Abstract

Focused ultrasound (FUS) can be used to locally and temporally enhance vascular permeability, improving the efficiency of drug delivery from the blood vessels into the surrounding tissue. However, it is difficult to evaluate in real time the effect induced by FUS and to noninvasively observe the permeability enhancement. In this study, speckle-variance optical coherence tomography (SVOCT) was implemented for the investigation of temporal effects on vessels induced by FUS treatment. With OCT scanning, the dynamic change in vessels during FUS exposure can be observed and studied. Moreover, the vascular effects induced by FUS treatment with and without the presence of microbubbles were investigated and quantitatively compared. Additionally, 2D and 3D speckle-variance images were used for quantitative observation of blood leakage from vessels due to the permeability enhancement caused by FUS, which could be an indicator that can be used to determine the influence of FUS power exposure. In conclusion, SVOCT can be a useful tool for monitoring FUS treatment in real time, facilitating the dynamic observation of temporal effects and helping to determine the optimal FUS power.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
    [PubMed]
  2. Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita, “Local delivery of plasmid DNA into rat carotid artery using ultrasound,” Circulation 105(10), 1233–1239 (2002).
    [Crossref] [PubMed]
  3. P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther. 10(18), 1600–1607 (2003).
    [Crossref] [PubMed]
  4. K. Tachibana and S. Tachibana, “Albumin Microbubble Echo-Contrast Material as an Enhancer for Ultrasound Accelerated Thrombolysis,” Circulation 92(5), 1148–1150 (1995).
    [Crossref] [PubMed]
  5. K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,” Radiology 220(3), 640–646 (2001).
    [Crossref] [PubMed]
  6. N. McDannold, N. Vykhodtseva, S. Raymond, F. A. Jolesz, and K. Hynynen, “MRI-guided targeted blood-brain barrier disruption with focused ultrasound: Histological findings in rabbits,” Ultrasound Med. Biol. 31(11), 1527–1537 (2005).
    [Crossref] [PubMed]
  7. H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15205–15210 (2010).
    [Crossref] [PubMed]
  8. H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, “Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment,” Radiology 255(2), 415–425 (2010).
    [Crossref] [PubMed]
  9. C. Y. Lin, Y. L. Huang, J. R. Li, F. H. Chang, and W. L. Lin, “Effects of focused ultrasound and microbubbles on the vascular permeability of nanoparticles delivered into mouse tumors,” Ultrasound Med. Biol. 36(9), 1460–1469 (2010).
    [Crossref] [PubMed]
  10. W. Wiedemair, Ž. Tuković, H. Jasak, D. Poulikakos, and V. Kurtcuoglu, “On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood-brain barrier,” Phys. Med. Biol. 57(4), 1019–1045 (2012).
    [Crossref] [PubMed]
  11. C. X. Deng, F. J. Qu, V. P. Nikolski, Y. Zhou, and I. R. Efimov, “Fluorescence imaging for real-time monitoring of high-intensity focused ultrasound cardiac ablation,” Ann. Biomed. Eng. 33(10), 1352–1359 (2005).
    [Crossref] [PubMed]
  12. M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18(10), 101307 (2013).
    [Crossref] [PubMed]
  13. M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11719–11723 (2006).
    [Crossref] [PubMed]
  14. L. H. Treat, N. McDannold, N. Vykhodtseva, Y. Z. Zhang, K. Tam, and K. Hynynen, “Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound,” Int. J. Cancer 121(4), 901–907 (2007).
    [Crossref] [PubMed]
  15. A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol. 57(9), 2787–2802 (2012).
    [Crossref] [PubMed]
  16. P. H. Hsu, K. C. Wei, C. Y. Huang, C. J. Wen, T. C. Yen, C. L. Liu, Y. T. Lin, J. C. Chen, C. R. Shen, and H. L. Liu, “Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound,” PLoS ONE 8(2), e57682 (2013).
    [Crossref] [PubMed]
  17. L. Chen, D. Bouley, E. Yuh, H. D’Arceuil, and K. Butts, “Study of focused ultrasound tissue damage using MRI and histology,” J. Magn. Reson. Imaging 10(2), 146–153 (1999).
    [Crossref] [PubMed]
  18. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  19. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
    [Crossref]
  20. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [Crossref] [PubMed]
  21. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
    [Crossref] [PubMed]
  22. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
    [Crossref] [PubMed]
  23. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24(21), 1484–1486 (1999).
    [Crossref] [PubMed]
  24. L. An, P. Li, T. T. Shen, and R. K. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
    [Crossref] [PubMed]
  25. M. T. Tsai and M. C. Chan, “Simultaneous 0.8, 1.0, and 1.3 μm multispectral and common-path broadband source for optical coherence tomography,” Opt. Lett. 39(4), 865–868 (2014).
    [Crossref] [PubMed]
  26. J. F. Xi, A. Q. Zhang, Z. Y. Liu, W. X. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging,” Opt. Lett. 39(7), 2016–2019 (2014).
    [Crossref] [PubMed]
  27. K. Murari, J. Mavadia, J. F. Xi, and X. D. Li, “Self-starting, self-regulating Fourier domain mode locked fiber laser for OCT imaging,” Biomed. Opt. Express 2(7), 2005–2011 (2011).
    [Crossref] [PubMed]
  28. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
    [Crossref] [PubMed]
  29. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
    [Crossref] [PubMed]
  30. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  31. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  32. Z. H. Ding, Y. H. Zhao, H. W. Ren, J. S. Nelson, and Z. P. Chen, “Real-time phase-resolved optical coherence tomography and optical Doppler tomography,” Opt. Express 10(5), 236–245 (2002).
    [Crossref] [PubMed]
  33. G. J. Liu, L. Chou, W. C. Jia, W. J. Qi, B. Choi, and Z. P. Chen, “Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems,” Opt. Express 19(12), 11429–11440 (2011).
    [Crossref] [PubMed]
  34. Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
    [Crossref] [PubMed]
  35. Y. Hong, S. Makita, M. Yamanari, M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, “Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography,” Opt. Express 15(12), 7538–7550 (2007).
    [Crossref] [PubMed]
  36. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [Crossref] [PubMed]
  37. C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, and C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express 1(4), 1060–1073 (2010).
    [Crossref] [PubMed]
  38. D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. C. Lee, T. R. Kiehl, B. C. Wilson, M. G. Fehlings, and V. X. D. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3(5), 911–919 (2012).
    [Crossref] [PubMed]
  39. L. Conroy, R. S. DaCosta, and I. A. Vitkin, “Quantifying tissue microvasculature with speckle variance optical coherence tomography,” Opt. Lett. 37(15), 3180–3182 (2012).
    [Crossref] [PubMed]
  40. H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
    [Crossref] [PubMed]
  41. L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
    [Crossref] [PubMed]
  42. S. Yousefi, J. Qin, and R. K. Wang, “Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo,” Biomed. Opt. Express 4(7), 1214–1228 (2013).
    [Crossref] [PubMed]
  43. J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2(5), 1184–1193 (2011).
    [Crossref] [PubMed]
  44. E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4(9), 583–587 (2011).
    [PubMed]
  45. S. Sakai, M. Yamanari, Y. Lim, N. Nakagawa, and Y. Yasuno, “In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 2(9), 2623–2631 (2011).
    [Crossref] [PubMed]
  46. B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
    [Crossref] [PubMed]
  47. A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
    [Crossref] [PubMed]
  48. C. P. Fleming, J. Eckert, E. F. Halpern, J. A. Gardecki, and G. J. Tearney, “Depth resolved detection of lipid using spectroscopic optical coherence tomography,” Biomed. Opt. Express 4(8), 1269–1284 (2013).
    [Crossref] [PubMed]
  49. F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
    [Crossref] [PubMed]
  50. N. A. Patel, X. D. Li, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Guidance of aortic ablation using optical coherence tomography,” Int. J. Cardiovasc. Imaging 19(2), 171–178 (2003).
    [Crossref] [PubMed]
  51. M. T. Tsai, C. H. Yang, S. C. Shen, Y. J. Lee, F. Y. Chang, and C. S. Feng, “Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography,” Biomed. Opt. Express 4(11), 2362–2375 (2013).
    [Crossref] [PubMed]

