Abstract

Fluorescence diffuse optical tomography using a multi-view continuous-wave and non-contact measurement system and an algorithm incorporating the lp (0 < p ≤ 1) sparsity regularization reconstructs a localized fluorescent target in a small animal. The measurement system provides a total of 25 fluorescence surface 2D-images of an object, which are acquired by a CCD camera from five different angles of view with excitation from five different angles. Fluorescence surface emissions from five different angles of view are simultaneously imaged on the CCD sensor, thus leading to fast acquisition of the 25 images within three minutes. The distributions of the fluorophore are reconstructed by solving the inverse problem based on the photon diffusion equations. In the reconstruction process incorporating the lp sparsity regularization, the regularization term is reformulated as a differentiable function for gradient-based non-linear optimization. Numerical simulations and phantom experiments show that the use of the lp sparsity regularization improves the localization of the target and quantitativeness of the fluorophore concentration. A mouse experiment demonstrates that a localized fluorescent target in a mouse is successfully reconstructed.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, C.-H. Yung, C. Bremerand, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–760 (2002).
    [CrossRef] [PubMed]
  2. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
    [CrossRef] [PubMed]
  3. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Prob.15, R41–R93 (1999).
    [CrossRef]
  4. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50, R1–R43 (2005).
    [CrossRef] [PubMed]
  5. R. Weissleder, “Molecular imaging in cancer,” Science321, 1168–1171 (2006).
    [CrossRef]
  6. D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia2(5), 388–417 (2000).
    [CrossRef]
  7. K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational method,” Phys. Med. Biol.47, 3387–3405 (2002).
    [CrossRef] [PubMed]
  8. D. Y. Paithankar, U. A. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random medium,” Appl. Opt.36(10), 2260–2272 (1997).
    [CrossRef] [PubMed]
  9. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30, 901–911 (2003).
    [CrossRef] [PubMed]
  10. N. C. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett.32(4), 382–384 (2007).
    [CrossRef] [PubMed]
  11. T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol.50, 2503–2517 (2005).
    [CrossRef] [PubMed]
  12. A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography for passive motor evoked responses in the neonate,” NueroImage30, 521–528 (2006).
    [CrossRef]
  13. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47, 4155–4166 (2002).
    [CrossRef] [PubMed]
  14. B. W. Pogue, T. O. McBride, J. Prewitt, U. Lösterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt.38(13), 2950–2961 (1999).
    [CrossRef]
  15. G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
    [CrossRef] [PubMed]
  16. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express15(13), 8043–8058 (2007).
    [CrossRef] [PubMed]
  17. A. Douiri, M. Schweiger, J. Riley, and S. R. Arridge, “Anisotropic diffusion regularization methods for diffuse optical tomography using edge prior information,” Meas. Sci. Tech.18, 87–95 (2007).
    [CrossRef]
  18. P. Hiltunen, D. Calvetti, and E. Somersalo, “An adaptive smoothness regularization algorithm for optical tomography,” Opt. Express16(24), 19957–19977 (2008).
    [CrossRef] [PubMed]
  19. C. Panagiotou, S. Somayajula, A. P. Gibson, M. Schweiger, R. M. Leahy, and S. R. Arridge, “Information theoretic regularization in diffuse optical tomography,” J. Opt. Soc. Am. A26(5), 1277–1290 (2009).
    [CrossRef]
  20. N. Cao, A. Nehorai, and M. Jacob, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express, 15(21), 13695–13708 (2007).
    [CrossRef] [PubMed]
