Abstract

Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumination, residual image motion and image rotation. This processing can be challenging for images of the RNFL due to their low contrast and lack of clearly noticeable features. Here we develop specific processing techniques and show that their application leads to improved image quality on the nerve fiber bundles. This in turn improves the reliability of measures of fiber texture such as the correlation of Gray-Level Co-occurrence Matrix (GLCM).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res.38(7), 709–721 (2013).
    [CrossRef] [PubMed]
  2. M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
    [CrossRef] [PubMed]
  3. H. A. Quigley, “Glaucoma,” Lancet377(9774), 1367–1377 (2011).
    [CrossRef] [PubMed]
  4. H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol.90(3), 262–267 (2006).
    [CrossRef] [PubMed]
  5. H. A. Quigley and A. Sommer, “How to use nerve fiber layer examination in the management of glaucoma,” Trans. Am. Ophthalmol. Soc.85, 254–272 (1987).
    [PubMed]
  6. A. King, A. Azuara-Blanco, and A. Tuulonen, “Clinical review: Glaucoma,” BMJ346, 29–33 (2013).
    [CrossRef]
  7. WHO, “Global data on visual impairments 2010.” www.who.int/blindness/ GLOBALDATAFINALforweb.pdf
  8. L. M. Alencar, L. M. Zangwill, R. N. Weinreb, C. Bowd, P. A. Sample, C. A. Girkin, J. M. Liebmann, and F. A. Medeiros, “A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma,” Invest. Ophthalmol. Vis. Sci.51(7), 3531–3539 (2010).
    [CrossRef] [PubMed]
  9. O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res.51(16), 1835–1844 (2011).
    [CrossRef] [PubMed]
  10. T. C. Lim, S. Chattopadhyay, and U. R. Acharya, “A survey and comparative study on the instruments for glaucoma detection,” Med. Eng. Phys.34(2), 129–139 (2012).
    [CrossRef] [PubMed]
  11. K. Mansouri, M. T. Leite, F. A. Medeiros, C. K. Leung, and R. N. Weinreb, “Assessment of rates of structural change in glaucoma using imaging technologies,” Eye (Lond.)25(3), 269–277 (2011).
    [CrossRef] [PubMed]
  12. T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
    [CrossRef] [PubMed]
  13. G. Huang, X. Qi, T. Y. P. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
    [CrossRef] [PubMed]
  14. K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
    [CrossRef] [PubMed]
  15. K. Takayama, S. Ooto, M. Hangai, N. Arakawa, S. Oshima, N. Shibata, M. Hanebuchi, T. Inoue, and N. Yoshimura, “High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy,” PLoS ONE7(3), e33158 (2012).
    [CrossRef] [PubMed]
  16. J. C. Russ, The image processing handbook (CRC/Taylor & Francis, 2007), Chap. 3.
  17. D. Tomazevic, B. Likar, and F. Pernus, “Comparative evaluation of retrospective shading correction methods,” J. Microsc.208(3), 212–223 (2002).
    [CrossRef] [PubMed]
  18. G. Ramaswamy and N. Devaney, “Pre-processing, registration and selection of adaptive optics corrected retinal images,” Ophthalmic Physiol. Opt.33(4), 527–539 (2013).
    [CrossRef] [PubMed]
  19. H. Li, J. Lu, G. Shi, and Y. Zhang, “Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm,” Biomed. Opt. Express1(1), 31–40 (2010).
    [CrossRef] [PubMed]
  20. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express14(2), 487–497 (2006).
    [CrossRef] [PubMed]
  21. M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults,” J. Cataract Refract. Surg.38(7), 1147–1155 (2012).
    [CrossRef] [PubMed]
  22. N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis.5(7), 632–639 (2005).
    [CrossRef] [PubMed]
  23. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express14(10), 4552–4569 (2006).
    [CrossRef] [PubMed]
  24. S. Gharabaghi, S. Daneshvar, and M. H. Sedaaghi, “Retinal image registration using geometrical features,” J. Digit. Imaging26(2), 248–258 (2013).
    [CrossRef] [PubMed]
  25. C. D. Kuglin and D. C. Hines, “The Phase Correlation Image Alignment method,” in Proceedings of IEEE Cybernet Society (Institute of Electrical and Electronics Engineers, 1975), pp.163–165.
  26. J. Chen, R. T. Smith, J. Tian, and A. F. Laine, “A Novel Registration method for Retinal Images based on Local Features,” in Proc. of IEEE Engineering in Medicine & Biology Society, (Institute of Electrical and Electronics Engineers, 2008), pp.2242–2245.
    [CrossRef]
  27. J. You, W. Lu, J. Li, G. Gindi, and Z. Liang, “Image matching for translation, rotation and uniform scaling by the radon transform,” in Proceedings of International Conference on Image Processing (Institute of Electrical and Electronics Engineers, 1998), pp.847–851.
  28. T. Arodz, “Invariant Object Recognition using Radon-based Transform,” Computing and Informatics24, 183–199 (2005).
  29. E. De Castro and C. Morandi, “Registration of Translated and Rotated Images using Finite Fourier Transforms,” IEEE Trans. Pattern Anal. Mach. Intell.9(5), 700–703 (1987).
    [CrossRef] [PubMed]
  30. R. Matungka, Y. F. Zheng, and R. L. Ewing, “Object Recognition Using Log-Polar Wavelet Mapping,” in IEEE International Conference on Tools with Artificial Intelligence, (Institute of Electrical and Electronics Engineers, 2008), pp.559–563.
  31. B. S. Reddy and B. N. Chatterji, “An FFT-based Technique for Translation, Rotation, and Scale-Invariant Image Registration,” IEEE Trans. Image Process.5(8), 1266–1271 (1996).
    [CrossRef] [PubMed]
  32. G. Wolberg and S. Zokai, “Robust Image Registration using Log-Polar Transform,” in IEEE International Conference on Image Processing, (Institute of Electrical and Electronics Engineers, 2000), 493–496.
  33. G. Ramaswamy, M. Lombardo, and N. Devaney, “Texture analysis of adaptive optics assisted retinal nerve fiber layer images,” in Photonics Ireland 2013, (Belfast, 2013).
  34. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A20(4), 609–620 (2003).
    [CrossRef] [PubMed]
  35. B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput.21(11), 977–1000 (2003).
    [CrossRef]
  36. S. Deans, The Radon Transform and some of its Applications (A Wiley-Interscience, 1983), Chap. 2.
  37. D. Young, “Straight lines and circles in the log-polar image,” in Proceedings of the 11th British Machine Vision Conference, 2000), pp.426–435.
    [CrossRef]
  38. R. M. Haralick, “Statistical and Structural Approaches to Texture,” Proc. IEEE67(5), 786–804 (1979).
    [CrossRef]
  39. R. Jain, R. Kasturi, and B. G. Schunck, “Texture,” in Machine Vision (McGraw-Hill, Inc., 1995), pp. 234–248.
  40. C. Kulcsar, G. L. Besnerais, E. Odlund, and X. Levecq, “Robust processing of images sequences produced by an adaptive optics retinal camera,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3A.3. http://www.opticsinfobase.org/abstract.cfm?URI=AOPT-2013-OW3A.3
    [CrossRef]