2014 (3)

2013 (7)

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref] [PubMed]

H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
[Crossref] [PubMed]

S. Yousefi, J. Qin, and R. K. Wang, “Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo,” Biomed. Opt. Express 4(7), 1214–1228 (2013).
[Crossref] [PubMed]

C. P. Fleming, J. Eckert, E. F. Halpern, J. A. Gardecki, and G. J. Tearney, “Depth resolved detection of lipid using spectroscopic optical coherence tomography,” Biomed. Opt. Express 4(8), 1269–1284 (2013).
[Crossref] [PubMed]

M. T. Tsai, C. H. Yang, S. C. Shen, Y. J. Lee, F. Y. Chang, and C. S. Feng, “Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography,” Biomed. Opt. Express 4(11), 2362–2375 (2013).
[Crossref] [PubMed]

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18(10), 101307 (2013).
[Crossref] [PubMed]

P. H. Hsu, K. C. Wei, C. Y. Huang, C. J. Wen, T. C. Yen, C. L. Liu, Y. T. Lin, J. C. Chen, C. R. Shen, and H. L. Liu, “Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound,” PLoS ONE 8(2), e57682 (2013).
[Crossref] [PubMed]

2012 (5)

A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol. 57(9), 2787–2802 (2012).
[Crossref] [PubMed]

W. Wiedemair, Ž. Tuković, H. Jasak, D. Poulikakos, and V. Kurtcuoglu, “On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood-brain barrier,” Phys. Med. Biol. 57(4), 1019–1045 (2012).
[Crossref] [PubMed]

D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. C. Lee, T. R. Kiehl, B. C. Wilson, M. G. Fehlings, and V. X. D. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3(5), 911–919 (2012).
[Crossref] [PubMed]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref] [PubMed]

L. Conroy, R. S. DaCosta, and I. A. Vitkin, “Quantifying tissue microvasculature with speckle variance optical coherence tomography,” Opt. Lett. 37(15), 3180–3182 (2012).
[Crossref] [PubMed]

2011 (7)

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4(9), 583–587 (2011).
[PubMed]

J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2(5), 1184–1193 (2011).
[Crossref] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
[Crossref] [PubMed]

G. J. Liu, L. Chou, W. C. Jia, W. J. Qi, B. Choi, and Z. P. Chen, “Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems,” Opt. Express 19(12), 11429–11440 (2011).
[Crossref] [PubMed]

K. Murari, J. Mavadia, J. F. Xi, and X. D. Li, “Self-starting, self-regulating Fourier domain mode locked fiber laser for OCT imaging,” Biomed. Opt. Express 2(7), 2005–2011 (2011).
[Crossref] [PubMed]

S. Sakai, M. Yamanari, Y. Lim, N. Nakagawa, and Y. Yasuno, “In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 2(9), 2623–2631 (2011).
[Crossref] [PubMed]

L. An, P. Li, T. T. Shen, and R. K. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
[Crossref] [PubMed]

2010 (6)

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15205–15210 (2010).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, “Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment,” Radiology 255(2), 415–425 (2010).
[Crossref] [PubMed]

C. Y. Lin, Y. L. Huang, J. R. Li, F. H. Chang, and W. L. Lin, “Effects of focused ultrasound and microbubbles on the vascular permeability of nanoparticles delivered into mouse tumors,” Ultrasound Med. Biol. 36(9), 1460–1469 (2010).
[Crossref] [PubMed]

C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, and C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express 1(4), 1060–1073 (2010).
[Crossref] [PubMed]

2008 (3)

2007 (4)

Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
[Crossref] [PubMed]

Y. Hong, S. Makita, M. Yamanari, M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, “Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography,” Opt. Express 15(12), 7538–7550 (2007).
[Crossref] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

L. H. Treat, N. McDannold, N. Vykhodtseva, Y. Z. Zhang, K. Tam, and K. Hynynen, “Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound,” Int. J. Cancer 121(4), 901–907 (2007).
[Crossref] [PubMed]

2006 (1)

M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11719–11723 (2006).
[Crossref] [PubMed]

2005 (2)

