Abstract

The detailed mechanisms associated with the influence of scattering and absorption properties on the fluorescence intensity sampled by a single optical fiber have recently been elucidated based on Monte Carlo simulated data. Here we develop an experimental single fiber fluorescence (SFF) spectroscopy setup and validate the Monte Carlo data and semi-empirical model equation that describes the SFF signal as a function of scattering. We present a calibration procedure that corrects the SFF signal for all system-related, wavelength dependent transmission efficiencies to yield an absolute value of intrinsic fluorescence. The validity of the Monte Carlo data and semi-empirical model is demonstrated using a set of fluorescent phantoms with varying concentrations of Intralipid to vary the scattering properties, yielding a wide range of reduced scattering coefficients (μ′s = 0–7 mm−1). We also introduce a small modification to the model to account for the case of μ′s = 0 mm−1 and show its relation to the experimental, simulated and theoretically calculated value of SFF intensity in the absence of scattering. Finally, we show that our method is also accurate in the presence of absorbers by performing measurements on phantoms containing red blood cells and correcting for their absorption properties.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Quincy Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20, 119–131 (2009).
    [CrossRef] [PubMed]
  2. C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008).
    [CrossRef]
  3. M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Laser Surg. Med.34, 25–38 (2004).
    [CrossRef]
  4. D. J Robinson, M. B. Karakullukcu, B. Kruijt, S. C. Kanick, R. P. L. van Veen, A. Amelink, H. J. C. M. Sterenborg, M. J. H. Witjes, and I. B. Tan, “Optical Spectroscopy to Guide Photodynamic Therapy of Head and Neck Tumors,” IEEE J. Sel. Top. Quantum Electron.16, 854–862 (2010).
    [CrossRef]
  5. B. Karakullukcu, S. C. Kanick, J. B. Aans, H. J. C. M. Sterenborg, I. B. Tan, A. Amelink, and D. J. Robinson, “Clinical feasibility of monitoring m-THPC mediated photodynamic therapy by means of fluorescence differential path-length spectroscopy,” J. Biophotonics4, 740–751 (2011).
    [CrossRef] [PubMed]
  6. T. M. Baran and T. H. Foster, “Recovery of Intrinsic Fluorescence From Single-Point Interstitial Measurements for Quantification of Doxorubicin Concentration,” Laser Surg. Med.45, 542–550 (2013).
  7. J. Wu, M. S. Feld, and R. P Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt.19, 3585–3595 (1993).
    [CrossRef]
  8. C. M. Gardner, S. L. Jacques, and A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt.35, 1780–1792 (1996).
    [CrossRef] [PubMed]
  9. M. G. Mller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt.40, 4633–4646 (2001).
    [CrossRef]
  10. Q. Zhang, M. G. Mller, J. Wu, and M. S. Feld, “Turbidity-free fluorescence spectroscopy of biological tissue,” Opt. Lett.25, 1451–1453 (2000).
    [CrossRef]
  11. J. C. Finlay and T. H. Foster, “Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model,” Appl. Opt.44, 1917–1933 (2005).
    [CrossRef] [PubMed]
  12. G. M. Palmer and N. Ramanujam, “Monte-carlo-based model for the extraction of intrinsic fluorescence from turbid media,” J. Biomed. Opt.13, 024017 (2008).
    [CrossRef] [PubMed]
  13. G. M. Palmer, R. J. Viola, T. Schroeder, P. S. Yarmolenko, M. W. Dewhirst, and N. Ramanujam, “Quantitative diffuse reflectance and fluorescence spectroscopy: tool to monitor tumor physiology in vivo,” J. Biomed. Opt.14, 024010 (2009).
    [CrossRef] [PubMed]
  14. R. H. Wilson, M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M. A. Mycek, “Optical spectroscopy detects histological hallmarks of pancreatic cancer,” Opt. Express17, 17502–17516 (2009).
    [CrossRef] [PubMed]
  15. A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15, 067006 (2010).
    [CrossRef]
  16. J. C. Finlay, T. C. Zhu, A. Dimofte, D. Stripp, S. B. Malkowicz, T. M. Busch, and S. M. Hahn, “Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy,” Photochem. Photobiol.82, 1270–1278 (2006).
    [CrossRef] [PubMed]
  17. B. W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue”, Appl. Opt.37, 7429–7436 (1998).
    [CrossRef]
  18. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron.7, 1004–1012 (2001).
    [CrossRef]
  19. K. R. Diamond, M. S. Patterson, and T. J. Farrell, “Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber,” Appl. Opt.42, 2436–2442 (2003).
    [CrossRef] [PubMed]
  20. H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Medical Laser Application22, 23–34 (2007).
    [CrossRef]
  21. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Semi-empirical model of the effect of scattering on single fiber fluorescence intensity measured on a turbid medium,” Biomed. Opt. Express3, 137–152 (2012).
    [CrossRef] [PubMed]
  22. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium,” Opt. Lett.37, 948–950 (2012).
    [CrossRef] [PubMed]
  23. M. C. Hudson, “Calculation of the maximum optical coupling efficiency into multimode optical waveguides,” Appl. Opt.13, 1029–1033 (1974).
    [CrossRef] [PubMed]
  24. W. H. Park, “Fluorescence lifetime sensor using optical fiber and optical signal processing,” thesis, University of Toronto (1998).
  25. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16, 5907–5925 (2008).
    [CrossRef] [PubMed]
  26. R. Sjoback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta A51, L7–L21 (1995).
    [CrossRef]
  27. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties.,” Opt. Lett.36, 2791–2793 (1995).
    [CrossRef]
  28. N. Barbero, E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan, and F. Fussolino, “A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence,” Dyes Pigm.3, 302–313 (2009).
  29. E. Evans, D. Berk, and A. Leung, “Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments,” Biophys. J.59, 838–848 (2001).
  30. S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multi-diameter single fiber reflectance spectra in a turbid medium,” Opt. Lett.36, 2997–2999 (2011).
    [CrossRef] [PubMed]
  31. U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2, 3150–3166 (2011).
    [CrossRef] [PubMed]
  32. U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Quantification of the reduced scattering coefficient and phase-function-dependent parameter γ of turbid media using multidiameter single fiber reflectance spectroscopy: experimental validation,” Opt. Lett.36, 1838–1840 (2012).
    [CrossRef]
  33. C. L. Hoy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method for rapid multidiameter single fiber reflectance and fluorescence spectroscopy through a fiber bundle,” J. Biomed. Opt.18, 107005 (2013).
    [CrossRef]

