy with 80-micros CO2 laser pulses-histological results,” Lasers Med. Sci.18(2), 119–124 (2003).
[CrossRef] [PubMed]

Wiltberger, M.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Wong, B. J.

M. L. Kaiser, M. Rubinstein, D. E. Vokes, J. M. Ridgway, S. Guo, M. Gu, R. L. Crumley, W. B. Armstrong, Z. Chen, and B. J. Wong, “Laryngeal epithelial thickness: a comparison between optical coherence tomography and histology,” Clin. Otolaryngol.34(5), 460–466 (2009).
[CrossRef] [PubMed]

Woodley, B.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Xi, J.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A.109(32), 12878–12883 (2012).
[CrossRef] [PubMed]

J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett.37(3), 362–364 (2012).
[CrossRef] [PubMed]

Yanik, M. F.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432(7019), 822 (2004).
[CrossRef] [PubMed]

Yildirim, M.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–14 (2014).
[CrossRef]

M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt.18(11), 118001 (2013).
[CrossRef] [PubMed]

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt.17(3), 038002 (2012).
[CrossRef] [PubMed]

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express19(11), 10536–10552 (2011).
[CrossRef] [PubMed]

Zeitels, S. M.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–14 (2014).
[CrossRef]

M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt.18(11), 118001 (2013).
[CrossRef] [PubMed]

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt.17(3), 038002 (2012).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A.109(32), 12878–12883 (2012).
[CrossRef] [PubMed]

J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett.37(3), 362–364 (2012).
[CrossRef] [PubMed]

Zhigilei, L.

L. Zhigilei and B. Garrison, “Mechanisms of laser ablation from molecular dynamics simulations: dependence on the initial temperature and pulse duration,” Appl. Phys., A69(S1), 75–80 (1999).
[CrossRef]

Ann. Biomed. Eng. (1)

T. Chanthasopeephan, J. P. Desai, and A. C. Lau, “Measuring forces in liver cutting: New equipment and experimental results,” Ann. Biomed. Eng.31(11), 1372–1382 (2003).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys., A (1)

L. Zhigilei and B. Garrison, “Mechanisms of laser ablation from molecular dynamics simulations: dependence on the initial temperature and pulse duration,” Appl. Phys., A69(S1), 75–80 (1999).
[CrossRef]

Appl. Surf. Sci. (1)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1), 101–106 (1999).
[CrossRef]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

Clin. Otolaryngol. (1)

M. L. Kaiser, M. Rubinstein, D. E. Vokes, J. M. Ridgway, S. Guo, M. Gu, R. L. Crumley, W. B. Armstrong, Z. Chen, and B. J. Wong, “Laryngeal epithelial thickness: a comparison between optical coherence tomography and histology,” Clin. Otolaryngol.34(5), 460–466 (2009).
[CrossRef] [PubMed]

IEE Proc., Optoelectron. (1)

P. Kean, K. Smith, and W. Sibbett, “Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre,” IEE Proc., Optoelectron.134(3), 163–170 (1987).

IEEE J. Quantum Electron. (1)

R. House, J. Bettis, and A. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron.13(5), 361–363 (1977).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–14 (2014).
[CrossRef]

J. Biomed. Opt. (2)

M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt.18(11), 118001 (2013).
[CrossRef] [PubMed]

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt.17(3), 038002 (2012).
[CrossRef] [PubMed]

J. Biophotonics (2)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics2(10), 557–572 (2009).
[CrossRef] [PubMed]

J. Cataract Refract. Surg. (1)

G. M. Kezirian and K. G. Stonecipher, “Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis,” J. Cataract Refract. Surg.30(4), 804–811 (2004).
[CrossRef] [PubMed]

Lasers Med. Sci. (1)

M. Frentzen, W. Götz, M. Ivanenko, S. Afilal, M. Werner, and P. Hering, “Osteotomy with 80-micros CO2 laser pulses-histological results,” Lasers Med. Sci.18(2), 119–124 (2003).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

E. J. Seibel and Q. Y. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med.30(3), 177–183 (2002).
[CrossRef] [PubMed]

Nat. Photonics (2)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics7(11), 861–867 (2013).
[CrossRef]

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics7(11), 868–874 (2013).
[CrossRef]

Nature (1)

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432(7019), 822 (2004).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

PLoS ONE (1)

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A.109(32), 12878–12883 (2012).
[CrossRef] [PubMed]

Sci. Transl. Med. (1)

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010).
[CrossRef] [PubMed]

Science (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Other (3)

S. D. Senturia, Microsystem design (Kluwer academic publishers Boston, 2001).

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Jon Wiley & Sons Ltd., 2006).

M. C. Teich and B. Saleh, Fundamentals of photonics (Wiley Interscience, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical architecture and resolution of the scalpel. a) A computer assisted drawing (CAD) of the scalpel consisting of 1 – piezo actuator tube, 2 – air core PBF, 3 – collimation lens, and 4 – objective, as overlaid with ZEMAX ray tracing diagram. Blue arrow shows fiber fixation location. b) Measured and theoretical lateral and axial intensity distributions.

Fig. 2
Fig. 2

Effect of coupling NA, coupling misalignments, and beam pointing instabilities on delivered energy through the 7-μm, air-core PBF. a) Simplified schematic of ultrashort pulse delivery through the PBF with various focusing conditions and measured near-field and far-field profiles at fiber output. b) Beam profiles at the focal point of the coupling lens as measured using the knife-edge test for different NA`s. c) Schematics illustrating the parameters for radial and axial coupling misalignments introduced in Eq. (1). d) Measured maximum input energies successfully coupled into the fiber for different coupling NA’s and estimated maximum values assuming various misalignments during coupling. Error bars represent the standard deviation of three measurements performed at each NA. e) Measured output energies for each coupling NA with the coupling efficiencies above each data point as calculated based on the ratio of observed output energy to the input energy after coupling lens.

Fig. 3
Fig. 3

Ablation patterns at various laser exposure durations. a) Optical microscopy images of ablated gold film on glass slide for durations of 100 ms, 50 ms, and 25 ms. b) Simulated Lissajous patterns for all three durations within the experimental FOV of 150 μm × 150 μm, where pixels sampled at least once were marked in green and unsampled pixels were marked in orange. c) Simulation results indicating the number of overlapping pulses at each pixel. Scale bar is 50 μm.

Fig. 4
Fig. 4

Ablation of tissue surface using the 5-mm laser scalpel. (a) Nonlinear image of the laser drill through a 70 μm thick cheek pouch sample as revealed by the absence of the SHG signal from the collagen fibers. (b) The x-z cross section of the vertical dashed line shown in (a). (c) The y-z cross section of the horizontal line shown in (a). The cross sections illustrate through ablation across the tissue thickness. The laser pulse energies were 200 nJ, corresponding to average fluences of 3.2 J/cm2. Scale bars are 50 μm.

Fig. 5
Fig. 5

Effect of translation speed on ablation coverage. Translational speed of 2 mm/s results in complete ablation while 3 mm/s and 3.7 m/s provide 90% and 80% coverage, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F( r )= 2E π ( w 0 +δz) 2 exp( 2 ( rδr w 0 +δz ) 2 )thus; F th =F( r= r f ),

Metrics