C. X. Deng, F. J. Qu, V. P. Nikolski, Y. Zhou, and I. R. Efimov, “Fluorescence imaging for real-time monitoring of high-intensity focused ultrasound cardiac ablation,” Ann. Biomed. Eng. 33(10), 1352–1359 (2005).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, S. Raymond, F. A. Jolesz, and K. Hynynen, “MRI-guided targeted blood-brain barrier disruption with focused ultrasound: Histological findings in rabbits,” Ultrasound Med. Biol. 31(11), 1527–1537 (2005).
[Crossref] [PubMed]

2003 (4)

P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther. 10(18), 1600–1607 (2003).
[Crossref] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

N. A. Patel, X. D. Li, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Guidance of aortic ablation using optical coherence tomography,” Int. J. Cardiovasc. Imaging 19(2), 171–178 (2003).
[Crossref] [PubMed]

2002 (2)

Z. H. Ding, Y. H. Zhao, H. W. Ren, J. S. Nelson, and Z. P. Chen, “Real-time phase-resolved optical coherence tomography and optical Doppler tomography,” Opt. Express 10(5), 236–245 (2002).
[Crossref] [PubMed]

Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita, “Local delivery of plasmid DNA into rat carotid artery using ultrasound,” Circulation 105(10), 1233–1239 (2002).
[Crossref] [PubMed]

2001 (1)

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,” Radiology 220(3), 640–646 (2001).
[Crossref] [PubMed]

1999 (3)

1998 (1)

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

1995 (1)

K. Tachibana and S. Tachibana, “Albumin Microbubble Echo-Contrast Material as an Enhancer for Ultrasound Accelerated Thrombolysis,” Circulation 92(5), 1148–1150 (1995).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Adler, D. C.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Akasaka, T.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

Akiba, M.

Alex, A.

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

An, L.

Aoki, M.

Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita, “Local delivery of plasmid DNA into rat carotid artery using ultrasound,” Circulation 105(10), 1233–1239 (2002).
[Crossref] [PubMed]

Arbustini, E.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

Barnathan, E. S.

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

Baumann, B.

Baumann, S. O.

Binder, S.

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

Boppart, S. A.

Bouley, D.

L. Chen, D. Bouley, E. Yuh, H. D’Arceuil, and K. Butts, “Study of focused ultrasound tissue damage using MRI and histology,” J. Magn. Reson. Imaging 10(2), 146–153 (1999).
[Crossref] [PubMed]

Brezinski, M. E.

N. A. Patel, X. D. Li, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Guidance of aortic ablation using optical coherence tomography,” Int. J. Cardiovasc. Imaging 19(2), 171–178 (2003).
[Crossref] [PubMed]

Buck, C. A.

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

Butts, K.

L. Chen, D. Bouley, E. Yuh, H. D’Arceuil, and K. Butts, “Study of focused ultrasound tissue damage using MRI and histology,” J. Magn. Reson. Imaging 10(2), 146–153 (1999).
[Crossref] [PubMed]

Cable, A.

Cable, A. E.

Cadotte, A.

Cadotte, D. W.

Chan, M. C.

Chang, F. H.

C. Y. Lin, Y. L. Huang, J. R. Li, F. H. Chang, and W. L. Lin, “Effects of focused ultrasound and microbubbles on the vascular permeability of nanoparticles delivered into mouse tumors,” Ultrasound Med. Biol. 36(9), 1460–1469 (2010).
[Crossref] [PubMed]

Chang, F. Y.

Chang, T. C.

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18(10), 101307 (2013).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, J. C.

P. H. Hsu, K. C. Wei, C. Y. Huang, C. J. Wen, T. C. Yen, C. L. Liu, Y. T. Lin, J. C. Chen, C. R. Shen, and H. L. Liu, “Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound,” PLoS ONE 8(2), e57682 (2013).
[Crossref] [PubMed]

Chen, L.

L. Chen, D. Bouley, E. Yuh, H. D’Arceuil, and K. Butts, “Study of focused ultrasound tissue damage using MRI and histology,” J. Magn. Reson. Imaging 10(2), 146–153 (1999).
[Crossref] [PubMed]

Chen, P. Y.

H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, “Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment,” Radiology 255(2), 415–425 (2010).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15205–15210 (2010).
[Crossref] [PubMed]

Chen, Y.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Chen, Y. L.

Chen, Z. P.

Chi, T. T.

Chiang, C. P.

Chiu, S. J.

Choi, B.

Choi, W.

Choma, M. A.

Chou, H. Y. E.

Chou, L.

Chu, P. C.

H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15205–15210 (2010).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, “Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment,” Radiology 255(2), 415–425 (2010).
[Crossref] [PubMed]

Cines, D. B.

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

Connolly, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Conroy, L.

Costa, M.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

D’Arceuil, H.

L. Chen, D. Bouley, E. Yuh, H. D’Arceuil, and K. Butts, “Study of focused ultrasound tissue damage using MRI and histology,” J. Magn. Reson. Imaging 10(2), 146–153 (1999).
[Crossref] [PubMed]

DaCosta, R. S.

Deng, C. X.

C. X. Deng, F. J. Qu, V. P. Nikolski, Y. Zhou, and I. R. Efimov, “Fluorescence imaging for real-time monitoring of high-intensity focused ultrasound cardiac ablation,” Ann. Biomed. Eng. 33(10), 1352–1359 (2005).
[Crossref] [PubMed]

Di Mario, C.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

Ding, Z. H.

Document, E. O. R.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

Drexler, W.

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref] [PubMed]

Duker, J. S.

Dzau, V. J.

P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther. 10(18), 1600–1607 (2003).
[Crossref] [PubMed]

Eckert, J.

Efimov, I. R.

C. X. Deng, F. J. Qu, V. P. Nikolski, Y. Zhou, and I. R. Efimov, “Fluorescence imaging for real-time monitoring of high-intensity focused ultrasound cardiac ablation,” Ann. Biomed. Eng. 33(10), 1352–1359 (2005).
[Crossref] [PubMed]

Ehsan, A.

P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther. 10(18), 1600–1607 (2003).
[Crossref] [PubMed]

Enfield, J.

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4(9), 583–587 (2011).
[PubMed]

J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2(5), 1184–1193 (2011).
[Crossref] [PubMed]

Estrada, R.

Farsiu, S.

Fehlings, M. G.

Feng, C. S.

Fercher, A. F.