2013 (5)

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res.38(7), 709–721 (2013).
[CrossRef] [PubMed]

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
[CrossRef] [PubMed]

A. King, A. Azuara-Blanco, and A. Tuulonen, “Clinical review: Glaucoma,” BMJ346, 29–33 (2013).
[CrossRef]

G. Ramaswamy and N. Devaney, “Pre-processing, registration and selection of adaptive optics corrected retinal images,” Ophthalmic Physiol. Opt.33(4), 527–539 (2013).
[CrossRef] [PubMed]

S. Gharabaghi, S. Daneshvar, and M. H. Sedaaghi, “Retinal image registration using geometrical features,” J. Digit. Imaging26(2), 248–258 (2013).
[CrossRef] [PubMed]

2012 (5)

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults,” J. Cataract Refract. Surg.38(7), 1147–1155 (2012).
[CrossRef] [PubMed]

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

G. Huang, X. Qi, T. Y. P. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
[CrossRef] [PubMed]

K. Takayama, S. Ooto, M. Hangai, N. Arakawa, S. Oshima, N. Shibata, M. Hanebuchi, T. Inoue, and N. Yoshimura, “High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy,” PLoS ONE7(3), e33158 (2012).
[CrossRef] [PubMed]

T. C. Lim, S. Chattopadhyay, and U. R. Acharya, “A survey and comparative study on the instruments for glaucoma detection,” Med. Eng. Phys.34(2), 129–139 (2012).
[CrossRef] [PubMed]

2011 (4)

K. Mansouri, M. T. Leite, F. A. Medeiros, C. K. Leung, and R. N. Weinreb, “Assessment of rates of structural change in glaucoma using imaging technologies,” Eye (Lond.)25(3), 269–277 (2011).
[CrossRef] [PubMed]

H. A. Quigley, “Glaucoma,” Lancet377(9774), 1367–1377 (2011).
[CrossRef] [PubMed]

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res.51(16), 1835–1844 (2011).
[CrossRef] [PubMed]

2010 (2)

H. Li, J. Lu, G. Shi, and Y. Zhang, “Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm,” Biomed. Opt. Express1(1), 31–40 (2010).
[CrossRef] [PubMed]

L. M. Alencar, L. M. Zangwill, R. N. Weinreb, C. Bowd, P. A. Sample, C. A. Girkin, J. M. Liebmann, and F. A. Medeiros, “A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma,” Invest. Ophthalmol. Vis. Sci.51(7), 3531–3539 (2010).
[CrossRef] [PubMed]

2006 (3)

2005 (2)

T. Arodz, “Invariant Object Recognition using Radon-based Transform,” Computing and Informatics24, 183–199 (2005).

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis.5(7), 632–639 (2005).
[CrossRef] [PubMed]

2003 (2)

2002 (1)

D. Tomazevic, B. Likar, and F. Pernus, “Comparative evaluation of retrospective shading correction methods,” J. Microsc.208(3), 212–223 (2002).
[CrossRef] [PubMed]

1996 (1)

B. S. Reddy and B. N. Chatterji, “An FFT-based Technique for Translation, Rotation, and Scale-Invariant Image Registration,” IEEE Trans. Image Process.5(8), 1266–1271 (1996).
[CrossRef] [PubMed]

1987 (2)

E. De Castro and C. Morandi, “Registration of Translated and Rotated Images using Finite Fourier Transforms,” IEEE Trans. Pattern Anal. Mach. Intell.9(5), 700–703 (1987).
[CrossRef] [PubMed]

H. A. Quigley and A. Sommer, “How to use nerve fiber layer examination in the management of glaucoma,” Trans. Am. Ophthalmol. Soc.85, 254–272 (1987).
[PubMed]

1979 (1)

R. M. Haralick, “Statistical and Structural Approaches to Texture,” Proc. IEEE67(5), 786–804 (1979).
[CrossRef]

Acharya, U. R.

T. C. Lim, S. Chattopadhyay, and U. R. Acharya, “A survey and comparative study on the instruments for glaucoma detection,” Med. Eng. Phys.34(2), 129–139 (2012).
[CrossRef] [PubMed]

Akagi, T.

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

Alencar, L. M.

L. M. Alencar, L. M. Zangwill, R. N. Weinreb, C. Bowd, P. A. Sample, C. A. Girkin, J. M. Liebmann, and F. A. Medeiros, “A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma,” Invest. Ophthalmol. Vis. Sci.51(7), 3531–3539 (2010).
[CrossRef] [PubMed]

Arakawa, N.

K. Takayama, S. Ooto, M. Hangai, N. Arakawa, S. Oshima, N. Shibata, M. Hanebuchi, T. Inoue, and N. Yoshimura, “High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy,” PLoS ONE7(3), e33158 (2012).
[CrossRef] [PubMed]

Arathorn, D. W.

Arodz, T.

T. Arodz, “Invariant Object Recognition using Radon-based Transform,” Computing and Informatics24, 183–199 (2005).

Azuara-Blanco, A.

A. King, A. Azuara-Blanco, and A. Tuulonen, “Clinical review: Glaucoma,” BMJ346, 29–33 (2013).
[CrossRef]

Bowd, C.

L. M. Alencar, L. M. Zangwill, R. N. Weinreb, C. Bowd, P. A. Sample, C. A. Girkin, J. M. Liebmann, and F. A. Medeiros, “A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma,” Invest. Ophthalmol. Vis. Sci.51(7), 3531–3539 (2010).
[CrossRef] [PubMed]

Broman, A. T.

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol.90(3), 262–267 (2006).
[CrossRef] [PubMed]

Burns, S. A.

G. Huang, X. Qi, T. Y. P. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
[CrossRef] [PubMed]

Carroll, J.

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res.38(7), 709–721 (2013).
[CrossRef] [PubMed]

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis.5(7), 632–639 (2005).
[CrossRef] [PubMed]

Cense, B.

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res.51(16), 1835–1844 (2011).
[CrossRef] [PubMed]

Chatterji, B. N.

B. S. Reddy and B. N. Chatterji, “An FFT-based Technique for Translation, Rotation, and Scale-Invariant Image Registration,” IEEE Trans. Image Process.5(8), 1266–1271 (1996).
[CrossRef] [PubMed]

Chattopadhyay, S.

T. C. Lim, S. Chattopadhyay, and U. R. Acharya, “A survey and comparative study on the instruments for glaucoma detection,” Med. Eng. Phys.34(2), 129–139 (2012).
[CrossRef] [PubMed]

Chen, L.

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis.5(7), 632–639 (2005).
[CrossRef] [PubMed]

Chui, T. Y. P.

G. Huang, X. Qi, T. Y. P. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
[CrossRef] [PubMed]

Daneshvar, S.

S. Gharabaghi, S. Daneshvar, and M. H. Sedaaghi, “Retinal image registration using geometrical features,” J. Digit. Imaging26(2), 248–258 (2013).
[CrossRef] [PubMed]

De Castro, E.

E. De Castro and C. Morandi, “Registration of Translated and Rotated Images using Finite Fourier Transforms,” IEEE Trans. Pattern Anal. Mach. Intell.9(5), 700–703 (1987).
[CrossRef] [PubMed]

Devaney, N.

G. Ramaswamy and N. Devaney, “Pre-processing, registration and selection of adaptive optics corrected retinal images,” Ophthalmic Physiol. Opt.33(4), 527–539 (2013).
[CrossRef] [PubMed]

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
[CrossRef] [PubMed]

Doble, N.

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis.5(7), 632–639 (2005).
[CrossRef] [PubMed]

Dubra, A.

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res.38(7), 709–721 (2013).
[CrossRef] [PubMed]

Ducoli, P.

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults,” J. Cataract Refract. Surg.38(7), 1147–1155 (2012).
[CrossRef] [PubMed]

Fienup, J. R.

Flusser, J.

B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput.21(11), 977–1000 (2003).
[CrossRef]

Gao, W.

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res.51(16), 1835–1844 (2011).
[CrossRef] [PubMed]

Gharabaghi, S.

S. Gharabaghi, S. Daneshvar, and M. H. Sedaaghi, “Retinal image registration using geometrical features,” J. Digit. Imaging26(2), 248–258 (2013).
[CrossRef] [PubMed]

Girkin, C. A.

L. M. Alencar, L. M. Zangwill, R. N. Weinreb, C. Bowd, P. A. Sample, C. A. Girkin, J. M. Liebmann, and F. A. Medeiros, “A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma,” Invest. Ophthalmol. Vis. Sci.51(7), 3531–3539 (2010).
[CrossRef] [PubMed]

Hanebuchi, M.

K. Takayama, S. Ooto, M. Hangai, N. Arakawa, S. Oshima, N. Shibata, M. Hanebuchi, T. Inoue, and N. Yoshimura, “High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy,” PLoS ONE7(3), e33158 (2012).
[CrossRef] [PubMed]

Hangai, M.

K. Takayama, S. Ooto, M. Hangai, N. Arakawa, S. Oshima, N. Shibata, M. Hanebuchi, T. Inoue, and N. Yoshimura, “High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy,” PLoS ONE7(3), e33158 (2012).
[CrossRef] [PubMed]

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

Haralick, R. M.

R. M. Haralick, “Statistical and Structural Approaches to Texture,” Proc. IEEE67(5), 786–804 (1979).
[CrossRef]

Harwerth, R. S.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

Hofer, H. J.

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis.5(7), 632–639 (2005).
[CrossRef] [PubMed]

Huang, G.

G. Huang, X. Qi, T. Y. P. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
[CrossRef] [PubMed]

Inoue, T.

K. Takayama, S. Ooto, M. Hangai, N. Arakawa, S. Oshima, N. Shibata, M. Hanebuchi, T. Inoue, and N. Yoshimura, “High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy,” PLoS ONE7(3), e33158 (2012).
[CrossRef] [PubMed]

Ivers, K. M.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

Jonnal, R. S.

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res.51(16), 1835–1844 (2011).
[CrossRef] [PubMed]

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express14(10), 4552–4569 (2006).
[CrossRef] [PubMed]

Kay, D. B.

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res.38(7), 709–721 (2013).
[CrossRef] [PubMed]

King, A.

A. King, A. Azuara-Blanco, and A. Tuulonen, “Clinical review: Glaucoma,” BMJ346, 29–33 (2013).
[CrossRef]

Kocaoglu, O. P.

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res.51(16), 1835–1844 (2011).
[CrossRef] [PubMed]

Lee, S.

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res.51(16), 1835–1844 (2011).
[CrossRef] [PubMed]

Leite, M. T.

K. Mansouri, M. T. Leite, F. A. Medeiros, C. K. Leung, and R. N. Weinreb, “Assessment of rates of structural change in glaucoma using imaging technologies,” Eye (Lond.)25(3), 269–277 (2011).
[CrossRef] [PubMed]

Leung, C. K.

K. Mansouri, M. T. Leite, F. A. Medeiros, C. K. Leung, and R. N. Weinreb, “Assessment of rates of structural change in glaucoma using imaging technologies,” Eye (Lond.)25(3), 269–277 (2011).
[CrossRef] [PubMed]

Li, C.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

Li, H.

Liebmann, J. M.

L. M. Alencar, L. M. Zangwill, R. N. Weinreb, C. Bowd, P. A. Sample, C. A. Girkin, J. M. Liebmann, and F. A. Medeiros, “A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma,” Invest. Ophthalmol. Vis. Sci.51(7), 3531–3539 (2010).
[CrossRef] [PubMed]

Likar, B.

D. Tomazevic, B. Likar, and F. Pernus, “Comparative evaluation of retrospective shading correction methods,” J. Microsc.208(3), 212–223 (2002).
[CrossRef] [PubMed]

Lim, T. C.

T. C. Lim, S. Chattopadhyay, and U. R. Acharya, “A survey and comparative study on the instruments for glaucoma detection,” Med. Eng. Phys.34(2), 129–139 (2012).
[CrossRef] [PubMed]

Lombardo, G.

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
[CrossRef] [PubMed]

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults,” J. Cataract Refract. Surg.38(7), 1147–1155 (2012).
[CrossRef] [PubMed]

Lombardo, M.

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res.38(7), 709–721 (2013).
[CrossRef] [PubMed]

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
[CrossRef] [PubMed]

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults,” J. Cataract Refract. Surg.38(7), 1147–1155 (2012).
[CrossRef] [PubMed]

Lu, J.

Luo, X.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

Mansouri, K.

K. Mansouri, M. T. Leite, F. A. Medeiros, C. K. Leung, and R. N. Weinreb, “Assessment of rates of structural change in glaucoma using imaging technologies,” Eye (Lond.)25(3), 269–277 (2011).
[CrossRef] [PubMed]

Medeiros, F. A.

K. Mansouri, M. T. Leite, F. A. Medeiros, C. K. Leung, and R. N. Weinreb, “Assessment of rates of structural change in glaucoma using imaging technologies,” Eye (Lond.)25(3), 269–277 (2011).
[CrossRef] [PubMed]

L. M. Alencar, L. M. Zangwill, R. N. Weinreb, C. Bowd, P. A. Sample, C. A. Girkin, J. M. Liebmann, and F. A. Medeiros, “A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma,” Invest. Ophthalmol. Vis. Sci.51(7), 3531–3539 (2010).
[CrossRef] [PubMed]

Miller, D. T.

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res.51(16), 1835–1844 (2011).
[CrossRef] [PubMed]

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express14(10), 4552–4569 (2006).
[CrossRef] [PubMed]

Miller, J. J.

Morandi, C.

E. De Castro and C. Morandi, “Registration of Translated and Rotated Images using Finite Fourier Transforms,” IEEE Trans. Pattern Anal. Mach. Intell.9(5), 700–703 (1987).
[CrossRef] [PubMed]

Nonaka, A.

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

Ooto, S.

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

K. Takayama, S. Ooto, M. Hangai, N. Arakawa, S. Oshima, N. Shibata, M. Hanebuchi, T. Inoue, and N. Yoshimura, “High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy,” PLoS ONE7(3), e33158 (2012).
[CrossRef] [PubMed]

Oshima, S.

K. Takayama, S. Ooto, M. Hangai, N. Arakawa, S. Oshima, N. Shibata, M. Hanebuchi, T. Inoue, and N. Yoshimura, “High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy,” PLoS ONE7(3), e33158 (2012).
[CrossRef] [PubMed]

Parker, A.

Parravano, M.

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
[CrossRef] [PubMed]

Patel, N.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

Pernus, F.

D. Tomazevic, B. Likar, and F. Pernus, “Comparative evaluation of retrospective shading correction methods,” J. Microsc.208(3), 212–223 (2002).
[CrossRef] [PubMed]

Porter, J.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

Putnam, N. M.

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis.5(7), 632–639 (2005).
[CrossRef] [PubMed]

Qi, X.

G. Huang, X. Qi, T. Y. P. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
[CrossRef] [PubMed]

Qu, J.

Queener, H.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

Quigley, H. A.

H. A. Quigley, “Glaucoma,” Lancet377(9774), 1367–1377 (2011).
[CrossRef] [PubMed]

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol.90(3), 262–267 (2006).
[CrossRef] [PubMed]

H. A. Quigley and A. Sommer, “How to use nerve fiber layer examination in the management of glaucoma,” Trans. Am. Ophthalmol. Soc.85, 254–272 (1987).
[PubMed]

Ramaswamy, G.

G. Ramaswamy and N. Devaney, “Pre-processing, registration and selection of adaptive optics corrected retinal images,” Ophthalmic Physiol. Opt.33(4), 527–539 (2013).
[CrossRef] [PubMed]

Reddy, B. S.

B. S. Reddy and B. N. Chatterji, “An FFT-based Technique for Translation, Rotation, and Scale-Invariant Image Registration,” IEEE Trans. Image Process.5(8), 1266–1271 (1996).
[CrossRef] [PubMed]

Rha, J.

Roorda, A.

Sample, P. A.

L. M. Alencar, L. M. Zangwill, R. N. Weinreb, C. Bowd, P. A. Sample, C. A. Girkin, J. M. Liebmann, and F. A. Medeiros, “A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma,” Invest. Ophthalmol. Vis. Sci.51(7), 3531–3539 (2010).
[CrossRef] [PubMed]

Scoles, D.

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res.38(7), 709–721 (2013).
[CrossRef] [PubMed]

Sedaaghi, M. H.

S. Gharabaghi, S. Daneshvar, and M. H. Sedaaghi, “Retinal image registration using geometrical features,” J. Digit. Imaging26(2), 248–258 (2013).
[CrossRef] [PubMed]

Serrao, S.

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
[CrossRef] [PubMed]

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults,” J. Cataract Refract. Surg.38(7), 1147–1155 (2012).
[CrossRef] [PubMed]

Shi, G.

Shibata, N.

K. Takayama, S. Ooto, M. Hangai, N. Arakawa, S. Oshima, N. Shibata, M. Hanebuchi, T. Inoue, and N. Yoshimura, “High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy,” PLoS ONE7(3), e33158 (2012).
[CrossRef] [PubMed]

Sommer, A.

H. A. Quigley and A. Sommer, “How to use nerve fiber layer examination in the management of glaucoma,” Trans. Am. Ophthalmol. Soc.85, 254–272 (1987).
[PubMed]

Sredar, N.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

Takayama, K.

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

K. Takayama, S. Ooto, M. Hangai, N. Arakawa, S. Oshima, N. Shibata, M. Hanebuchi, T. Inoue, and N. Yoshimura, “High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy,” PLoS ONE7(3), e33158 (2012).
[CrossRef] [PubMed]

Thorn, K. E.

Tomazevic, D.

D. Tomazevic, B. Likar, and F. Pernus, “Comparative evaluation of retrospective shading correction methods,” J. Microsc.208(3), 212–223 (2002).
[CrossRef] [PubMed]

Tuulonen, A.

A. King, A. Azuara-Blanco, and A. Tuulonen, “Clinical review: Glaucoma,” BMJ346, 29–33 (2013).
[CrossRef]

Vogel, C. R.

Wang, Q.

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res.51(16), 1835–1844 (2011).
[CrossRef] [PubMed]

Weinreb, R. N.

K. Mansouri, M. T. Leite, F. A. Medeiros, C. K. Leung, and R. N. Weinreb, “Assessment of rates of structural change in glaucoma using imaging technologies,” Eye (Lond.)25(3), 269–277 (2011).
[CrossRef] [PubMed]

L. M. Alencar, L. M. Zangwill, R. N. Weinreb, C. Bowd, P. A. Sample, C. A. Girkin, J. M. Liebmann, and F. A. Medeiros, “A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma,” Invest. Ophthalmol. Vis. Sci.51(7), 3531–3539 (2010).
[CrossRef] [PubMed]

Williams, D. R.

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis.5(7), 632–639 (2005).
[CrossRef] [PubMed]

Yoshimura, N.

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

K. Takayama, S. Ooto, M. Hangai, N. Arakawa, S. Oshima, N. Shibata, M. Hanebuchi, T. Inoue, and N. Yoshimura, “High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy,” PLoS ONE7(3), e33158 (2012).
[CrossRef] [PubMed]

Young, D.

D. Young, “Straight lines and circles in the log-polar image,” in Proceedings of the 11th British Machine Vision Conference, 2000), pp.426–435.
[CrossRef]

Zangwill, L. M.

L. M. Alencar, L. M. Zangwill, R. N. Weinreb, C. Bowd, P. A. Sample, C. A. Girkin, J. M. Liebmann, and F. A. Medeiros, “A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma,” Invest. Ophthalmol. Vis. Sci.51(7), 3531–3539 (2010).
[CrossRef] [PubMed]

Zhang, Y.

Zhong, Z.

G. Huang, X. Qi, T. Y. P. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
[CrossRef] [PubMed]

Zitova, B.

B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput.21(11), 977–1000 (2003).
[CrossRef]

Biomed. Opt. Express (1)

BMJ (1)

A. King, A. Azuara-Blanco, and A. Tuulonen, “Clinical review: Glaucoma,” BMJ346, 29–33 (2013).
[CrossRef]

Br. J. Ophthalmol. (1)

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol.90(3), 262–267 (2006).
[CrossRef] [PubMed]

Computing and Informatics (1)

T. Arodz, “Invariant Object Recognition using Radon-based Transform,” Computing and Informatics24, 183–199 (2005).

Curr. Eye Res. (1)

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res.38(7), 709–721 (2013).
[CrossRef] [PubMed]

Eye (Lond.) (1)

K. Mansouri, M. T. Leite, F. A. Medeiros, C. K. Leung, and R. N. Weinreb, “Assessment of rates of structural change in glaucoma using imaging technologies,” Eye (Lond.)25(3), 269–277 (2011).
[CrossRef] [PubMed]

IEEE Trans. Image Process. (1)

B. S. Reddy and B. N. Chatterji, “An FFT-based Technique for Translation, Rotation, and Scale-Invariant Image Registration,” IEEE Trans. Image Process.5(8), 1266–1271 (1996).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

E. De Castro and C. Morandi, “Registration of Translated and Rotated Images using Finite Fourier Transforms,” IEEE Trans. Pattern Anal. Mach. Intell.9(5), 700–703 (1987).
[CrossRef] [PubMed]

Image Vis. Comput. (1)

B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput.21(11), 977–1000 (2003).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (3)

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

L. M. Alencar, L. M. Zangwill, R. N. Weinreb, C. Bowd, P. A. Sample, C. A. Girkin, J. M. Liebmann, and F. A. Medeiros, “A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma,” Invest. Ophthalmol. Vis. Sci.51(7), 3531–3539 (2010).
[CrossRef] [PubMed]

J. Cataract Refract. Surg. (1)

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults,” J. Cataract Refract. Surg.38(7), 1147–1155 (2012).
[CrossRef] [PubMed]

J. Digit. Imaging (1)

S. Gharabaghi, S. Daneshvar, and M. H. Sedaaghi, “Retinal image registration using geometrical features,” J. Digit. Imaging26(2), 248–258 (2013).
[CrossRef] [PubMed]

J. Microsc. (1)

D. Tomazevic, B. Likar, and F. Pernus, “Comparative evaluation of retrospective shading correction methods,” J. Microsc.208(3), 212–223 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Vis. (1)

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis.5(7), 632–639 (2005).
[CrossRef] [PubMed]

Lancet (1)

H. A. Quigley, “Glaucoma,” Lancet377(9774), 1367–1377 (2011).
[CrossRef] [PubMed]

Med. Eng. Phys. (1)

T. C. Lim, S. Chattopadhyay, and U. R. Acharya, “A survey and comparative study on the instruments for glaucoma detection,” Med. Eng. Phys.34(2), 129–139 (2012).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (1)

G. Ramaswamy and N. Devaney, “Pre-processing, registration and selection of adaptive optics corrected retinal images,” Ophthalmic Physiol. Opt.33(4), 527–539 (2013).
[CrossRef] [PubMed]

Opt. Express (2)

Optom. Vis. Sci. (1)

G. Huang, X. Qi, T. Y. P. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
[CrossRef] [PubMed]

PLoS ONE (1)

K. Takayama, S. Ooto, M. Hangai, N. Arakawa, S. Oshima, N. Shibata, M. Hanebuchi, T. Inoue, and N. Yoshimura, “High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy,” PLoS ONE7(3), e33158 (2012).
[CrossRef] [PubMed]

Proc. IEEE (1)

R. M. Haralick, “Statistical and Structural Approaches to Texture,” Proc. IEEE67(5), 786–804 (1979).
[CrossRef]

Sensors (Basel) (1)

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
[CrossRef] [PubMed]

Trans. Am. Ophthalmol. Soc. (1)

H. A. Quigley and A. Sommer, “How to use nerve fiber layer examination in the management of glaucoma,” Trans. Am. Ophthalmol. Soc.85, 254–272 (1987).
[PubMed]

Vision Res. (1)

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res.51(16), 1835–1844 (2011).
[CrossRef] [PubMed]

Other (12)

WHO, “Global data on visual impairments 2010.” www.who.int/blindness/ GLOBALDATAFINALforweb.pdf

J. C. Russ, The image processing handbook (CRC/Taylor & Francis, 2007), Chap. 3.

R. Jain, R. Kasturi, and B. G. Schunck, “Texture,” in Machine Vision (McGraw-Hill, Inc., 1995), pp. 234–248.

C. Kulcsar, G. L. Besnerais, E. Odlund, and X. Levecq, “Robust processing of images sequences produced by an adaptive optics retinal camera,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3A.3. http://www.opticsinfobase.org/abstract.cfm?URI=AOPT-2013-OW3A.3
[CrossRef]

S. Deans, The Radon Transform and some of its Applications (A Wiley-Interscience, 1983), Chap. 2.

D. Young, “Straight lines and circles in the log-polar image,” in Proceedings of the 11th British Machine Vision Conference, 2000), pp.426–435.
[CrossRef]

R. Matungka, Y. F. Zheng, and R. L. Ewing, “Object Recognition Using Log-Polar Wavelet Mapping,” in IEEE International Conference on Tools with Artificial Intelligence, (Institute of Electrical and Electronics Engineers, 2008), pp.559–563.

G. Wolberg and S. Zokai, “Robust Image Registration using Log-Polar Transform,” in IEEE International Conference on Image Processing, (Institute of Electrical and Electronics Engineers, 2000), 493–496.

G. Ramaswamy, M. Lombardo, and N. Devaney, “Texture analysis of adaptive optics assisted retinal nerve fiber layer images,” in Photonics Ireland 2013, (Belfast, 2013).

C. D. Kuglin and D. C. Hines, “The Phase Correlation Image Alignment method,” in Proceedings of IEEE Cybernet Society (Institute of Electrical and Electronics Engineers, 1975), pp.163–165.

J. Chen, R. T. Smith, J. Tian, and A. F. Laine, “A Novel Registration method for Retinal Images based on Local Features,” in Proc. of IEEE Engineering in Medicine & Biology Society, (Institute of Electrical and Electronics Engineers, 2008), pp.2242–2245.
[CrossRef]

J. You, W. Lu, J. Li, G. Gindi, and Z. Liang, “Image matching for translation, rotation and uniform scaling by the radon transform,” in Proceedings of International Conference on Image Processing (Institute of Electrical and Electronics Engineers, 1998), pp.847–851.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Average images obtained after correcting the translation (using PC) and rotational motion (using ESPC) using different techniques to correct for uneven illumination: (a) subtracting the average filtered image; (b) homomorphic filtering and (c) wavelet approach. In (d-f) the corresponding correlation of GLCMs respectively. The length of the scale bar is 100µm.

Fig. 2
Fig. 2

(a) Horizontal and (b) vertical displacement measured using cross-correlation (CC) and phase correlation (PC).

Fig. 3
Fig. 3

Image sequence corrected for translation using (a) cross-correlation and (b) phase correlation, (c-d) autocorrelation function (ACF) of the images shown in Fig. 3(a)-3(b) respectively and (e) intensity line profiles taken from ACF shown in Fig. 3(c)-3(d) respectively. The scale bar is 100µm.

Fig. 4
Fig. 4

Temporal variation of sharpness of the RNFL image sequence (from Fig. 3) measured using the Fienup metric. Most of the images of poor quality are in the last 10 frames.

Fig. 5
Fig. 5

Angle of rotation measured using (a) Radon and ESPC and (b) LPNCC, FM and ESPC.

Fig. 6
Fig. 6

(a) Average of translation corrected and de-rotated image using PC and ESPC respectively (b) zoom of a 150x150 pixel window highlighted in (a); (c) zoom of the same window from average registered image (translation corrected only). The scale bar is 100µm.

Fig. 7
Fig. 7

Correlation of the GLCM of sampling areas shown in Fig. 6: (a) translation corrected and (b) translation and rotation corrected. The ripples represent the presence of a repeating pattern in the image, corresponding to the nerve fiber striae. The curve corresponding to 135° indicates that the nerve fiber structure is clearer in the de-rotated data.

Fig. 8
Fig. 8

Correlation of GLCM for de-rotated average images using (a) Radon (b) LPNCC (c) FM and (d) ESPC.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f ^ = R f = L r , θ f ( x , y ) d s
R f ψ ( r , θ ) = R f ( r , θ ψ )
R = ( n r 1 ) log ( r r min ) log ( r max r min )
W = n w θ 2 π
C Δ x , Δ y ( i , j ) = p = 1 m q = 1 n { 1 , i f I ( p , q ) = i a n d I ( p + Δ x , q + Δ y ) = j 0 , o t h e r w i s e }

Metrics