  21. T. Shimokawa, T. Kosaka, O. Yamashita, N. Hiroe, T. Amita, Y. Inoue, and M. Sato, “Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography,” Opt. Express20(18), 20427–20446 (2012).
    [CrossRef] [PubMed]
  22. P. Xu, Y. Tian, H. Chen, and D. Yao, “Lp Norm Iterative Sparse Solution for EEG Source Localization,” IEEE Trans. Biomed. Eng.54(3), 400–409 (2007).
    [CrossRef] [PubMed]
  23. P. M. Shankar and M. A. Neifeld, “Sparsity constrained regularization for multiframe image restoration,” J. Opt. Soc. Am. A25(5), 1199–1214 (2008).
    [CrossRef]
  24. M. Freiberger, C. Clason, and H. Scharfetter, “Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach,” Appl. Opt.49(19), 3741–3747 (2010).
    [CrossRef] [PubMed]
  25. D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt49(36), 6930–6937 (2010).
    [CrossRef] [PubMed]
  26. D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express18(8), 8630–8646 (2010).
    [CrossRef] [PubMed]
  27. H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou, J. Tian, and J. Liang, “Multilevel, hybrid regularization method for reconstruction of florescent molecular tomography,” Appl. Opt.51(7), 975–986 (2012).
    [CrossRef] [PubMed]
  28. P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt.46(10), 1679–1685 (2007).
    [CrossRef] [PubMed]
  29. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with aparse A priori information,” Opt. Express17(10), 8062–8088 (2009).
    [CrossRef] [PubMed]
  30. S. Okawa and Y. Yamada, “Reconstruction of fluorescence/bioluminescence sources in biological medium with spatial filter,” Opt. Express18(12), 13151–13172 (2010).
    [CrossRef] [PubMed]
  31. Z. He, A. Cichocki, R. Zdunek, and S. Xie, “Improved FOCCUS method with conjugate gradient iterations,” IEEE Trans. Signal Process.57(1), 399–404 (2009).
    [CrossRef]
  32. S. Okawa, Y. Hoshi, and Y. Yamada, “Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization,” Biomed. Opt. Express2(12), 3334–3348 (2011).
    [CrossRef] [PubMed]
  33. M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite-element method for the forward and inverse model in optical tomography,” J. Math. Imaging Vis.3, 263–283 (1993).
    [CrossRef]
  34. C. R. Vogel, Computational Methods for Inverse Problems (Frontiers in Applied Mathematics) (SIAM, Philadelphia, 2002).
  35. S. R. Arridge, “A gradient-based optimization scheme for optical tomography,” Opt. Express12(6), 213–226 (1998).
    [CrossRef]
  36. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
    [CrossRef]
  37. A. B. Milstein, S. Oh, K. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt.42(16), 3081–3094 (2003).
    [CrossRef] [PubMed]
  38. A. Marjono, A. Yano, S. Okawa, F. Gao, and Y. Yamada, “Total light approach of time-domain fluorescence diffuse optical tomography,” Opt. Express, 16(19), 15268–15285 (2008).
    [CrossRef] [PubMed]
  39. B. Toczylowska, E. Zieminska, G. Goch, D. Milej, A. Gerega, and A. Liebert, “Neurotoxic effects of indocyanine green-cerebellar granule cell culture viability study,” Biomed. Opt. Express, 5(3), 800–816 (2014).
    [CrossRef] [PubMed]
  40. J. Barkhausen, W. Ebert, J. F. Debatin, and H.-J. Weinmann, “Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits,” J. Am. Coll. Cardiol.39(8), 1392–1398 (2002).
    [CrossRef] [PubMed]
  41. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express, 12(22), 5402–5417 (2004).
    [CrossRef] [PubMed]
  42. M. Huang and Q. Zhu, “Dual-mesh optical tomography reconstruction method with a depth correction that uses a priori ultrasound information,” Appl. Opt.43(8), 1654–1662 (2006).
    [CrossRef]
  43. V. C. Kavuri, Z.-J. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization n diffuse optical tomography,” Biomed. Opt. Express, 3(5), 943–957 (2012).
    [CrossRef] [PubMed]
  44. J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol.57, 1459–1476 (2012).
    [CrossRef] [PubMed]