Fleming, C. P.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
[Crossref] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[Crossref] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

N. A. Patel, X. D. Li, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Guidance of aortic ablation using optical coherence tomography,” Int. J. Cardiovasc. Imaging 19(2), 171–178 (2003).
[Crossref] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gardecki, J. A.

Glittenberg, C.

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

Gorczynska, I.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grube, E.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

Grulkowski, I.

Guagliumi, G.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

Halpern, E. F.

Hashiya, N.

Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita, “Local delivery of plasmid DNA into rat carotid artery using ultrasound,” Circulation 105(10), 1233–1239 (2002).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hendargo, H. C.

Hiraoka, K.

Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita, “Local delivery of plasmid DNA into rat carotid artery using ultrasound,” Circulation 105(10), 1233–1239 (2002).
[Crossref] [PubMed]

Hitzenberger, C. K.

Hofer, B.

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

Hong, Y.

Hong, Y. J.

Hornegger, J.

Hsu, P. H.

P. H. Hsu, K. C. Wei, C. Y. Huang, C. J. Wen, T. C. Yen, C. L. Liu, Y. T. Lin, J. C. Chen, C. R. Shen, and H. L. Liu, “Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound,” PLoS ONE 8(2), e57682 (2013).
[Crossref] [PubMed]

Hsu, P.-H.

A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol. 57(9), 2787–2802 (2012).
[Crossref] [PubMed]

Hua, M. Y.

H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, “Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment,” Radiology 255(2), 415–425 (2010).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15205–15210 (2010).
[Crossref] [PubMed]

Hua, M.-Y.

A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol. 57(9), 2787–2802 (2012).
[Crossref] [PubMed]

Huang, C. Y.

P. H. Hsu, K. C. Wei, C. Y. Huang, C. J. Wen, T. C. Yen, C. L. Liu, Y. T. Lin, J. C. Chen, C. R. Shen, and H. L. Liu, “Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound,” PLoS ONE 8(2), e57682 (2013).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15205–15210 (2010).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, “Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment,” Radiology 255(2), 415–425 (2010).
[Crossref] [PubMed]

Huang, D.

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, S.-M.

A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol. 57(9), 2787–2802 (2012).
[Crossref] [PubMed]

Huang, Y. L.

C. Y. Lin, Y. L. Huang, J. R. Li, F. H. Chang, and W. L. Lin, “Effects of focused ultrasound and microbubbles on the vascular permeability of nanoparticles delivered into mouse tumors,” Ultrasound Med. Biol. 36(9), 1460–1469 (2010).
[Crossref] [PubMed]

Huber, P. E.

P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther. 10(18), 1600–1607 (2003).
[Crossref] [PubMed]

Huber, R.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Hug, B. A.

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

Hynynen, K.

L. H. Treat, N. McDannold, N. Vykhodtseva, Y. Z. Zhang, K. Tam, and K. Hynynen, “Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound,” Int. J. Cancer 121(4), 901–907 (2007).
[Crossref] [PubMed]

M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11719–11723 (2006).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, S. Raymond, F. A. Jolesz, and K. Hynynen, “MRI-guided targeted blood-brain barrier disruption with focused ultrasound: Histological findings in rabbits,” Ultrasound Med. Biol. 31(11), 1527–1537 (2005).
[Crossref] [PubMed]

P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther. 10(18), 1600–1607 (2003).
[Crossref] [PubMed]

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,” Radiology 220(3), 640–646 (2001).
[Crossref] [PubMed]

Ippen, E. P.

Izatt, J. A.

Jang, I. K.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

Jasak, H.

W. Wiedemair, Ž. Tuković, H. Jasak, D. Poulikakos, and V. Kurtcuoglu, “On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood-brain barrier,” Phys. Med. Biol. 57(4), 1019–1045 (2012).
[Crossref] [PubMed]

Jayaraman, V.

Jia, W. C.

Jiang, J.

Jolesz, F.

P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther. 10(18), 1600–1607 (2003).
[Crossref] [PubMed]

Jolesz, F. A.

M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11719–11723 (2006).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, S. Raymond, F. A. Jolesz, and K. Hynynen, “MRI-guided targeted blood-brain barrier disruption with focused ultrasound: Histological findings in rabbits,” Ultrasound Med. Biol. 31(11), 1527–1537 (2005).
[Crossref] [PubMed]

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,” Radiology 220(3), 640–646 (2001).
[Crossref] [PubMed]

Jonathan, E.

J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2(5), 1184–1193 (2011).
[Crossref] [PubMed]

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4(9), 583–587 (2011).
[PubMed]

Kärtner, F. X.

Khurana, M.

Kiang, Y. W.

Kiehl, T. R.

Kim, S.

Kinoshita, M.

M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11719–11723 (2006).
[Crossref] [PubMed]

Konegger, T.

Kong, D.

P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther. 10(18), 1600–1607 (2003).
[Crossref] [PubMed]

Konkle, B. A.

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

Kraus, M. F.

Kurtcuoglu, V.

W. Wiedemair, Ž. Tuković, H. Jasak, D. Poulikakos, and V. Kurtcuoglu, “On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood-brain barrier,” Phys. Med. Biol. 57(4), 1019–1045 (2012).
[Crossref] [PubMed]

Leahy, M.

Leahy, M. J.

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4(9), 583–587 (2011).
[PubMed]

Lee, C. K.

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18(10), 101307 (2013).
[Crossref] [PubMed]

C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, and C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express 1(4), 1060–1073 (2010).
[Crossref] [PubMed]

Lee, C. Y.

Lee, J. D.

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18(10), 101307 (2013).
[Crossref] [PubMed]

Lee, K. K. C.

Lee, Y. J.

Leitgeb, R.

Leung, M. K. K.

Li, J. R.

C. Y. Lin, Y. L. Huang, J. R. Li, F. H. Chang, and W. L. Lin, “Effects of focused ultrasound and microbubbles on the vascular permeability of nanoparticles delivered into mouse tumors,” Ultrasound Med. Biol. 36(9), 1460–1469 (2010).
[Crossref] [PubMed]

Li, P.

Li, P. C.

A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol. 57(9), 2787–2802 (2012).
[Crossref] [PubMed]

Li, X.

Li, X. D.

Liang, W. X.

Liao, A.-H.

A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol. 57(9), 2787–2802 (2012).
[Crossref] [PubMed]

Lim, Y.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lin, C. Y.