2013 (2)

T. M. Baran and T. H. Foster, “Recovery of Intrinsic Fluorescence From Single-Point Interstitial Measurements for Quantification of Doxorubicin Concentration,” Laser Surg. Med.45, 542–550 (2013).

C. L. Hoy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method for rapid multidiameter single fiber reflectance and fluorescence spectroscopy through a fiber bundle,” J. Biomed. Opt.18, 107005 (2013).
[CrossRef]

2012 (3)

2011 (3)

2010 (2)

D. J Robinson, M. B. Karakullukcu, B. Kruijt, S. C. Kanick, R. P. L. van Veen, A. Amelink, H. J. C. M. Sterenborg, M. J. H. Witjes, and I. B. Tan, “Optical Spectroscopy to Guide Photodynamic Therapy of Head and Neck Tumors,” IEEE J. Sel. Top. Quantum Electron.16, 854–862 (2010).
[CrossRef]

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15, 067006 (2010).
[CrossRef]

2009 (4)

G. M. Palmer, R. J. Viola, T. Schroeder, P. S. Yarmolenko, M. W. Dewhirst, and N. Ramanujam, “Quantitative diffuse reflectance and fluorescence spectroscopy: tool to monitor tumor physiology in vivo,” J. Biomed. Opt.14, 024010 (2009).
[CrossRef] [PubMed]

R. H. Wilson, M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M. A. Mycek, “Optical spectroscopy detects histological hallmarks of pancreatic cancer,” Opt. Express17, 17502–17516 (2009).
[CrossRef] [PubMed]

J. Quincy Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20, 119–131 (2009).
[CrossRef] [PubMed]

N. Barbero, E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan, and F. Fussolino, “A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence,” Dyes Pigm.3, 302–313 (2009).

2008 (3)

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16, 5907–5925 (2008).
[CrossRef] [PubMed]

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008).
[CrossRef]

G. M. Palmer and N. Ramanujam, “Monte-carlo-based model for the extraction of intrinsic fluorescence from turbid media,” J. Biomed. Opt.13, 024017 (2008).
[CrossRef] [PubMed]

2007 (1)

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Medical Laser Application22, 23–34 (2007).
[CrossRef]

2006 (1)

J. C. Finlay, T. C. Zhu, A. Dimofte, D. Stripp, S. B. Malkowicz, T. M. Busch, and S. M. Hahn, “Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy,” Photochem. Photobiol.82, 1270–1278 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Laser Surg. Med.34, 25–38 (2004).
[CrossRef]

2003 (1)

2001 (3)

E. Evans, D. Berk, and A. Leung, “Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments,” Biophys. J.59, 838–848 (2001).

M. G. Mller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt.40, 4633–4646 (2001).
[CrossRef]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron.7, 1004–1012 (2001).
[CrossRef]

2000 (1)

1998 (1)

1996 (1)

1995 (2)

1993 (1)

1974 (1)

Aans, J. B.

B. Karakullukcu, S. C. Kanick, J. B. Aans, H. J. C. M. Sterenborg, I. B. Tan, A. Amelink, and D. J. Robinson, “Clinical feasibility of monitoring m-THPC mediated photodynamic therapy by means of fluorescence differential path-length spectroscopy,” J. Biophotonics4, 740–751 (2011).
[CrossRef] [PubMed]

Amelink, A.