2014 (1)

2012 (4)

2011 (1)

2010 (4)

2009 (3)

2008 (3)

2007 (6)

2006 (3)

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography for passive motor evoked responses in the neonate,” NueroImage30, 521–528 (2006).
[CrossRef]

R. Weissleder, “Molecular imaging in cancer,” Science321, 1168–1171 (2006).
[CrossRef]

M. Huang and Q. Zhu, “Dual-mesh optical tomography reconstruction method with a depth correction that uses a priori ultrasound information,” Appl. Opt.43(8), 1654–1662 (2006).
[CrossRef]

2005 (4)

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol.50, 2503–2517 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50, R1–R43 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

A. B. Milstein, S. Oh, K. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt.42(16), 3081–3094 (2003).
[CrossRef] [PubMed]

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30, 901–911 (2003).
[CrossRef] [PubMed]

2002 (4)

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47, 4155–4166 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C.-H. Yung, C. Bremerand, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–760 (2002).
[CrossRef] [PubMed]

K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational method,” Phys. Med. Biol.47, 3387–3405 (2002).
[CrossRef] [PubMed]

J. Barkhausen, W. Ebert, J. F. Debatin, and H.-J. Weinmann, “Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits,” J. Am. Coll. Cardiol.39(8), 1392–1398 (2002).
[CrossRef] [PubMed]

2000 (1)

D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia2(5), 388–417 (2000).
[CrossRef]

1999 (2)

1998 (1)

S. R. Arridge, “A gradient-based optimization scheme for optical tomography,” Opt. Express12(6), 213–226 (1998).
[CrossRef]

1997 (1)

1993 (1)

M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite-element method for the forward and inverse model in optical tomography,” J. Math. Imaging Vis.3, 263–283 (1993).
[CrossRef]

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

Adibi, A.

Ahn, S.

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol.57, 1459–1476 (2012).
[CrossRef] [PubMed]

Amita, T.

Arridge, S. R.

C. Panagiotou, S. Somayajula, A. P. Gibson, M. Schweiger, R. M. Leahy, and S. R. Arridge, “Information theoretic regularization in diffuse optical tomography,” J. Opt. Soc. Am. A26(5), 1277–1290 (2009).
[CrossRef]

A. Douiri, M. Schweiger, J. Riley, and S. R. Arridge, “Anisotropic diffusion regularization methods for diffuse optical tomography using edge prior information,” Meas. Sci. Tech.18, 87–95 (2007).
[CrossRef]

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography for passive motor evoked responses in the neonate,” NueroImage30, 521–528 (2006).
[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50, R1–R43 (2005).
[CrossRef] [PubMed]

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol.50, 2503–2517 (2005).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47, 4155–4166 (2002).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Prob.15, R41–R93 (1999).
[CrossRef]

S. R. Arridge, “A gradient-based optimization scheme for optical tomography,” Opt. Express12(6), 213–226 (1998).
[CrossRef]

M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite-element method for the forward and inverse model in optical tomography,” J. Math. Imaging Vis.3, 263–283 (1993).
[CrossRef]

Austin, T.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography for passive motor evoked responses in the neonate,” NueroImage30, 521–528 (2006).
[CrossRef]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47, 4155–4166 (2002).
[CrossRef] [PubMed]

Bangerth, W.

Barkhausen, J.

J. Barkhausen, W. Ebert, J. F. Debatin, and H.-J. Weinmann, “Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits,” J. Am. Coll. Cardiol.39(8), 1392–1398 (2002).
[CrossRef] [PubMed]

Boas, D. A.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt.42(16), 3081–3094 (2003).
[CrossRef] [PubMed]

Bouman, C. A.

Boverman, G.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

Bremerand, C.

V. Ntziachristos, C.-H. Yung, C. Bremerand, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–760 (2002).
[CrossRef] [PubMed]

Brooks, D. H.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

Calvetti, D.

Cao, N.

Carpenter, C. M.

Chan, T. F.

Chatziioannou, A. F.

Chaves, T.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

Chen, D.

Chen, H.

P. Xu, Y. Tian, H. Chen, and D. Yao, “Lp Norm Iterative Sparse Solution for EEG Source Localization,” IEEE Trans. Biomed. Eng.54(3), 400–409 (2007).
[CrossRef] [PubMed]

Chen, U. A.

Chen, X.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

Cherry, S. R.