C. Y. Lin, Y. L. Huang, J. R. Li, F. H. Chang, and W. L. Lin, “Effects of focused ultrasound and microbubbles on the vascular permeability of nanoparticles delivered into mouse tumors,” Ultrasound Med. Biol. 36(9), 1460–1469 (2010).
[Crossref] [PubMed]

Lin, K. M.

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18(10), 101307 (2013).
[Crossref] [PubMed]

Lin, L. Y.

Lin, T. H.

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18(10), 101307 (2013).
[Crossref] [PubMed]

Lin, W. L.

C. Y. Lin, Y. L. Huang, J. R. Li, F. H. Chang, and W. L. Lin, “Effects of focused ultrasound and microbubbles on the vascular permeability of nanoparticles delivered into mouse tumors,” Ultrasound Med. Biol. 36(9), 1460–1469 (2010).
[Crossref] [PubMed]

Lin, Y. T.

P. H. Hsu, K. C. Wei, C. Y. Huang, C. J. Wen, T. C. Yen, C. L. Liu, Y. T. Lin, J. C. Chen, C. R. Shen, and H. L. Liu, “Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound,” PLoS ONE 8(2), e57682 (2013).
[Crossref] [PubMed]

Lin, Y. X.

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18(10), 101307 (2013).
[Crossref] [PubMed]

Litschauer, M.

Liu, C. L.

P. H. Hsu, K. C. Wei, C. Y. Huang, C. J. Wen, T. C. Yen, C. L. Liu, Y. T. Lin, J. C. Chen, C. R. Shen, and H. L. Liu, “Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound,” PLoS ONE 8(2), e57682 (2013).
[Crossref] [PubMed]

Liu, G. J.

Liu, H. L.

P. H. Hsu, K. C. Wei, C. Y. Huang, C. J. Wen, T. C. Yen, C. L. Liu, Y. T. Lin, J. C. Chen, C. R. Shen, and H. L. Liu, “Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound,” PLoS ONE 8(2), e57682 (2013).
[Crossref] [PubMed]

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18(10), 101307 (2013).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, “Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment,” Radiology 255(2), 415–425 (2010).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15205–15210 (2010).
[Crossref] [PubMed]

Liu, H.-L.

A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol. 57(9), 2787–2802 (2012).
[Crossref] [PubMed]

Liu, J. J.

Liu, Z. Y.

Loscalzo, J.

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

Lu, C. D.

Makita, S.

Mann, M. J.

P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther. 10(18), 1600–1607 (2003).
[Crossref] [PubMed]

Mariampillai, A.

Mavadia, J.

McCrae, K. R.

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

McDannold, N.

L. H. Treat, N. McDannold, N. Vykhodtseva, Y. Z. Zhang, K. Tam, and K. Hynynen, “Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound,” Int. J. Cancer 121(4), 901–907 (2007).
[Crossref] [PubMed]

M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11719–11723 (2006).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, S. Raymond, F. A. Jolesz, and K. Hynynen, “MRI-guided targeted blood-brain barrier disruption with focused ultrasound: Histological findings in rabbits,” Ultrasound Med. Biol. 31(11), 1527–1537 (2005).
[Crossref] [PubMed]

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,” Radiology 220(3), 640–646 (2001).
[Crossref] [PubMed]

McEver, R. P.

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

Melo, L. G.

P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther. 10(18), 1600–1607 (2003).
[Crossref] [PubMed]

Mintz, G. S.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

Miura, M.

Morgner, U.

Morishita, R.

Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita, “Local delivery of plasmid DNA into rat carotid artery using ultrasound,” Circulation 105(10), 1233–1239 (2002).
[Crossref] [PubMed]

Moriyama, E. H.

Munce, N. R.

Murari, K.

Nakagawa, N.

Namba, T.

Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita, “Local delivery of plasmid DNA into rat carotid artery using ultrasound,” Circulation 105(10), 1233–1239 (2002).
[Crossref] [PubMed]

Nelson, J. S.

Nikolski, V. P.

C. X. Deng, F. J. Qu, V. P. Nikolski, Y. Zhou, and I. R. Efimov, “Fluorescence imaging for real-time monitoring of high-intensity focused ultrasound cardiac ablation,” Ann. Biomed. Eng. 33(10), 1352–1359 (2005).
[Crossref] [PubMed]

Ogihara, T.

Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita, “Local delivery of plasmid DNA into rat carotid artery using ultrasound,” Circulation 105(10), 1233–1239 (2002).
[Crossref] [PubMed]

Ozaki, Y.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

Pan, C. H.

H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, “Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment,” Radiology 255(2), 415–425 (2010).
[Crossref] [PubMed]

Patel, N. A.

N. A. Patel, X. D. Li, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Guidance of aortic ablation using optical coherence tomography,” Int. J. Cardiovasc. Imaging 19(2), 171–178 (2003).
[Crossref] [PubMed]

Peschke, P.

P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther. 10(18), 1600–1607 (2003).
[Crossref] [PubMed]

Pinto, F.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

Pircher, M.

Pitris, C.

Pober, J. S.

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

Pollak, E. S.

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

Popov, S.

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

Potsaid, B.

Poulikakos, D.

W. Wiedemair, Ž. Tuković, H. Jasak, D. Poulikakos, and V. Kurtcuoglu, “On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood-brain barrier,” Phys. Med. Biol. 57(4), 1019–1045 (2012).
[Crossref] [PubMed]

Povazay, B.

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

Prati, F.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qi, W. J.

Qin, J.

Qu, F. J.

C. X. Deng, F. J. Qu, V. P. Nikolski, Y. Zhou, and I. R. Efimov, “Fluorescence imaging for real-time monitoring of high-intensity focused ultrasound cardiac ablation,” Ann. Biomed. Eng. 33(10), 1352–1359 (2005).
[Crossref] [PubMed]

Raymond, S.

N. McDannold, N. Vykhodtseva, S. Raymond, F. A. Jolesz, and K. Hynynen, “MRI-guided targeted blood-brain barrier disruption with focused ultrasound: Histological findings in rabbits,” Ultrasound Med. Biol. 31(11), 1527–1537 (2005).
[Crossref] [PubMed]

Regar, E.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

Ren, H. W.