C. L. Hoy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method for rapid multidiameter single fiber reflectance and fluorescence spectroscopy through a fiber bundle,” J. Biomed. Opt.18, 107005 (2013).
[CrossRef]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Semi-empirical model of the effect of scattering on single fiber fluorescence intensity measured on a turbid medium,” Biomed. Opt. Express3, 137–152 (2012).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium,” Opt. Lett.37, 948–950 (2012).
[CrossRef] [PubMed]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Quantification of the reduced scattering coefficient and phase-function-dependent parameter γ of turbid media using multidiameter single fiber reflectance spectroscopy: experimental validation,” Opt. Lett.36, 1838–1840 (2012).
[CrossRef]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2, 3150–3166 (2011).
[CrossRef] [PubMed]

S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multi-diameter single fiber reflectance spectra in a turbid medium,” Opt. Lett.36, 2997–2999 (2011).
[CrossRef] [PubMed]

B. Karakullukcu, S. C. Kanick, J. B. Aans, H. J. C. M. Sterenborg, I. B. Tan, A. Amelink, and D. J. Robinson, “Clinical feasibility of monitoring m-THPC mediated photodynamic therapy by means of fluorescence differential path-length spectroscopy,” J. Biophotonics4, 740–751 (2011).
[CrossRef] [PubMed]

D. J Robinson, M. B. Karakullukcu, B. Kruijt, S. C. Kanick, R. P. L. van Veen, A. Amelink, H. J. C. M. Sterenborg, M. J. H. Witjes, and I. B. Tan, “Optical Spectroscopy to Guide Photodynamic Therapy of Head and Neck Tumors,” IEEE J. Sel. Top. Quantum Electron.16, 854–862 (2010).
[CrossRef]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties.,” Opt. Lett.36, 2791–2793 (1995).
[CrossRef]

Backman, V.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008).
[CrossRef]

Baldwin, A.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008).
[CrossRef]

Baran, T. M.

T. M. Baran and T. H. Foster, “Recovery of Intrinsic Fluorescence From Single-Point Interstitial Measurements for Quantification of Doxorubicin Concentration,” Laser Surg. Med.45, 542–550 (2013).

Barbero, N.

N. Barbero, E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan, and F. Fussolino, “A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence,” Dyes Pigm.3, 302–313 (2009).

Barni, E.

N. Barbero, E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan, and F. Fussolino, “A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence,” Dyes Pigm.3, 302–313 (2009).

Barolo, C.

N. Barbero, E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan, and F. Fussolino, “A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence,” Dyes Pigm.3, 302–313 (2009).

Baumgartner, R.

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Medical Laser Application22, 23–34 (2007).
[CrossRef]

Beck, T.

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Medical Laser Application22, 23–34 (2007).
[CrossRef]

Berk, D.

E. Evans, D. Berk, and A. Leung, “Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments,” Biophys. J.59, 838–848 (2001).

Beyer, W.

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Medical Laser Application22, 23–34 (2007).
[CrossRef]

Burke, G.

Busch, T. M.

J. C. Finlay, T. C. Zhu, A. Dimofte, D. Stripp, S. B. Malkowicz, T. M. Busch, and S. M. Hahn, “Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy,” Photochem. Photobiol.82, 1270–1278 (2006).
[CrossRef] [PubMed]

Chandra, M.

Dewhirst, M. W.

G. M. Palmer, R. J. Viola, T. Schroeder, P. S. Yarmolenko, M. W. Dewhirst, and N. Ramanujam, “Quantitative diffuse reflectance and fluorescence spectroscopy: tool to monitor tumor physiology in vivo,” J. Biomed. Opt.14, 024010 (2009).
[CrossRef] [PubMed]

Diamond, K. R.

Dimofte, A.

J. C. Finlay, T. C. Zhu, A. Dimofte, D. Stripp, S. B. Malkowicz, T. M. Busch, and S. M. Hahn, “Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy,” Photochem. Photobiol.82, 1270–1278 (2006).
[CrossRef] [PubMed]

Ediger, M. N.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron.7, 1004–1012 (2001).
[CrossRef]

Evans, E.

E. Evans, D. Berk, and A. Leung, “Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments,” Biophys. J.59, 838–848 (2001).

Farrell, T. J.

Feld, M.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008).
[CrossRef]

Feld, M. S.

Finlay, J. C.

J. C. Finlay, T. C. Zhu, A. Dimofte, D. Stripp, S. B. Malkowicz, T. M. Busch, and S. M. Hahn, “Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy,” Photochem. Photobiol.82, 1270–1278 (2006).
[CrossRef] [PubMed]

J. C. Finlay and T. H. Foster, “Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model,” Appl. Opt.44, 1917–1933 (2005).
[CrossRef] [PubMed]

Foschum, F.

Foster, T. H.

T. M. Baran and T. H. Foster, “Recovery of Intrinsic Fluorescence From Single-Point Interstitial Measurements for Quantification of Doxorubicin Concentration,” Laser Surg. Med.45, 542–550 (2013).

J. C. Finlay and T. H. Foster, “Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model,” Appl. Opt.44, 1917–1933 (2005).
[CrossRef] [PubMed]

Fussolino, F.