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol.57, 1459–1476 (2012).
[CrossRef] [PubMed]

Cichocki, A.

Z. He, A. Cichocki, R. Zdunek, and S. Xie, “Improved FOCCUS method with conjugate gradient iterations,” IEEE Trans. Signal Process.57(1), 399–404 (2009).
[CrossRef]

Clason, C.

Debatin, J. F.

J. Barkhausen, W. Ebert, J. F. Debatin, and H.-J. Weinmann, “Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits,” J. Am. Coll. Cardiol.39(8), 1392–1398 (2002).
[CrossRef] [PubMed]

Dehghani, H.

Deliolanis, N. C.

Delpy, D. T.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography for passive motor evoked responses in the neonate,” NueroImage30, 521–528 (2006).
[CrossRef]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47, 4155–4166 (2002).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite-element method for the forward and inverse model in optical tomography,” J. Math. Imaging Vis.3, 263–283 (1993).
[CrossRef]

Douek, M.

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol.50, 2503–2517 (2005).
[CrossRef] [PubMed]

Douiri, A.

A. Douiri, M. Schweiger, J. Riley, and S. R. Arridge, “Anisotropic diffusion regularization methods for diffuse optical tomography using edge prior information,” Meas. Sci. Tech.18, 87–95 (2007).
[CrossRef]

Douraghy, A.

Dutta, J.

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol.57, 1459–1476 (2012).
[CrossRef] [PubMed]

Ebert, W.

J. Barkhausen, W. Ebert, J. F. Debatin, and H.-J. Weinmann, “Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits,” J. Am. Coll. Cardiol.39(8), 1392–1398 (2002).
[CrossRef] [PubMed]

Eftekhar, A. A.

Everdell, N.

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol.50, 2503–2517 (2005).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47, 4155–4166 (2002).
[CrossRef] [PubMed]

Everdell, N. L.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography for passive motor evoked responses in the neonate,” NueroImage30, 521–528 (2006).
[CrossRef]

Feng, J.

Freiberger, M.

Gao, F.

Gerega, A.

Gibson, A.

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol.50, 2503–2517 (2005).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47, 4155–4166 (2002).
[CrossRef] [PubMed]

Gibson, A. P.

C. Panagiotou, S. Somayajula, A. P. Gibson, M. Schweiger, R. M. Leahy, and S. R. Arridge, “Information theoretic regularization in diffuse optical tomography,” J. Opt. Soc. Am. A26(5), 1277–1290 (2009).
[CrossRef]

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography for passive motor evoked responses in the neonate,” NueroImage30, 521–528 (2006).
[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50, R1–R43 (2005).
[CrossRef] [PubMed]

Goch, G.

Graves, E.

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30, 901–911 (2003).
[CrossRef] [PubMed]

Han, D.

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express18(8), 8630–8646 (2010).
[CrossRef] [PubMed]

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt49(36), 6930–6937 (2010).
[CrossRef] [PubMed]

Hawrysz, D. J.

D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia2(5), 388–417 (2000).
[CrossRef]

He, Z.

Z. He, A. Cichocki, R. Zdunek, and S. Xie, “Improved FOCCUS method with conjugate gradient iterations,” IEEE Trans. Signal Process.57(1), 399–404 (2009).
[CrossRef]

Hebdan, C.

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol.50, 2503–2517 (2005).
[CrossRef] [PubMed]

Hebden, J. C.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography for passive motor evoked responses in the neonate,” NueroImage30, 521–528 (2006).
[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50, R1–R43 (2005).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47, 4155–4166 (2002).
[CrossRef] [PubMed]

Hillman, E. M. C.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47, 4155–4166 (2002).
[CrossRef] [PubMed]

Hiltunen, P.

Hiroe, N.

Hoshi, Y.

Huang, J.

Huang, M.

Hyde, D.

Inoue, Y.

Jacob, M.

Jiang, S.

Joshi, A.

Kavuri, V. C.

Kosaka, T.

Lasser, T.

Leahy, R. M.