Rezvani, M.

P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther. 10(18), 1600–1607 (2003).
[Crossref] [PubMed]

Rollins, A. M.

Sakai, S.

Sarunic, M. V.

Sattmann, H.

Schlanitz, F.

Schmidt, A. M.

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

Schmidt-Erfurth, U.

Schmitt, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schütze, C.

Schwartz, B. S.

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

Serruys, P. W. J.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

Shen, C. R.

P. H. Hsu, K. C. Wei, C. Y. Huang, C. J. Wen, T. C. Yen, C. L. Liu, Y. T. Lin, J. C. Chen, C. R. Shen, and H. L. Liu, “Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound,” PLoS ONE 8(2), e57682 (2013).
[Crossref] [PubMed]

Shen, S. C.

Shen, T. T.

Srinivasan, V. J.

Stamper, D. L.

N. A. Patel, X. D. Li, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Guidance of aortic ablation using optical coherence tomography,” Int. J. Cardiovasc. Imaging 19(2), 171–178 (2003).
[Crossref] [PubMed]

Standish, B. A.

Stern, D. M.

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Su, C.-H.

A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol. 57(9), 2787–2802 (2012).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tachibana, K.

Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita, “Local delivery of plasmid DNA into rat carotid artery using ultrasound,” Circulation 105(10), 1233–1239 (2002).
[Crossref] [PubMed]

K. Tachibana and S. Tachibana, “Albumin Microbubble Echo-Contrast Material as an Enhancer for Ultrasound Accelerated Thrombolysis,” Circulation 92(5), 1148–1150 (1995).
[Crossref] [PubMed]

Tachibana, S.

K. Tachibana and S. Tachibana, “Albumin Microbubble Echo-Contrast Material as an Enhancer for Ultrasound Accelerated Thrombolysis,” Circulation 92(5), 1148–1150 (1995).
[Crossref] [PubMed]

Tam, K.

L. H. Treat, N. McDannold, N. Vykhodtseva, Y. Z. Zhang, K. Tam, and K. Hynynen, “Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound,” Int. J. Cancer 121(4), 901–907 (2007).
[Crossref] [PubMed]

Taniyama, Y.

Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita, “Local delivery of plasmid DNA into rat carotid artery using ultrasound,” Circulation 105(10), 1233–1239 (2002).
[Crossref] [PubMed]

Tearney, G. J.

Tomasi, C.

Treat, L. H.

L. H. Treat, N. McDannold, N. Vykhodtseva, Y. Z. Zhang, K. Tam, and K. Hynynen, “Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound,” Int. J. Cancer 121(4), 901–907 (2007).
[Crossref] [PubMed]

Tsai, M. T.

Tseng, H. Y.

Tseng, I. C.

H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15205–15210 (2010).
[Crossref] [PubMed]

Tukovic, Ž.

W. Wiedemair, Ž. Tuković, H. Jasak, D. Poulikakos, and V. Kurtcuoglu, “On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood-brain barrier,” Phys. Med. Biol. 57(4), 1019–1045 (2012).
[Crossref] [PubMed]

Vitkin, I. A.

Vykhodtseva, N.

L. H. Treat, N. McDannold, N. Vykhodtseva, Y. Z. Zhang, K. Tam, and K. Hynynen, “Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound,” Int. J. Cancer 121(4), 901–907 (2007).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, S. Raymond, F. A. Jolesz, and K. Hynynen, “MRI-guided targeted blood-brain barrier disruption with focused ultrasound: Histological findings in rabbits,” Ultrasound Med. Biol. 31(11), 1527–1537 (2005).
[Crossref] [PubMed]

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,” Radiology 220(3), 640–646 (2001).
[Crossref] [PubMed]

Wang, H. E.

A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol. 57(9), 2787–2802 (2012).
[Crossref] [PubMed]

Wang, J. J.

H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15205–15210 (2010).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, “Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment,” Radiology 255(2), 415–425 (2010).
[Crossref] [PubMed]

Wang, J. Y.

Wang, R. K.

Wang, R. K. K.

Wei, K. C.

P. H. Hsu, K. C. Wei, C. Y. Huang, C. J. Wen, T. C. Yen, C. L. Liu, Y. T. Lin, J. C. Chen, C. R. Shen, and H. L. Liu, “Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound,” PLoS ONE 8(2), e57682 (2013).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, “Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment,” Radiology 255(2), 415–425 (2010).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15205–15210 (2010).
[Crossref] [PubMed]

Wen, C. J.

P. H. Hsu, K. C. Wei, C. Y. Huang, C. J. Wen, T. C. Yen, C. L. Liu, Y. T. Lin, J. C. Chen, C. R. Shen, and H. L. Liu, “Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound,” PLoS ONE 8(2), e57682 (2013).
[Crossref] [PubMed]

Weng, Y.-T.

A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol. 57(9), 2787–2802 (2012).
[Crossref] [PubMed]

Wick, T. M.

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

Wiedemair, W.

W. Wiedemair, Ž. Tuković, H. Jasak, D. Poulikakos, and V. Kurtcuoglu, “On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood-brain barrier,” Phys. Med. Biol. 57(4), 1019–1045 (2012).
[Crossref] [PubMed]

Wilson, B. C.

Wu, J. S.

H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15205–15210 (2010).
[Crossref] [PubMed]

Wu, S. Y.

Wu, S.-Y.

A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol. 57(9), 2787–2802 (2012).
[Crossref] [PubMed]

Xi, J. F.

Yamanari, M.

Yamasaki, K.

Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita, “Local delivery of plasmid DNA into rat carotid artery using ultrasound,” Circulation 105(10), 1233–1239 (2002).
[Crossref] [PubMed]

Yang, C. C.

Yang, C. H.

Yang, H. W.

H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15205–15210 (2010).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, “Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment,” Radiology 255(2), 415–425 (2010).
[Crossref] [PubMed]

Yang, H.-W.

A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol. 57(9), 2787–2802 (2012).
[Crossref] [PubMed]

Yang, K. M.

Yang, V. X. D.

Yasufumi, K.

Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita, “Local delivery of plasmid DNA into rat carotid artery using ultrasound,” Circulation 105(10), 1233–1239 (2002).
[Crossref] [PubMed]

Yasuno, Y.

Yatagai, T.