N. Barbero, E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan, and F. Fussolino, “A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence,” Dyes Pigm.3, 302–313 (2009).

Gamm, U. A.

C. L. Hoy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method for rapid multidiameter single fiber reflectance and fluorescence spectroscopy through a fiber bundle,” J. Biomed. Opt.18, 107005 (2013).
[CrossRef]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Quantification of the reduced scattering coefficient and phase-function-dependent parameter γ of turbid media using multidiameter single fiber reflectance spectroscopy: experimental validation,” Opt. Lett.36, 1838–1840 (2012).
[CrossRef]

S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multi-diameter single fiber reflectance spectra in a turbid medium,” Opt. Lett.36, 2997–2999 (2011).
[CrossRef] [PubMed]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2, 3150–3166 (2011).
[CrossRef] [PubMed]

Gardner, C. M.

Gendron-Fitzpatrick, A.

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Laser Surg. Med.34, 25–38 (2004).
[CrossRef]

Georgakoudi, I.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008).
[CrossRef]

M. G. Mller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt.40, 4633–4646 (2001).
[CrossRef]

Greiner, C.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008).
[CrossRef]

Hahn, S. M.

J. C. Finlay, T. C. Zhu, A. Dimofte, D. Stripp, S. B. Malkowicz, T. M. Busch, and S. M. Hahn, “Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy,” Photochem. Photobiol.82, 1270–1278 (2006).
[CrossRef] [PubMed]

Hoy, C. L.

C. L. Hoy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method for rapid multidiameter single fiber reflectance and fluorescence spectroscopy through a fiber bundle,” J. Biomed. Opt.18, 107005 (2013).
[CrossRef]

Hudson, M. C.

Hunter, M.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008).
[CrossRef]

Jacques, S. L.

Kanick, S. C.

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium,” Opt. Lett.37, 948–950 (2012).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Semi-empirical model of the effect of scattering on single fiber fluorescence intensity measured on a turbid medium,” Biomed. Opt. Express3, 137–152 (2012).
[CrossRef] [PubMed]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Quantification of the reduced scattering coefficient and phase-function-dependent parameter γ of turbid media using multidiameter single fiber reflectance spectroscopy: experimental validation,” Opt. Lett.36, 1838–1840 (2012).
[CrossRef]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2, 3150–3166 (2011).
[CrossRef] [PubMed]

S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multi-diameter single fiber reflectance spectra in a turbid medium,” Opt. Lett.36, 2997–2999 (2011).
[CrossRef] [PubMed]

B. Karakullukcu, S. C. Kanick, J. B. Aans, H. J. C. M. Sterenborg, I. B. Tan, A. Amelink, and D. J. Robinson, “Clinical feasibility of monitoring m-THPC mediated photodynamic therapy by means of fluorescence differential path-length spectroscopy,” J. Biophotonics4, 740–751 (2011).
[CrossRef] [PubMed]

D. J Robinson, M. B. Karakullukcu, B. Kruijt, S. C. Kanick, R. P. L. van Veen, A. Amelink, H. J. C. M. Sterenborg, M. J. H. Witjes, and I. B. Tan, “Optical Spectroscopy to Guide Photodynamic Therapy of Head and Neck Tumors,” IEEE J. Sel. Top. Quantum Electron.16, 854–862 (2010).
[CrossRef]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties.,” Opt. Lett.36, 2791–2793 (1995).
[CrossRef]

Karakullukcu, B.

B. Karakullukcu, S. C. Kanick, J. B. Aans, H. J. C. M. Sterenborg, I. B. Tan, A. Amelink, and D. J. Robinson, “Clinical feasibility of monitoring m-THPC mediated photodynamic therapy by means of fluorescence differential path-length spectroscopy,” J. Biophotonics4, 740–751 (2011).
[CrossRef] [PubMed]

Karakullukcu, M. B.

D. J Robinson, M. B. Karakullukcu, B. Kruijt, S. C. Kanick, R. P. L. van Veen, A. Amelink, H. J. C. M. Sterenborg, M. J. H. Witjes, and I. B. Tan, “Optical Spectroscopy to Guide Photodynamic Therapy of Head and Neck Tumors,” IEEE J. Sel. Top. Quantum Electron.16, 854–862 (2010).
[CrossRef]

Khurana, M.

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15, 067006 (2010).
[CrossRef]

Kienle, A.

Kim, A.

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15, 067006 (2010).
[CrossRef]

Kim, Y. L.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008).
[CrossRef]

Kruijt, B.

D. J Robinson, M. B. Karakullukcu, B. Kruijt, S. C. Kanick, R. P. L. van Veen, A. Amelink, H. J. C. M. Sterenborg, M. J. H. Witjes, and I. B. Tan, “Optical Spectroscopy to Guide Photodynamic Therapy of Head and Neck Tumors,” IEEE J. Sel. Top. Quantum Electron.16, 854–862 (2010).
[CrossRef]

Kubista, M.

R. Sjoback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta A51, L7–L21 (1995).
[CrossRef]

Leung, A.

E. Evans, D. Berk, and A. Leung, “Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments,” Biophys. J.59, 838–848 (2001).

Levitt, J. M.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008).
[CrossRef]

Liu, Q.

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Laser Surg. Med.34, 25–38 (2004).
[CrossRef]

Malkowicz, S. B.

J. C. Finlay, T. C. Zhu, A. Dimofte, D. Stripp, S. B. Malkowicz, T. M. Busch, and S. M. Hahn, “Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy,” Photochem. Photobiol.82, 1270–1278 (2006).
[CrossRef] [PubMed]

Marshek-Stone, C. L.

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Laser Surg. Med.34, 25–38 (2004).
[CrossRef]

McKenna, B.

Michels, R.

Mller, M. G.

Moriyama, Y.

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15, 067006 (2010).
[CrossRef]

Mujat, C.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008).
[CrossRef]

Münger, K.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008).
[CrossRef]

Mycek, M. A.

Napione, L.

N. Barbero, E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan, and F. Fussolino, “A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence,” Dyes Pigm.3, 302–313 (2009).

Nishioka, N. S.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron.7, 1004–1012 (2001).
[CrossRef]

Nygren, J.

R. Sjoback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta A51, L7–L21 (1995).
[CrossRef]

Palmer, G. M.

G. M. Palmer, R. J. Viola, T. Schroeder, P. S. Yarmolenko, M. W. Dewhirst, and N. Ramanujam, “Quantitative diffuse reflectance and fluorescence spectroscopy: tool to monitor tumor physiology in vivo,” J. Biomed. Opt.14, 024010 (2009).
[CrossRef] [PubMed]

J. Quincy Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20, 119–131 (2009).
[CrossRef] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte-carlo-based model for the extraction of intrinsic fluorescence from turbid media,” J. Biomed. Opt.13, 024017 (2008).
[CrossRef] [PubMed]

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Laser Surg. Med.34, 25–38 (2004).
[CrossRef]

Park, W. H.

W. H. Park, “Fluorescence lifetime sensor using optical fiber and optical signal processing,” thesis, University of Toronto (1998).

Patterson, M. S.

Pavan, S.

N. Barbero, E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan, and F. Fussolino, “A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence,” Dyes Pigm.3, 302–313 (2009).

Pfaller, C.

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Medical Laser Application22, 23–34 (2007).
[CrossRef]

Pfefer, T. J.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron.7, 1004–1012 (2001).
[CrossRef]

Pogue, B. W.

Purdy, J.

Quagliotto, P.

N. Barbero, E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan, and F. Fussolino, “A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence,” Dyes Pigm.3, 302–313 (2009).

Quincy Brown, J.

J. Quincy Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20, 119–131 (2009).
[CrossRef] [PubMed]

Ramanujam, N.

J. Quincy Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20, 119–131 (2009).
[CrossRef] [PubMed]

G. M. Palmer, R. J. Viola, T. Schroeder, P. S. Yarmolenko, M. W. Dewhirst, and N. Ramanujam, “Quantitative diffuse reflectance and fluorescence spectroscopy: tool to monitor tumor physiology in vivo,” J. Biomed. Opt.14, 024010 (2009).
[CrossRef] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte-carlo-based model for the extraction of intrinsic fluorescence from turbid media,” J. Biomed. Opt.13, 024017 (2008).
[CrossRef] [PubMed]

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Laser Surg. Med.34, 25–38 (2004).
[CrossRef]

Rava, R. P

Robinson, D. J

D. J Robinson, M. B. Karakullukcu, B. Kruijt, S. C. Kanick, R. P. L. van Veen, A. Amelink, H. J. C. M. Sterenborg, M. J. H. Witjes, and I. B. Tan, “Optical Spectroscopy to Guide Photodynamic Therapy of Head and Neck Tumors,” IEEE J. Sel. Top. Quantum Electron.16, 854–862 (2010).
[CrossRef]

Robinson, D. J.

C. L. Hoy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method for rapid multidiameter single fiber reflectance and fluorescence spectroscopy through a fiber bundle,” J. Biomed. Opt.18, 107005 (2013).
[CrossRef]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Quantification of the reduced scattering coefficient and phase-function-dependent parameter γ of turbid media using multidiameter single fiber reflectance spectroscopy: experimental validation,” Opt. Lett.36, 1838–1840 (2012).
[CrossRef]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Semi-empirical model of the effect of scattering on single fiber fluorescence intensity measured on a turbid medium,” Biomed. Opt. Express3, 137–152 (2012).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium,” Opt. Lett.37, 948–950 (2012).
[CrossRef] [PubMed]

S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multi-diameter single fiber reflectance spectra in a turbid medium,” Opt. Lett.36, 2997–2999 (2011).
[CrossRef] [PubMed]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2, 3150–3166 (2011).
[CrossRef] [PubMed]

B. Karakullukcu, S. C. Kanick, J. B. Aans, H. J. C. M. Sterenborg, I. B. Tan, A. Amelink, and D. J. Robinson, “Clinical feasibility of monitoring m-THPC mediated photodynamic therapy by means of fluorescence differential path-length spectroscopy,” J. Biophotonics4, 740–751 (2011).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties.,” Opt. Lett.36, 2791–2793 (1995).
[CrossRef]

Scheiman, J.

Schomacker, K. T.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron.7, 1004–1012 (2001).
[CrossRef]

Schroeder, T.

G. M. Palmer, R. J. Viola, T. Schroeder, P. S. Yarmolenko, M. W. Dewhirst, and N. Ramanujam, “Quantitative diffuse reflectance and fluorescence spectroscopy: tool to monitor tumor physiology in vivo,” J. Biomed. Opt.14, 024010 (2009).
[CrossRef] [PubMed]

Schuppler, M.

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Medical Laser Application22, 23–34 (2007).
[CrossRef]

Simeone, D.

Sjoback, R.

R. Sjoback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta A51, L7–L21 (1995).
[CrossRef]

Skala, M. C.

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Laser Surg. Med.34, 25–38 (2004).
[CrossRef]

Sroka, R.

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Medical Laser Application22, 23–34 (2007).
[CrossRef]

Stepp, H.

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Medical Laser Application22, 23–34 (2007).
[CrossRef]

Sterenborg, H. J. C. M.

C. L. Hoy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method for rapid multidiameter single fiber reflectance and fluorescence spectroscopy through a fiber bundle,” J. Biomed. Opt.18, 107005 (2013).
[CrossRef]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium,” Opt. Lett.37, 948–950 (2012).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Semi-empirical model of the effect of scattering on single fiber fluorescence intensity measured on a turbid medium,” Biomed. Opt. Express3, 137–152 (2012).
[CrossRef] [PubMed]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Quantification of the reduced scattering coefficient and phase-function-dependent parameter γ of turbid media using multidiameter single fiber reflectance spectroscopy: experimental validation,” Opt. Lett.36, 1838–1840 (2012).
[CrossRef]

S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multi-diameter single fiber reflectance spectra in a turbid medium,” Opt. Lett.36, 2997–2999 (2011).
[CrossRef] [PubMed]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2, 3150–3166 (2011).
[CrossRef] [PubMed]

B. Karakullukcu, S. C. Kanick, J. B. Aans, H. J. C. M. Sterenborg, I. B. Tan, A. Amelink, and D. J. Robinson, “Clinical feasibility of monitoring m-THPC mediated photodynamic therapy by means of fluorescence differential path-length spectroscopy,” J. Biophotonics4, 740–751 (2011).
[CrossRef] [PubMed]

D. J Robinson, M. B. Karakullukcu, B. Kruijt, S. C. Kanick, R. P. L. van Veen, A. Amelink, H. J. C. M. Sterenborg, M. J. H. Witjes, and I. B. Tan, “Optical Spectroscopy to Guide Photodynamic Therapy of Head and Neck Tumors,” IEEE J. Sel. Top. Quantum Electron.16, 854–862 (2010).
[CrossRef]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties.,” Opt. Lett.36, 2791–2793 (1995).
[CrossRef]

Stripp, D.

J. C. Finlay, T. C. Zhu, A. Dimofte, D. Stripp, S. B. Malkowicz, T. M. Busch, and S. M. Hahn, “Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy,” Photochem. Photobiol.82, 1270–1278 (2006).
[CrossRef] [PubMed]

Stucenski, L. A.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008).
[CrossRef]

Tan, I. B.

B. Karakullukcu, S. C. Kanick, J. B. Aans, H. J. C. M. Sterenborg, I. B. Tan, A. Amelink, and D. J. Robinson, “Clinical feasibility of monitoring m-THPC mediated photodynamic therapy by means of fluorescence differential path-length spectroscopy,” J. Biophotonics4, 740–751 (2011).
[CrossRef] [PubMed]

D. J Robinson, M. B. Karakullukcu, B. Kruijt, S. C. Kanick, R. P. L. van Veen, A. Amelink, H. J. C. M. Sterenborg, M. J. H. Witjes, and I. B. Tan, “Optical Spectroscopy to Guide Photodynamic Therapy of Head and Neck Tumors,” IEEE J. Sel. Top. Quantum Electron.16, 854–862 (2010).
[CrossRef]

Tian, F.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008).
[CrossRef]

van Veen, R. P. L.

D. J Robinson, M. B. Karakullukcu, B. Kruijt, S. C. Kanick, R. P. L. van Veen, A. Amelink, H. J. C. M. Sterenborg, M. J. H. Witjes, and I. B. Tan, “Optical Spectroscopy to Guide Photodynamic Therapy of Head and Neck Tumors,” IEEE J. Sel. Top. Quantum Electron.16, 854–862 (2010).
[CrossRef]

Viola, R. J.

G. M. Palmer, R. J. Viola, T. Schroeder, P. S. Yarmolenko, M. W. Dewhirst, and N. Ramanujam, “Quantitative diffuse reflectance and fluorescence spectroscopy: tool to monitor tumor physiology in vivo,” J. Biomed. Opt.14, 024010 (2009).
[CrossRef] [PubMed]

Viscardi, G.

N. Barbero, E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan, and F. Fussolino, “A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence,” Dyes Pigm.3, 302–313 (2009).

Vishwanath, K.

J. Quincy Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20, 119–131 (2009).
[CrossRef] [PubMed]

Vrotsos, K. M.

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Laser Surg. Med.34, 25–38 (2004).
[CrossRef]

Welch, A. J.

Wilson, B. C.

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15, 067006 (2010).
[CrossRef]

Wilson, R. H.

Witjes, M. J. H.

D. J Robinson, M. B. Karakullukcu, B. Kruijt, S. C. Kanick, R. P. L. van Veen, A. Amelink, H. J. C. M. Sterenborg, M. J. H. Witjes, and I. B. Tan, “Optical Spectroscopy to Guide Photodynamic Therapy of Head and Neck Tumors,” IEEE J. Sel. Top. Quantum Electron.16, 854–862 (2010).
[CrossRef]

Wu, J.

Yarmolenko, P. S.

G. M. Palmer, R. J. Viola, T. Schroeder, P. S. Yarmolenko, M. W. Dewhirst, and N. Ramanujam, “Quantitative diffuse reflectance and fluorescence spectroscopy: tool to monitor tumor physiology in vivo,” J. Biomed. Opt.14, 024010 (2009).
[CrossRef] [PubMed]

Zhang, Q.

Zhu, C.

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Laser Surg. Med.34, 25–38 (2004).
[CrossRef]

Zhu, T. C.

J. C. Finlay, T. C. Zhu, A. Dimofte, D. Stripp, S. B. Malkowicz, T. M. Busch, and S. M. Hahn, “Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy,” Photochem. Photobiol.82, 1270–1278 (2006).
[CrossRef] [PubMed]

Appl. Opt. (7)

Biomed. Opt. Express (2)

Biophys. J. (1)

E. Evans, D. Berk, and A. Leung, “Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments,” Biophys. J.59, 838–848 (2001).

Curr. Opin. Biotechnol. (1)

J. Quincy Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20, 119–131 (2009).
[CrossRef] [PubMed]

Dyes Pigm. (1)

N. Barbero, E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan, and F. Fussolino, “A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence,” Dyes Pigm.3, 302–313 (2009).

IEEE J. Sel. Top. Quantum Electron. (2)

D. J Robinson, M. B. Karakullukcu, B. Kruijt, S. C. Kanick, R. P. L. van Veen, A. Amelink, H. J. C. M. Sterenborg, M. J. H. Witjes, and I. B. Tan, “Optical Spectroscopy to Guide Photodynamic Therapy of Head and Neck Tumors,” IEEE J. Sel. Top. Quantum Electron.16, 854–862 (2010).
[CrossRef]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron.7, 1004–1012 (2001).
[CrossRef]

Int. J. Cancer (1)

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008).
[CrossRef]

J. Biomed. Opt. (4)

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15, 067006 (2010).
[CrossRef]

G. M. Palmer and N. Ramanujam, “Monte-carlo-based model for the extraction of intrinsic fluorescence from turbid media,” J. Biomed. Opt.13, 024017 (2008).
[CrossRef] [PubMed]

G. M. Palmer, R. J. Viola, T. Schroeder, P. S. Yarmolenko, M. W. Dewhirst, and N. Ramanujam, “Quantitative diffuse reflectance and fluorescence spectroscopy: tool to monitor tumor physiology in vivo,” J. Biomed. Opt.14, 024010 (2009).
[CrossRef] [PubMed]

C. L. Hoy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method for rapid multidiameter single fiber reflectance and fluorescence spectroscopy through a fiber bundle,” J. Biomed. Opt.18, 107005 (2013).
[CrossRef]

J. Biophotonics (1)

B. Karakullukcu, S. C. Kanick, J. B. Aans, H. J. C. M. Sterenborg, I. B. Tan, A. Amelink, and D. J. Robinson, “Clinical feasibility of monitoring m-THPC mediated photodynamic therapy by means of fluorescence differential path-length spectroscopy,” J. Biophotonics4, 740–751 (2011).
[CrossRef] [PubMed]

Laser Surg. Med. (2)

T. M. Baran and T. H. Foster, “Recovery of Intrinsic Fluorescence From Single-Point Interstitial Measurements for Quantification of Doxorubicin Concentration,” Laser Surg. Med.45, 542–550 (2013).

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Laser Surg. Med.34, 25–38 (2004).
[CrossRef]

Medical Laser Application (1)

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Medical Laser Application22, 23–34 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Photochem. Photobiol. (1)

J. C. Finlay, T. C. Zhu, A. Dimofte, D. Stripp, S. B. Malkowicz, T. M. Busch, and S. M. Hahn, “Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy,” Photochem. Photobiol.82, 1270–1278 (2006).
[CrossRef] [PubMed]

Spectrochim. Acta A (1)

R. Sjoback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta A51, L7–L21 (1995).
[CrossRef]

Other (1)

W. H. Park, “Fluorescence lifetime sensor using optical fiber and optical signal processing,” thesis, University of Toronto (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Monte Carlo simulated data set of SFF intensity per fiber diameter, on (a) linear and (b) log scales.

Fig. 2
Fig. 2

Excitation and collection of fluorescence in a non-scattering medium using a single fiber.

Fig. 3
Fig. 3

Schematic diagram of the experimental SFF setup.

Fig. 4
Fig. 4

Integrated F S F exp ratio signals (abbreviated as FSF) of 5 different fiber diameters vs. reduced scattering coefficient (μ′s) in linear (a) and logarithmic scale (b).

Fig. 5
Fig. 5

SFF signal per fiber diameter vs. dimensionless reduced scattering (μ′sdfib) in linear (a) and logarithmic scale (b). Black dots denote Monte Carlo simulated data for all fiber diameters and blue line is the adapted SFF model (Eq. (11)).

Fig. 6
Fig. 6

SFF signal per fiber diameter vs. dimensionless reduced scattering (μ′sdfib) for low scattering (μ′s =0 – 0.22 mm−1) and for two fiber diameters (dfib=0.6, 0.8 mm). Black dots denote Monte Carlo simulated data for dfib=0.6 mm and the blue line is the adapted SFF model (Eq. (11)). Linear (a) and logarithmic scales (b).

Fig. 7
Fig. 7

Measured intrinsic Fluorescence in presence of scattering (Intralipid: μ′s = 0.82 mm−1) and absorption (RBCs: c=[0, 0.25, 0.5, 1]%, μ a ¯ = [ 0 , 0.64 , 1.3 , 2.6 ] mm 1 ) a) Fluorescence signal Fi of non-absorbing phantom (green line), uncorrected Fluorescence signal Fi (red lines) and corrected Fluorescence signal Fi (blue lines) of absorbing phantoms. b) Normalized fluorescence spectra show how the shape of the uncorrected (red line) fluorescence spectrum is distorted by the presence of blood in comparison to the spectrum of the non-absorbing (green line) phantom and the corrected spectrum (blue line).

Fig. 8
Fig. 8

In order to avoid binding of fluorescein with the RBCs, fluorescein (1μM) was incubated with 2M BSA for 30 min before mixing with RBCs ( μ a ¯ = 0.68 mm 1 ) and Intralipid (μ′s = 0.82 mm−1). Differences between spectra of the non-absorbing phantom (green line) and the corrected absorbing phantom (blue line) are 7%.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

F i ( λ m ) = μ a f ( λ x ) Q f ( λ m )
Q f = d λ m Q f ( λ m )
F S F = F S F 0 e μ ¯ a L S F F
L S F d fib = 0.71 ( μ ¯ s d fib ) 0.36 1 + 1.81 μ ¯ s d fib 1 + ( μ a ¯ d fib )
F S F M C ratio ( λ m ) μ a f ( λ x ) Q f ( λ m ) d fib ν n = 0.0935 ( μ s ¯ d fib ) 0.31 e ( 1 0.31 ( μ s ( λ x ) d fib ) + 1 1.61 0.31 ( μ s ( λ m ) d fib + 1 ) )
F S F 0 = 0 d z η Q f μ a f P laser e z μ a f = Q f μ a f P laser 0 d z η e z μ a f
η = NA 2 2 n 0 2 π d fib 2 4 A s
b d fib n 0 2 NA
F S F 0 ratio = F S F 0 P laser = Q f μ a f 0 d z η e z μ a f
F S F 0 ratio Q f μ a f 0 d z NA 2 2 n 0 2 ( 1 1 + 2 NA d fib n 0 z ) 2 = NA 4 n 0 d fib
F S F M C ratio ( λ m ) μ a f ( λ x ) Q f ( λ m ) d fib ν n = 0.0935 ( μ s ¯ d fib + 0.00315 ) 0.31 e ( 1 0.31 ( μ s ( λ x ) d fib + 1 ) 1.61 0.31 ( μ s ( λ m ) d fib ) + 1 )
F S F M C ratio = T M C P T X P L
F S F exp ratio ( λ m ) = F S F exp ( λ m ) P laser λ m λ x
F S F meas ( λ m ) = F S F exp ( λ m ) T f ( λ m )
I cal ( λ ) = α P cal abs ( λ ) T f ( λ )
L LED ( λ ) = P LED abs ( λ ) T f ( λ ) R I L ( λ )
P LED meas = P LED abs ( λ ) d λ = I LED ( λ ) T f ( λ ) R I L ( λ ) d λ
F S F exp ratio ( λ m ) = F meas S F ( λ m ) λ m λ x P LED meas P laser P cal abs ( λ ) I cal ( λ ) I cal ( λ ) R I L ( λ ) I LED ( λ ) P cal abs ( λ ) d λ

Metrics