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol.57, 1459–1476 (2012).
[CrossRef] [PubMed]

C. Panagiotou, S. Somayajula, A. P. Gibson, M. Schweiger, R. M. Leahy, and S. R. Arridge, “Information theoretic regularization in diffuse optical tomography,” J. Opt. Soc. Am. A26(5), 1277–1290 (2009).
[CrossRef]

Li, A.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

Li, C.

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol.57, 1459–1476 (2012).
[CrossRef] [PubMed]

Liang, J.

Liebert, A.

Lin, Z.-J.

Liu, H.

Liu, K.

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt49(36), 6930–6937 (2010).
[CrossRef] [PubMed]

Lösterberg, U.

Lu, Y.

Ma, X.

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt49(36), 6930–6937 (2010).
[CrossRef] [PubMed]

Marjono, A.

McBride, T. O.

Meek, J. H.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography for passive motor evoked responses in the neonate,” NueroImage30, 521–528 (2006).
[CrossRef]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47, 4155–4166 (2002).
[CrossRef] [PubMed]

Milej, D.

Millane, R. P.

Miller, E. L.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

Milstein, A. B.

Mohajerani, P.

Mycek, M.-A.

K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational method,” Phys. Med. Biol.47, 3387–3405 (2002).
[CrossRef] [PubMed]

Nehorai, A.

Neifeld, M. A.

Ntziachristos, V.

N. C. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett.32(4), 382–384 (2007).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30, 901–911 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C.-H. Yung, C. Bremerand, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–760 (2002).
[CrossRef] [PubMed]

Oh, S.

Okawa, S.

Paithankar, D. Y.

Panagiotou, C.

Patterson, M. S.

Paulsen, K. D.

Peng, K.

Pogue, B.

K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational method,” Phys. Med. Biol.47, 3387–3405 (2002).
[CrossRef] [PubMed]

Pogue, B. W.

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

Prewitt, J.

Qin, C.

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt49(36), 6930–6937 (2010).
[CrossRef] [PubMed]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express18(8), 8630–8646 (2010).
[CrossRef] [PubMed]

Qu, X.

Riley, J.

A. Douiri, M. Schweiger, J. Riley, and S. R. Arridge, “Anisotropic diffusion regularization methods for diffuse optical tomography using edge prior information,” Meas. Sci. Tech.18, 87–95 (2007).
[CrossRef]

Ripoll, J.

N. C. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett.32(4), 382–384 (2007).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30, 901–911 (2003).
[CrossRef] [PubMed]

Sato, M.

Scharfetter, H.

Schweiger, M.

C. Panagiotou, S. Somayajula, A. P. Gibson, M. Schweiger, R. M. Leahy, and S. R. Arridge, “Information theoretic regularization in diffuse optical tomography,” J. Opt. Soc. Am. A26(5), 1277–1290 (2009).
[CrossRef]

A. Douiri, M. Schweiger, J. Riley, and S. R. Arridge, “Anisotropic diffusion regularization methods for diffuse optical tomography using edge prior information,” Meas. Sci. Tech.18, 87–95 (2007).
[CrossRef]

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography for passive motor evoked responses in the neonate,” NueroImage30, 521–528 (2006).
[CrossRef]

M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite-element method for the forward and inverse model in optical tomography,” J. Math. Imaging Vis.3, 263–283 (1993).
[CrossRef]

Sevick-Muraca, E. M.

Shankar, P. M.

Shimokawa, T.

Somayajula, S.

Somersalo, E.

Soubret, A.

Stout, D.

Tian, F.

Tian, J.

Tian, Y.

P. Xu, Y. Tian, H. Chen, and D. Yao, “Lp Norm Iterative Sparse Solution for EEG Source Localization,” IEEE Trans. Biomed. Eng.54(3), 400–409 (2007).
[CrossRef] [PubMed]

Toczylowska, B.

Vishwanath, K.

K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational method,” Phys. Med. Biol.47, 3387–3405 (2002).
[CrossRef] [PubMed]

Vogel, C. R.