Yen, T. C.

P. H. Hsu, K. C. Wei, C. Y. Huang, C. J. Wen, T. C. Yen, C. L. Liu, Y. T. Lin, J. C. Chen, C. R. Shen, and H. L. Liu, “Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound,” PLoS ONE 8(2), e57682 (2013).
[Crossref] [PubMed]

A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol. 57(9), 2787–2802 (2012).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, “Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment,” Radiology 255(2), 415–425 (2010).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15205–15210 (2010).
[Crossref] [PubMed]

Yousefi, S.

Yu, S.

Yuh, E.

L. Chen, D. Bouley, E. Yuh, H. D’Arceuil, and K. Butts, “Study of focused ultrasound tissue damage using MRI and histology,” J. Magn. Reson. Imaging 10(2), 146–153 (1999).
[Crossref] [PubMed]

Zhang, A. Q.

Zhang, L.

P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther. 10(18), 1600–1607 (2003).
[Crossref] [PubMed]

Zhang, Y. Z.

L. H. Treat, N. McDannold, N. Vykhodtseva, Y. Z. Zhang, K. Tam, and K. Hynynen, “Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound,” Int. J. Cancer 121(4), 901–907 (2007).
[Crossref] [PubMed]

Zhao, Y. H.

Zhou, Y.

C. X. Deng, F. J. Qu, V. P. Nikolski, Y. Zhou, and I. R. Efimov, “Fluorescence imaging for real-time monitoring of high-intensity focused ultrasound cardiac ablation,” Ann. Biomed. Eng. 33(10), 1352–1359 (2005).
[Crossref] [PubMed]

Zimmerman, G. A.

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

Ann. Biomed. Eng. (1)

C. X. Deng, F. J. Qu, V. P. Nikolski, Y. Zhou, and I. R. Efimov, “Fluorescence imaging for real-time monitoring of high-intensity focused ultrasound cardiac ablation,” Ann. Biomed. Eng. 33(10), 1352–1359 (2005).
[Crossref] [PubMed]

Biomed. Opt. Express (13)

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
[Crossref] [PubMed]

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
[Crossref] [PubMed]

L. An, P. Li, T. T. Shen, and R. K. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
[Crossref] [PubMed]

K. Murari, J. Mavadia, J. F. Xi, and X. D. Li, “Self-starting, self-regulating Fourier domain mode locked fiber laser for OCT imaging,” Biomed. Opt. Express 2(7), 2005–2011 (2011).
[Crossref] [PubMed]

C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, and C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express 1(4), 1060–1073 (2010).
[Crossref] [PubMed]

D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. C. Lee, T. R. Kiehl, B. C. Wilson, M. G. Fehlings, and V. X. D. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3(5), 911–919 (2012).
[Crossref] [PubMed]

H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
[Crossref] [PubMed]

S. Yousefi, J. Qin, and R. K. Wang, “Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo,” Biomed. Opt. Express 4(7), 1214–1228 (2013).
[Crossref] [PubMed]

J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2(5), 1184–1193 (2011).
[Crossref] [PubMed]

S. Sakai, M. Yamanari, Y. Lim, N. Nakagawa, and Y. Yasuno, “In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 2(9), 2623–2631 (2011).
[Crossref] [PubMed]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref] [PubMed]

C. P. Fleming, J. Eckert, E. F. Halpern, J. A. Gardecki, and G. J. Tearney, “Depth resolved detection of lipid using spectroscopic optical coherence tomography,” Biomed. Opt. Express 4(8), 1269–1284 (2013).
[Crossref] [PubMed]

M. T. Tsai, C. H. Yang, S. C. Shen, Y. J. Lee, F. Y. Chang, and C. S. Feng, “Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography,” Biomed. Opt. Express 4(11), 2362–2375 (2013).
[Crossref] [PubMed]

Blood (1)

D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood 91(10), 3527–3561 (1998).
[PubMed]

Circulation (2)

Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita, “Local delivery of plasmid DNA into rat carotid artery using ultrasound,” Circulation 105(10), 1233–1239 (2002).
[Crossref] [PubMed]

K. Tachibana and S. Tachibana, “Albumin Microbubble Echo-Contrast Material as an Enhancer for Ultrasound Accelerated Thrombolysis,” Circulation 92(5), 1148–1150 (1995).
[Crossref] [PubMed]

Eur. Heart J. (1)

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010).
[Crossref] [PubMed]

Gene Ther. (1)

P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther. 10(18), 1600–1607 (2003).
[Crossref] [PubMed]

Int. J. Cancer (1)

L. H. Treat, N. McDannold, N. Vykhodtseva, Y. Z. Zhang, K. Tam, and K. Hynynen, “Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound,” Int. J. Cancer 121(4), 901–907 (2007).
[Crossref] [PubMed]

Int. J. Cardiovasc. Imaging (1)

N. A. Patel, X. D. Li, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Guidance of aortic ablation using optical coherence tomography,” Int. J. Cardiovasc. Imaging 19(2), 171–178 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt. 18(10), 101307 (2013).
[Crossref] [PubMed]

J. Biophotonics (1)

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4(9), 583–587 (2011).
[PubMed]

J. Magn. Reson. Imaging (1)

L. Chen, D. Bouley, E. Yuh, H. D’Arceuil, and K. Butts, “Study of focused ultrasound tissue damage using MRI and histology,” J. Magn. Reson. Imaging 10(2), 146–153 (1999).
[Crossref] [PubMed]

Nat. Photonics (1)

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Opt. Express (8)

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[Crossref] [PubMed]

L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[Crossref] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

Z. H. Ding, Y. H. Zhao, H. W. Ren, J. S. Nelson, and Z. P. Chen, “Real-time phase-resolved optical coherence tomography and optical Doppler tomography,” Opt. Express 10(5), 236–245 (2002).
[Crossref] [PubMed]

G. J. Liu, L. Chou, W. C. Jia, W. J. Qi, B. Choi, and Z. P. Chen, “Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems,” Opt. Express 19(12), 11429–11440 (2011).
[Crossref] [PubMed]

Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
[Crossref] [PubMed]

Y. Hong, S. Makita, M. Yamanari, M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, “Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography,” Opt. Express 15(12), 7538–7550 (2007).
[Crossref] [PubMed]

Opt. Lett. (7)

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref] [PubMed]

L. Conroy, R. S. DaCosta, and I. A. Vitkin, “Quantifying tissue microvasculature with speckle variance optical coherence tomography,” Opt. Lett. 37(15), 3180–3182 (2012).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref] [PubMed]

M. T. Tsai and M. C. Chan, “Simultaneous 0.8, 1.0, and 1.3 μm multispectral and common-path broadband source for optical coherence tomography,” Opt. Lett. 39(4), 865–868 (2014).
[Crossref] [PubMed]

J. F. Xi, A. Q. Zhang, Z. Y. Liu, W. X. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging,” Opt. Lett. 39(7), 2016–2019 (2014).
[Crossref] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref] [PubMed]

A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24(21), 1484–1486 (1999).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol. 57(9), 2787–2802 (2012).
[Crossref] [PubMed]

W. Wiedemair, Ž. Tuković, H. Jasak, D. Poulikakos, and V. Kurtcuoglu, “On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood-brain barrier,” Phys. Med. Biol. 57(4), 1019–1045 (2012).
[Crossref] [PubMed]

PLoS ONE (1)

P. H. Hsu, K. C. Wei, C. Y. Huang, C. J. Wen, T. C. Yen, C. L. Liu, Y. T. Lin, J. C. Chen, C. R. Shen, and H. L. Liu, “Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound,” PLoS ONE 8(2), e57682 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11719–11723 (2006).
[Crossref] [PubMed]

H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15205–15210 (2010).
[Crossref] [PubMed]

Radiology (2)

H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, “Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment,” Radiology 255(2), 415–425 (2010).
[Crossref] [PubMed]

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,” Radiology 220(3), 640–646 (2001).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ultrasound Med. Biol. (2)

N. McDannold, N. Vykhodtseva, S. Raymond, F. A. Jolesz, and K. Hynynen, “MRI-guided targeted blood-brain barrier disruption with focused ultrasound: Histological findings in rabbits,” Ultrasound Med. Biol. 31(11), 1527–1537 (2005).
[Crossref] [PubMed]

C. Y. Lin, Y. L. Huang, J. R. Li, F. H. Chang, and W. L. Lin, “Effects of focused ultrasound and microbubbles on the vascular permeability of nanoparticles delivered into mouse tumors,” Ultrasound Med. Biol. 36(9), 1460–1469 (2010).
[Crossref] [PubMed]

Supplementary Material (1)

» Media 1: MOV (9640 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Platform setup for OCT scanning and FUS exposure. (a) Schematic diagram of the SS-OCT system. (b) Setup for FUS exposure. FC: fiber coupler; CIR: circulator; G: galvanometer; M: mirror, and SL: scan lens. The cone was filled with deionized and degassed water to facilitate the transmission of acoustic waves. The acoustic wave was focused on the bottom surface of the sample, and the optical beam was incident on the top surface of the sample. The physical area of OCT imaging is approximately 2 × 2 × 3 mm3.

Fig. 2
Fig. 2

Sequential B-scan OCT images of the mouse ear without microbubbles, which were acquired before the FUS exposure ((a)–(d)) and during the exposures to FUS with the various powers of 1 W ((e)–(h)), 5 W ((i)–(l)), 10 W ((m)–(p)), and 15 W ((q)–(t)). The vascular area within the rectangular region bounded by the white dashed lines in (a) was magnified by a factor of 3; the magnified version of each vascular area is shown in the lower right corner of each panel in the figure. The four sequential images in each row were taken with a temporal interval of 10 ms. The white arrows in the magnified images represent the interwall separation of the vessel, the value of which can be estimated from the OCT images, as shown in the figure.

Fig. 3
Fig. 3

Sequential B-scan OCT images of another mouse ear, which were acquired before the FUS exposure ((a)–(d)) and during the FUS exposures in the presence of microbubbles at powers of 1 W ((e)–(h)), 5 W ((i)–(l)), 10 W ((m)–(p)), and 15 W ((q)–(t)). The area bounded by the box drawn in dashed lines in (a) is magnified by a factor of 3 and shown in the lower right corner for each panel. The black region represents the vessel structure. The four sequential images in each row were taken with a time interval of 10 ms.

Fig. 4
Fig. 4

(a)–(e) Photographs taken of the mouse ear before and after being exposed to each power level in the experiment of Fig. 2. (f)–(j) Photographs taken before and after being exposed to each power level in the experiment of Fig. 3. The red lines indicate the corresponding scanning locations of Figs. 2 and 3.

Fig. 5
Fig. 5

Statistical results for the R and Ad values from Figs. 2 and 3. (a) The means and standard deviations of R values at various FUS powers. (b) The means and standard deviations of Ad values at various FUS powers.

Fig. 6
Fig. 6

Speckle variance estimated from Figs. 2 and 3. Speckle-variance images, which were estimated from the OCT images obtained (a) before FUS exposure and during exposure to various FUS powers of (b) 1 W, (c) 5 W, (d) 10 W, and (e) 15 W in the absence of microbubbles. Speckle-variance images, which were estimated from the OCT images obtained (f) before FUS exposure and during exposure to various FUS powers of (g) 1 W, (h) 5 W, (i) 10 W, and (j) 15 W in the presence of microbubbles.

Fig. 7
Fig. 7

Estimation of the vascular areas of Fig. 6. Curves I and II plot the relationship between the estimated vascular area and the FUS power, estimated from Figs. 6(a)6(e). Curves III and IV show the relationship between the estimated vascular area and the FUS power, estimated from Figs. 6(f)6(j).

Fig. 8
Fig. 8

Projection view of SVOCT images of the mouse ear, which were obtained (a) before FUS exposure and after FUS exposures of (b) 1 W, (c) 5 W, (d) 10 W, and (e) 15 W in the presence of microbubbles. Media 1 demonstrate the 3D animation of SVOCT images before and after FUS exposure of 15 W.

Fig. 9
Fig. 9

Estimation of the distribution of the speckle variance in Fig. 8. The estimated regions, I, II, and III, are indicated by the rectangular regions bounded by dashed lines in Fig. 8.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A d = 1 N i=1 N ( A i A m ) 2 / A o
S V ijk = 1 N k=1 N ( I ijk 1 N k=1 N I ijk ) 2

Metrics