C. R. Vogel, Computational Methods for Inverse Problems (Frontiers in Applied Mathematics) (SIAM, Philadelphia, 2002).

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

Webb, K.

Weinmann, H.-J.

J. Barkhausen, W. Ebert, J. F. Debatin, and H.-J. Weinmann, “Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits,” J. Am. Coll. Cardiol.39(8), 1392–1398 (2002).
[CrossRef] [PubMed]

Weissleder, R.

R. Weissleder, “Molecular imaging in cancer,” Science321, 1168–1171 (2006).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30, 901–911 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C.-H. Yung, C. Bremerand, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–760 (2002).
[CrossRef] [PubMed]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

Wyatt, J. S.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography for passive motor evoked responses in the neonate,” NueroImage30, 521–528 (2006).
[CrossRef]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47, 4155–4166 (2002).
[CrossRef] [PubMed]

Xie, S.

Z. He, A. Cichocki, R. Zdunek, and S. Xie, “Improved FOCCUS method with conjugate gradient iterations,” IEEE Trans. Signal Process.57(1), 399–404 (2009).
[CrossRef]

Xu, P.

P. Xu, Y. Tian, H. Chen, and D. Yao, “Lp Norm Iterative Sparse Solution for EEG Source Localization,” IEEE Trans. Biomed. Eng.54(3), 400–409 (2007).
[CrossRef] [PubMed]

Yalavarthy, P. K.

Yamada, Y.

Yamashita, O.

Yang, X.

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt49(36), 6930–6937 (2010).
[CrossRef] [PubMed]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express18(8), 8630–8646 (2010).
[CrossRef] [PubMed]

Yano, A.

Yao, D.

P. Xu, Y. Tian, H. Chen, and D. Yao, “Lp Norm Iterative Sparse Solution for EEG Source Localization,” IEEE Trans. Biomed. Eng.54(3), 400–409 (2007).
[CrossRef] [PubMed]

Yates, T.

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol.50, 2503–2517 (2005).
[CrossRef] [PubMed]

Yi, H.

Yung, C.-H.

V. Ntziachristos, C.-H. Yung, C. Bremerand, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–760 (2002).
[CrossRef] [PubMed]

Yusof, R. M.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47, 4155–4166 (2002).
[CrossRef] [PubMed]

Zdunek, R.

Z. He, A. Cichocki, R. Zdunek, and S. Xie, “Improved FOCCUS method with conjugate gradient iterations,” IEEE Trans. Signal Process.57(1), 399–404 (2009).
[CrossRef]

Zhang, B.

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt49(36), 6930–6937 (2010).
[CrossRef] [PubMed]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express18(8), 8630–8646 (2010).
[CrossRef] [PubMed]

Zhang, Q.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt.42(16), 3081–3094 (2003).
[CrossRef] [PubMed]

Zhang, X.

Zhou, Y.

Zhu, Q.

Zhu, S.

Zieminska, E.

Appl. Opt (1)

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt49(36), 6930–6937 (2010).
[CrossRef] [PubMed]

Appl. Opt. (7)

B. W. Pogue, T. O. McBride, J. Prewitt, U. Lösterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt.38(13), 2950–2961 (1999).
[CrossRef]

D. Y. Paithankar, U. A. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random medium,” Appl. Opt.36(10), 2260–2272 (1997).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt.42(16), 3081–3094 (2003).
[CrossRef] [PubMed]

M. Huang and Q. Zhu, “Dual-mesh optical tomography reconstruction method with a depth correction that uses a priori ultrasound information,” Appl. Opt.43(8), 1654–1662 (2006).
[CrossRef]

P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt.46(10), 1679–1685 (2007).
[CrossRef] [PubMed]

M. Freiberger, C. Clason, and H. Scharfetter, “Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach,” Appl. Opt.49(19), 3741–3747 (2010).
[CrossRef] [PubMed]

H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou, J. Tian, and J. Liang, “Multilevel, hybrid regularization method for reconstruction of florescent molecular tomography,” Appl. Opt.51(7), 975–986 (2012).
[CrossRef] [PubMed]

Biomed. Opt. Express (3)

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

P. Xu, Y. Tian, H. Chen, and D. Yao, “Lp Norm Iterative Sparse Solution for EEG Source Localization,” IEEE Trans. Biomed. Eng.54(3), 400–409 (2007).
[CrossRef] [PubMed]

IEEE Trans. Signal Process. (1)

Z. He, A. Cichocki, R. Zdunek, and S. Xie, “Improved FOCCUS method with conjugate gradient iterations,” IEEE Trans. Signal Process.57(1), 399–404 (2009).
[CrossRef]

Inverse Prob. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Prob.15, R41–R93 (1999).
[CrossRef]

J. Am. Coll. Cardiol. (1)

J. Barkhausen, W. Ebert, J. F. Debatin, and H.-J. Weinmann, “Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits,” J. Am. Coll. Cardiol.39(8), 1392–1398 (2002).
[CrossRef] [PubMed]

J. Math. Imaging Vis. (1)

M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite-element method for the forward and inverse model in optical tomography,” J. Math. Imaging Vis.3, 263–283 (1993).
[CrossRef]

J. Opt. Soc. Am. A (2)

Meas. Sci. Tech. (1)

A. Douiri, M. Schweiger, J. Riley, and S. R. Arridge, “Anisotropic diffusion regularization methods for diffuse optical tomography using edge prior information,” Meas. Sci. Tech.18, 87–95 (2007).
[CrossRef]

Med. Phys. (1)

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30, 901–911 (2003).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

Nat. Med. (1)

V. Ntziachristos, C.-H. Yung, C. Bremerand, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–760 (2002).
[CrossRef] [PubMed]

Neoplasia (1)

D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia2(5), 388–417 (2000).
[CrossRef]

NueroImage (1)

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography for passive motor evoked responses in the neonate,” NueroImage30, 521–528 (2006).
[CrossRef]

Opt. Express (10)

A. Marjono, A. Yano, S. Okawa, F. Gao, and Y. Yamada, “Total light approach of time-domain fluorescence diffuse optical tomography,” Opt. Express, 16(19), 15268–15285 (2008).
[CrossRef] [PubMed]

P. Hiltunen, D. Calvetti, and E. Somersalo, “An adaptive smoothness regularization algorithm for optical tomography,” Opt. Express16(24), 19957–19977 (2008).
[CrossRef] [PubMed]

Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with aparse A priori information,” Opt. Express17(10), 8062–8088 (2009).
[CrossRef] [PubMed]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express18(8), 8630–8646 (2010).
[CrossRef] [PubMed]

S. Okawa and Y. Yamada, “Reconstruction of fluorescence/bioluminescence sources in biological medium with spatial filter,” Opt. Express18(12), 13151–13172 (2010).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express15(13), 8043–8058 (2007).
[CrossRef] [PubMed]

N. Cao, A. Nehorai, and M. Jacob, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express, 15(21), 13695–13708 (2007).
[CrossRef] [PubMed]

A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express, 12(22), 5402–5417 (2004).
[CrossRef] [PubMed]

S. R. Arridge, “A gradient-based optimization scheme for optical tomography,” Opt. Express12(6), 213–226 (1998).
[CrossRef]

T. Shimokawa, T. Kosaka, O. Yamashita, N. Hiroe, T. Amita, Y. Inoue, and M. Sato, “Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography,” Opt. Express20(18), 20427–20446 (2012).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (6)

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol.57, 1459–1476 (2012).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47, 4155–4166 (2002).
[CrossRef] [PubMed]

K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational method,” Phys. Med. Biol.47, 3387–3405 (2002).
[CrossRef] [PubMed]

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol.50, 2503–2517 (2005).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50, R1–R43 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

Science (1)

R. Weissleder, “Molecular imaging in cancer,” Science321, 1168–1171 (2006).
[CrossRef]

Other (1)

C. R. Vogel, Computational Methods for Inverse Problems (Frontiers in Applied Mathematics) (SIAM, Philadelphia, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics