Abstract

In the present study, we monitored hemodynamic responses in rat brains during transcranial direct current stimulation (tDCS) using functional near-infrared spectroscopy (fNIRS). Seven rats received transcranial anodal stimulation with 200 μA direct current (DC) on their right barrel cortex for 10 min. The concentration changes of oxygenated hemoglobin (oxy-Hb) were continuously monitored during stimulation (10 min) and after stimulation (20 min). The trend of hemodynamic response changes was modeled using linear regression, and the relationship between incremental and decremental rates of oxy-Hb was investigated by correlation analysis. Our results showed that the oxy-Hb concentration was almost linearly increased and decreased during and after stimulation, respectively. In addition, a significant negative correlation (p < 0.05) was found between the rate of increase of oxy-Hb during stimulation and the rate of decrease of oxy-Hb after stimulation, indicating that the recovery time after tDCS may not depend on the total amount of hemodynamic changes in the stimulated brain area. Our results also demonstrated considerable individual variability in the rate of change of hemodynamic responses even with the same direct current dose to identical brain regions. This suggests that individual differences in tDCS after-effects may originate from intrinsic differences in the speed of DC stimulation “uptake” rather than differences in the total capacity of DC uptake, and thus the stimulation parameters may need to be customized for each individual in order to maximize tDCS after-effects.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” J. Physiol.527(3), 633–639 (2000).
    [CrossRef] [PubMed]
  2. A. Antal, T. Z. Kincses, M. A. Nitsche, O. Bartfai, and W. Paulus, “Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence,” Invest. Ophthalmol. Vis. Sci.45, 702–707 (2004).
  3. F. Fregni, P. S. Boggio, M. Nitsche, and A. Pascual-Leone, “Transcranial direct current stimulation,” Br. J. Psychiatry186(5), 446–447 (2005).
    [CrossRef] [PubMed]
  4. T. Wagner, A. Valero-Cabre, and A. Pascual-Leone, “Noninvasive human brain stimulation,” Annu. Rev. Biomed. Eng.9(1), 527–565 (2007).
    [CrossRef] [PubMed]
  5. M. A. Nitsche, L. G. Cohen, E. M. Wassermann, A. Priori, N. Lang, A. Antal, W. Paulus, F. Hummel, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulat.1(3), 206–223 (2008).
    [CrossRef] [PubMed]
  6. A. Priori, “Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability,” Clin. Neurophysiol.114(4), 589–595 (2003).
    [CrossRef] [PubMed]
  7. J. A. Williams, M. Imamura, and F. Fregni, “Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine,” J. Rehabil. Med.41(5), 305–311 (2009).
    [CrossRef] [PubMed]
  8. P. C. Gandiga, F. C. Hummel, and L. G. Cohen, “Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation,” Clin. Neurophysiol.117(4), 845–850 (2006).
    [CrossRef] [PubMed]
  9. M. A. Nitsche, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Treatment of depression with transcranial direct current stimulation (tDCS): a review,” Exp. Neurol.219(1), 14–19 (2009).
    [CrossRef] [PubMed]
  10. F. Fregni, S. Freedman, and A. Pascual-Leone, “Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques,” Lancet Neurol.6(2), 188–191 (2007).
    [CrossRef] [PubMed]
  11. A. Mignon, V. Laudenbach, F. Guischard, A. Limoge, J.-M. Desmonts, and J. Mantz, “Transcutaneous cranial electrical stimulation (Limoge’s currents) decreases early buprenorphine analgesic requirements after abdominal surgery,” Anesth. Analg.83(4), 771–775 (1996).
    [PubMed]
  12. P. S. Boggio, A. Nunes, S. P. Rigonatti, M. A. Nitsche, A. Pascual-Leone, and F. Fregni, “Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients,” Restor. Neurol. Neurosci.25(2), 123–129 (2007).
    [PubMed]
  13. P. S. Boggio, R. Ferrucci, S. P. Rigonatti, P. Covre, M. Nitsche, A. Pascual-Leone, and F. Fregni, “Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease,” J. Neurol. Sci.249(1), 31–38 (2006).
    [CrossRef] [PubMed]
  14. B. A. Coffman, M. C. Trumbo, and V. P. Clark, “Enhancement of object detection with transcranial direct current stimulation is associated with increased attention,” BMC Neurosci.13(1), 108 (2012).
    [CrossRef] [PubMed]
  15. T. U. Hauser, S. Rotzer, R. H. Grabner, S. Mérillat, and L. Jäncke, “Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS),” Front Hum. Neurosci.7, 244 (2013).
    [CrossRef] [PubMed]
  16. Y. H. Kwon, M.-H. Ko, S. H. Ahn, Y.-H. Kim, J. C. Song, C.-H. Lee, M. C. Chang, and S. H. Jang, “Primary motor cortex activation by transcranial direct current stimulation in the human brain,” Neurosci. Lett.435(1), 56–59 (2008).
    [CrossRef] [PubMed]
  17. A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage49(3), 2304–2310 (2010).
    [CrossRef] [PubMed]
  18. D. Wachter, A. Wrede, W. Schulz-Schaeffer, A. Taghizadeh-Waghefi, M. A. Nitsche, A. Kutschenko, V. Rohde, and D. Liebetanz, “Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat,” Exp. Neurol.227(2), 322–327 (2011).
    [CrossRef] [PubMed]
  19. X. Zheng, D. C. Alsop, and G. Schlaug, “Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow,” Neuroimage58(1), 26–33 (2011).
    [CrossRef] [PubMed]
  20. Y.-J. Jung, J.-H. Kim, D. Kim, and C.-H. Im, “An image-guided transcranial direct current stimulation system: a pilot phantom study,” Physiol. Meas.34(8), 937–950 (2013).
    [CrossRef] [PubMed]
  21. D. Liebetanz, R. Koch, S. Mayenfels, F. König, W. Paulus, and M. A. Nitsche, “Safety limits of cathodal transcranial direct current stimulation in rats,” Clin. Neurophysiol.120(6), 1161–1167 (2009).
    [CrossRef] [PubMed]
  22. P. Minhas, A. Datta, and M. Bikson, “Cutaneous perception during tDCS: role of electrode shape and sponge salinity,” Clin. Neurophysiol.122(4), 637–638 (2011).
    [CrossRef] [PubMed]
  23. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition (Access Online via Elsevier, 2006).
  24. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage18(4), 865–879 (2003).
    [CrossRef] [PubMed]
  25. Q. L. Yao, H.-Y. Zhang, B. B. Nie, F. Fang, Y. Jiao, and G.-J. Teng, “MRI assessment of amplitude of low-frequency fluctuation in rat brains with acute cerebral ischemic stroke,” Neurosci. Lett.509(1), 22–26 (2012).
    [CrossRef] [PubMed]
  26. J. Tanabe, D. Miller, J. Tregellas, R. Freedman, and F. G. Meyer, “Comparison of detrending methods for optimal fMRI preprocessing,” Neuroimage15(4), 902–907 (2002).
    [CrossRef] [PubMed]
  27. S. Slobounov, J. Johnston, H. Chiang, and W. Ray, “Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment,” Clin. Neurophysiol.113(7), 1125–1135 (2002).
    [CrossRef] [PubMed]
  28. C. Calmels, M. Hars, P. Holmes, G. Jarry, and C. J. Stam, “Non-linear EEG synchronization during observation and execution of simple and complex sequential finger movements,” Exp. Brain Res.190(4), 389–400 (2008).
    [CrossRef] [PubMed]
  29. H. Yamaguchi, H. Yamauchi, S. Hazama, H. Hamamoto, and N. Inoue, “Correlation between cerebral oxygen metabolism and cerebral blood flow simultaneously measured before and after acetazolamide administration,” J. Biomed. Opt.4(4), 418–423 (1999).
    [CrossRef] [PubMed]
  30. V. G. Duffy, Brain Advances in Human Aspects of Healthcare (CRC Press, 2012), Chap. 53.
  31. C. K. Loo, A. Alonzo, D. Martin, P. B. Mitchell, V. Galvez, and P. Sachdev, “Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial,” Br. J. Psychiatry200(1), 52–59 (2012).
    [CrossRef] [PubMed]
  32. K. Weltman and M. Lavidor, “Modulating lexical and semantic processing by transcranial direct current stimulation,” Exp. Brain Res.226(1), 121–135 (2013).
    [CrossRef] [PubMed]
  33. Á. Foerster, S. Rocha, C. Wiesiolek, A. P. Chagas, G. Machado, E. Silva, F. Fregni, and K. Monte-Silva, “Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning,” Eur. J. Neurosci.37(5), 786–794 (2013).
    [CrossRef] [PubMed]
  34. U. Palm, C. Schiller, Z. Fintescu, M. Obermeier, D. Keeser, E. Reisinger, O. Pogarell, M. A. Nitsche, H.-J. Möller, and F. Padberg, “Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study,” Brain Stimulat.5(3), 242–251 (2012).
    [CrossRef] [PubMed]
  35. A. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, and M. Bikson, “Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad,” Brain Stimulat.2(4), 201–207 (2009).
    [CrossRef] [PubMed]
  36. M. E. Mendonca, M. B. Santana, A. F. Baptista, A. Datta, M. Bikson, F. Fregni, and C. P. Araujo, “Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models,” J. Pain12(5), 610–617 (2011).
    [CrossRef] [PubMed]

2013

T. U. Hauser, S. Rotzer, R. H. Grabner, S. Mérillat, and L. Jäncke, “Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS),” Front Hum. Neurosci.7, 244 (2013).
[CrossRef] [PubMed]

Y.-J. Jung, J.-H. Kim, D. Kim, and C.-H. Im, “An image-guided transcranial direct current stimulation system: a pilot phantom study,” Physiol. Meas.34(8), 937–950 (2013).
[CrossRef] [PubMed]

K. Weltman and M. Lavidor, “Modulating lexical and semantic processing by transcranial direct current stimulation,” Exp. Brain Res.226(1), 121–135 (2013).
[CrossRef] [PubMed]

Á. Foerster, S. Rocha, C. Wiesiolek, A. P. Chagas, G. Machado, E. Silva, F. Fregni, and K. Monte-Silva, “Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning,” Eur. J. Neurosci.37(5), 786–794 (2013).
[CrossRef] [PubMed]

2012

U. Palm, C. Schiller, Z. Fintescu, M. Obermeier, D. Keeser, E. Reisinger, O. Pogarell, M. A. Nitsche, H.-J. Möller, and F. Padberg, “Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study,” Brain Stimulat.5(3), 242–251 (2012).
[CrossRef] [PubMed]

C. K. Loo, A. Alonzo, D. Martin, P. B. Mitchell, V. Galvez, and P. Sachdev, “Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial,” Br. J. Psychiatry200(1), 52–59 (2012).
[CrossRef] [PubMed]

Q. L. Yao, H.-Y. Zhang, B. B. Nie, F. Fang, Y. Jiao, and G.-J. Teng, “MRI assessment of amplitude of low-frequency fluctuation in rat brains with acute cerebral ischemic stroke,” Neurosci. Lett.509(1), 22–26 (2012).
[CrossRef] [PubMed]

B. A. Coffman, M. C. Trumbo, and V. P. Clark, “Enhancement of object detection with transcranial direct current stimulation is associated with increased attention,” BMC Neurosci.13(1), 108 (2012).
[CrossRef] [PubMed]

2011

P. Minhas, A. Datta, and M. Bikson, “Cutaneous perception during tDCS: role of electrode shape and sponge salinity,” Clin. Neurophysiol.122(4), 637–638 (2011).
[CrossRef] [PubMed]

D. Wachter, A. Wrede, W. Schulz-Schaeffer, A. Taghizadeh-Waghefi, M. A. Nitsche, A. Kutschenko, V. Rohde, and D. Liebetanz, “Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat,” Exp. Neurol.227(2), 322–327 (2011).
[CrossRef] [PubMed]

X. Zheng, D. C. Alsop, and G. Schlaug, “Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow,” Neuroimage58(1), 26–33 (2011).
[CrossRef] [PubMed]

M. E. Mendonca, M. B. Santana, A. F. Baptista, A. Datta, M. Bikson, F. Fregni, and C. P. Araujo, “Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models,” J. Pain12(5), 610–617 (2011).
[CrossRef] [PubMed]

2010

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage49(3), 2304–2310 (2010).
[CrossRef] [PubMed]

2009

M. A. Nitsche, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Treatment of depression with transcranial direct current stimulation (tDCS): a review,” Exp. Neurol.219(1), 14–19 (2009).
[CrossRef] [PubMed]

J. A. Williams, M. Imamura, and F. Fregni, “Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine,” J. Rehabil. Med.41(5), 305–311 (2009).
[CrossRef] [PubMed]

A. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, and M. Bikson, “Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad,” Brain Stimulat.2(4), 201–207 (2009).
[CrossRef] [PubMed]

D. Liebetanz, R. Koch, S. Mayenfels, F. König, W. Paulus, and M. A. Nitsche, “Safety limits of cathodal transcranial direct current stimulation in rats,” Clin. Neurophysiol.120(6), 1161–1167 (2009).
[CrossRef] [PubMed]

2008

C. Calmels, M. Hars, P. Holmes, G. Jarry, and C. J. Stam, “Non-linear EEG synchronization during observation and execution of simple and complex sequential finger movements,” Exp. Brain Res.190(4), 389–400 (2008).
[CrossRef] [PubMed]

M. A. Nitsche, L. G. Cohen, E. M. Wassermann, A. Priori, N. Lang, A. Antal, W. Paulus, F. Hummel, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulat.1(3), 206–223 (2008).
[CrossRef] [PubMed]

Y. H. Kwon, M.-H. Ko, S. H. Ahn, Y.-H. Kim, J. C. Song, C.-H. Lee, M. C. Chang, and S. H. Jang, “Primary motor cortex activation by transcranial direct current stimulation in the human brain,” Neurosci. Lett.435(1), 56–59 (2008).
[CrossRef] [PubMed]

2007

F. Fregni, S. Freedman, and A. Pascual-Leone, “Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques,” Lancet Neurol.6(2), 188–191 (2007).
[CrossRef] [PubMed]

P. S. Boggio, A. Nunes, S. P. Rigonatti, M. A. Nitsche, A. Pascual-Leone, and F. Fregni, “Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients,” Restor. Neurol. Neurosci.25(2), 123–129 (2007).
[PubMed]

T. Wagner, A. Valero-Cabre, and A. Pascual-Leone, “Noninvasive human brain stimulation,” Annu. Rev. Biomed. Eng.9(1), 527–565 (2007).
[CrossRef] [PubMed]

2006

P. C. Gandiga, F. C. Hummel, and L. G. Cohen, “Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation,” Clin. Neurophysiol.117(4), 845–850 (2006).
[CrossRef] [PubMed]

P. S. Boggio, R. Ferrucci, S. P. Rigonatti, P. Covre, M. Nitsche, A. Pascual-Leone, and F. Fregni, “Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease,” J. Neurol. Sci.249(1), 31–38 (2006).
[CrossRef] [PubMed]

2005

F. Fregni, P. S. Boggio, M. Nitsche, and A. Pascual-Leone, “Transcranial direct current stimulation,” Br. J. Psychiatry186(5), 446–447 (2005).
[CrossRef] [PubMed]

2004

A. Antal, T. Z. Kincses, M. A. Nitsche, O. Bartfai, and W. Paulus, “Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence,” Invest. Ophthalmol. Vis. Sci.45, 702–707 (2004).

2003

A. Priori, “Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability,” Clin. Neurophysiol.114(4), 589–595 (2003).
[CrossRef] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage18(4), 865–879 (2003).
[CrossRef] [PubMed]

2002

J. Tanabe, D. Miller, J. Tregellas, R. Freedman, and F. G. Meyer, “Comparison of detrending methods for optimal fMRI preprocessing,” Neuroimage15(4), 902–907 (2002).
[CrossRef] [PubMed]

S. Slobounov, J. Johnston, H. Chiang, and W. Ray, “Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment,” Clin. Neurophysiol.113(7), 1125–1135 (2002).
[CrossRef] [PubMed]

2000

M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” J. Physiol.527(3), 633–639 (2000).
[CrossRef] [PubMed]

1999

H. Yamaguchi, H. Yamauchi, S. Hazama, H. Hamamoto, and N. Inoue, “Correlation between cerebral oxygen metabolism and cerebral blood flow simultaneously measured before and after acetazolamide administration,” J. Biomed. Opt.4(4), 418–423 (1999).
[CrossRef] [PubMed]

1996

A. Mignon, V. Laudenbach, F. Guischard, A. Limoge, J.-M. Desmonts, and J. Mantz, “Transcutaneous cranial electrical stimulation (Limoge’s currents) decreases early buprenorphine analgesic requirements after abdominal surgery,” Anesth. Analg.83(4), 771–775 (1996).
[PubMed]

Aguilar, J.

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage49(3), 2304–2310 (2010).
[CrossRef] [PubMed]

Ahn, S. H.

Y. H. Kwon, M.-H. Ko, S. H. Ahn, Y.-H. Kim, J. C. Song, C.-H. Lee, M. C. Chang, and S. H. Jang, “Primary motor cortex activation by transcranial direct current stimulation in the human brain,” Neurosci. Lett.435(1), 56–59 (2008).
[CrossRef] [PubMed]

Alonzo, A.

C. K. Loo, A. Alonzo, D. Martin, P. B. Mitchell, V. Galvez, and P. Sachdev, “Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial,” Br. J. Psychiatry200(1), 52–59 (2012).
[CrossRef] [PubMed]

Alsop, D. C.

X. Zheng, D. C. Alsop, and G. Schlaug, “Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow,” Neuroimage58(1), 26–33 (2011).
[CrossRef] [PubMed]

Antal, A.

M. A. Nitsche, L. G. Cohen, E. M. Wassermann, A. Priori, N. Lang, A. Antal, W. Paulus, F. Hummel, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulat.1(3), 206–223 (2008).
[CrossRef] [PubMed]

A. Antal, T. Z. Kincses, M. A. Nitsche, O. Bartfai, and W. Paulus, “Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence,” Invest. Ophthalmol. Vis. Sci.45, 702–707 (2004).

Araujo, C. P.

M. E. Mendonca, M. B. Santana, A. F. Baptista, A. Datta, M. Bikson, F. Fregni, and C. P. Araujo, “Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models,” J. Pain12(5), 610–617 (2011).
[CrossRef] [PubMed]

Bansal, V.

A. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, and M. Bikson, “Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad,” Brain Stimulat.2(4), 201–207 (2009).
[CrossRef] [PubMed]

Baptista, A. F.

M. E. Mendonca, M. B. Santana, A. F. Baptista, A. Datta, M. Bikson, F. Fregni, and C. P. Araujo, “Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models,” J. Pain12(5), 610–617 (2011).
[CrossRef] [PubMed]

Bartfai, O.

A. Antal, T. Z. Kincses, M. A. Nitsche, O. Bartfai, and W. Paulus, “Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence,” Invest. Ophthalmol. Vis. Sci.45, 702–707 (2004).

Bikson, M.

M. E. Mendonca, M. B. Santana, A. F. Baptista, A. Datta, M. Bikson, F. Fregni, and C. P. Araujo, “Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models,” J. Pain12(5), 610–617 (2011).
[CrossRef] [PubMed]

P. Minhas, A. Datta, and M. Bikson, “Cutaneous perception during tDCS: role of electrode shape and sponge salinity,” Clin. Neurophysiol.122(4), 637–638 (2011).
[CrossRef] [PubMed]

A. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, and M. Bikson, “Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad,” Brain Stimulat.2(4), 201–207 (2009).
[CrossRef] [PubMed]

Boas, D. A.

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage18(4), 865–879 (2003).
[CrossRef] [PubMed]

Boggio, P. S.

M. A. Nitsche, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Treatment of depression with transcranial direct current stimulation (tDCS): a review,” Exp. Neurol.219(1), 14–19 (2009).
[CrossRef] [PubMed]

M. A. Nitsche, L. G. Cohen, E. M. Wassermann, A. Priori, N. Lang, A. Antal, W. Paulus, F. Hummel, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulat.1(3), 206–223 (2008).
[CrossRef] [PubMed]

P. S. Boggio, A. Nunes, S. P. Rigonatti, M. A. Nitsche, A. Pascual-Leone, and F. Fregni, “Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients,” Restor. Neurol. Neurosci.25(2), 123–129 (2007).
[PubMed]

P. S. Boggio, R. Ferrucci, S. P. Rigonatti, P. Covre, M. Nitsche, A. Pascual-Leone, and F. Fregni, “Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease,” J. Neurol. Sci.249(1), 31–38 (2006).
[CrossRef] [PubMed]

F. Fregni, P. S. Boggio, M. Nitsche, and A. Pascual-Leone, “Transcranial direct current stimulation,” Br. J. Psychiatry186(5), 446–447 (2005).
[CrossRef] [PubMed]

Calmels, C.

C. Calmels, M. Hars, P. Holmes, G. Jarry, and C. J. Stam, “Non-linear EEG synchronization during observation and execution of simple and complex sequential finger movements,” Exp. Brain Res.190(4), 389–400 (2008).
[CrossRef] [PubMed]

Chagas, A. P.

Á. Foerster, S. Rocha, C. Wiesiolek, A. P. Chagas, G. Machado, E. Silva, F. Fregni, and K. Monte-Silva, “Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning,” Eur. J. Neurosci.37(5), 786–794 (2013).
[CrossRef] [PubMed]

Chang, M. C.

Y. H. Kwon, M.-H. Ko, S. H. Ahn, Y.-H. Kim, J. C. Song, C.-H. Lee, M. C. Chang, and S. H. Jang, “Primary motor cortex activation by transcranial direct current stimulation in the human brain,” Neurosci. Lett.435(1), 56–59 (2008).
[CrossRef] [PubMed]

Chiang, H.

S. Slobounov, J. Johnston, H. Chiang, and W. Ray, “Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment,” Clin. Neurophysiol.113(7), 1125–1135 (2002).
[CrossRef] [PubMed]

Clark, V. P.

B. A. Coffman, M. C. Trumbo, and V. P. Clark, “Enhancement of object detection with transcranial direct current stimulation is associated with increased attention,” BMC Neurosci.13(1), 108 (2012).
[CrossRef] [PubMed]

Coffman, B. A.

B. A. Coffman, M. C. Trumbo, and V. P. Clark, “Enhancement of object detection with transcranial direct current stimulation is associated with increased attention,” BMC Neurosci.13(1), 108 (2012).
[CrossRef] [PubMed]

Cohen, L. G.

M. A. Nitsche, L. G. Cohen, E. M. Wassermann, A. Priori, N. Lang, A. Antal, W. Paulus, F. Hummel, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulat.1(3), 206–223 (2008).
[CrossRef] [PubMed]

P. C. Gandiga, F. C. Hummel, and L. G. Cohen, “Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation,” Clin. Neurophysiol.117(4), 845–850 (2006).
[CrossRef] [PubMed]

Covre, P.

P. S. Boggio, R. Ferrucci, S. P. Rigonatti, P. Covre, M. Nitsche, A. Pascual-Leone, and F. Fregni, “Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease,” J. Neurol. Sci.249(1), 31–38 (2006).
[CrossRef] [PubMed]

Datta, A.

M. E. Mendonca, M. B. Santana, A. F. Baptista, A. Datta, M. Bikson, F. Fregni, and C. P. Araujo, “Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models,” J. Pain12(5), 610–617 (2011).
[CrossRef] [PubMed]

P. Minhas, A. Datta, and M. Bikson, “Cutaneous perception during tDCS: role of electrode shape and sponge salinity,” Clin. Neurophysiol.122(4), 637–638 (2011).
[CrossRef] [PubMed]

A. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, and M. Bikson, “Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad,” Brain Stimulat.2(4), 201–207 (2009).
[CrossRef] [PubMed]

Desmonts, J.-M.

A. Mignon, V. Laudenbach, F. Guischard, A. Limoge, J.-M. Desmonts, and J. Mantz, “Transcutaneous cranial electrical stimulation (Limoge’s currents) decreases early buprenorphine analgesic requirements after abdominal surgery,” Anesth. Analg.83(4), 771–775 (1996).
[PubMed]

Diaz, J.

A. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, and M. Bikson, “Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad,” Brain Stimulat.2(4), 201–207 (2009).
[CrossRef] [PubMed]

Fang, F.

Q. L. Yao, H.-Y. Zhang, B. B. Nie, F. Fang, Y. Jiao, and G.-J. Teng, “MRI assessment of amplitude of low-frequency fluctuation in rat brains with acute cerebral ischemic stroke,” Neurosci. Lett.509(1), 22–26 (2012).
[CrossRef] [PubMed]

Ferrucci, R.

P. S. Boggio, R. Ferrucci, S. P. Rigonatti, P. Covre, M. Nitsche, A. Pascual-Leone, and F. Fregni, “Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease,” J. Neurol. Sci.249(1), 31–38 (2006).
[CrossRef] [PubMed]

Fintescu, Z.

U. Palm, C. Schiller, Z. Fintescu, M. Obermeier, D. Keeser, E. Reisinger, O. Pogarell, M. A. Nitsche, H.-J. Möller, and F. Padberg, “Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study,” Brain Stimulat.5(3), 242–251 (2012).
[CrossRef] [PubMed]

Foerster, Á.

Á. Foerster, S. Rocha, C. Wiesiolek, A. P. Chagas, G. Machado, E. Silva, F. Fregni, and K. Monte-Silva, “Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning,” Eur. J. Neurosci.37(5), 786–794 (2013).
[CrossRef] [PubMed]

Foffani, G.

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage49(3), 2304–2310 (2010).
[CrossRef] [PubMed]

Franceschini, M. A.

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage18(4), 865–879 (2003).
[CrossRef] [PubMed]

Freedman, R.

J. Tanabe, D. Miller, J. Tregellas, R. Freedman, and F. G. Meyer, “Comparison of detrending methods for optimal fMRI preprocessing,” Neuroimage15(4), 902–907 (2002).
[CrossRef] [PubMed]

Freedman, S.

F. Fregni, S. Freedman, and A. Pascual-Leone, “Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques,” Lancet Neurol.6(2), 188–191 (2007).
[CrossRef] [PubMed]

Fregni, F.

Á. Foerster, S. Rocha, C. Wiesiolek, A. P. Chagas, G. Machado, E. Silva, F. Fregni, and K. Monte-Silva, “Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning,” Eur. J. Neurosci.37(5), 786–794 (2013).
[CrossRef] [PubMed]

M. E. Mendonca, M. B. Santana, A. F. Baptista, A. Datta, M. Bikson, F. Fregni, and C. P. Araujo, “Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models,” J. Pain12(5), 610–617 (2011).
[CrossRef] [PubMed]

M. A. Nitsche, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Treatment of depression with transcranial direct current stimulation (tDCS): a review,” Exp. Neurol.219(1), 14–19 (2009).
[CrossRef] [PubMed]

J. A. Williams, M. Imamura, and F. Fregni, “Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine,” J. Rehabil. Med.41(5), 305–311 (2009).
[CrossRef] [PubMed]

M. A. Nitsche, L. G. Cohen, E. M. Wassermann, A. Priori, N. Lang, A. Antal, W. Paulus, F. Hummel, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulat.1(3), 206–223 (2008).
[CrossRef] [PubMed]

P. S. Boggio, A. Nunes, S. P. Rigonatti, M. A. Nitsche, A. Pascual-Leone, and F. Fregni, “Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients,” Restor. Neurol. Neurosci.25(2), 123–129 (2007).
[PubMed]

F. Fregni, S. Freedman, and A. Pascual-Leone, “Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques,” Lancet Neurol.6(2), 188–191 (2007).
[CrossRef] [PubMed]

P. S. Boggio, R. Ferrucci, S. P. Rigonatti, P. Covre, M. Nitsche, A. Pascual-Leone, and F. Fregni, “Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease,” J. Neurol. Sci.249(1), 31–38 (2006).
[CrossRef] [PubMed]

F. Fregni, P. S. Boggio, M. Nitsche, and A. Pascual-Leone, “Transcranial direct current stimulation,” Br. J. Psychiatry186(5), 446–447 (2005).
[CrossRef] [PubMed]

Galvez, V.

C. K. Loo, A. Alonzo, D. Martin, P. B. Mitchell, V. Galvez, and P. Sachdev, “Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial,” Br. J. Psychiatry200(1), 52–59 (2012).
[CrossRef] [PubMed]

Gandiga, P. C.

P. C. Gandiga, F. C. Hummel, and L. G. Cohen, “Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation,” Clin. Neurophysiol.117(4), 845–850 (2006).
[CrossRef] [PubMed]

Grabner, R. H.

T. U. Hauser, S. Rotzer, R. H. Grabner, S. Mérillat, and L. Jäncke, “Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS),” Front Hum. Neurosci.7, 244 (2013).
[CrossRef] [PubMed]

Guischard, F.

A. Mignon, V. Laudenbach, F. Guischard, A. Limoge, J.-M. Desmonts, and J. Mantz, “Transcutaneous cranial electrical stimulation (Limoge’s currents) decreases early buprenorphine analgesic requirements after abdominal surgery,” Anesth. Analg.83(4), 771–775 (1996).
[PubMed]

Hamamoto, H.

H. Yamaguchi, H. Yamauchi, S. Hazama, H. Hamamoto, and N. Inoue, “Correlation between cerebral oxygen metabolism and cerebral blood flow simultaneously measured before and after acetazolamide administration,” J. Biomed. Opt.4(4), 418–423 (1999).
[CrossRef] [PubMed]

Hars, M.

C. Calmels, M. Hars, P. Holmes, G. Jarry, and C. J. Stam, “Non-linear EEG synchronization during observation and execution of simple and complex sequential finger movements,” Exp. Brain Res.190(4), 389–400 (2008).
[CrossRef] [PubMed]

Hauser, T. U.

T. U. Hauser, S. Rotzer, R. H. Grabner, S. Mérillat, and L. Jäncke, “Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS),” Front Hum. Neurosci.7, 244 (2013).
[CrossRef] [PubMed]

Hazama, S.

H. Yamaguchi, H. Yamauchi, S. Hazama, H. Hamamoto, and N. Inoue, “Correlation between cerebral oxygen metabolism and cerebral blood flow simultaneously measured before and after acetazolamide administration,” J. Biomed. Opt.4(4), 418–423 (1999).
[CrossRef] [PubMed]

Holmes, P.

C. Calmels, M. Hars, P. Holmes, G. Jarry, and C. J. Stam, “Non-linear EEG synchronization during observation and execution of simple and complex sequential finger movements,” Exp. Brain Res.190(4), 389–400 (2008).
[CrossRef] [PubMed]

Hummel, F.

M. A. Nitsche, L. G. Cohen, E. M. Wassermann, A. Priori, N. Lang, A. Antal, W. Paulus, F. Hummel, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulat.1(3), 206–223 (2008).
[CrossRef] [PubMed]

Hummel, F. C.

P. C. Gandiga, F. C. Hummel, and L. G. Cohen, “Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation,” Clin. Neurophysiol.117(4), 845–850 (2006).
[CrossRef] [PubMed]

Im, C.-H.

Y.-J. Jung, J.-H. Kim, D. Kim, and C.-H. Im, “An image-guided transcranial direct current stimulation system: a pilot phantom study,” Physiol. Meas.34(8), 937–950 (2013).
[CrossRef] [PubMed]

Imamura, M.

J. A. Williams, M. Imamura, and F. Fregni, “Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine,” J. Rehabil. Med.41(5), 305–311 (2009).
[CrossRef] [PubMed]

Inoue, N.

H. Yamaguchi, H. Yamauchi, S. Hazama, H. Hamamoto, and N. Inoue, “Correlation between cerebral oxygen metabolism and cerebral blood flow simultaneously measured before and after acetazolamide administration,” J. Biomed. Opt.4(4), 418–423 (1999).
[CrossRef] [PubMed]

Jäncke, L.

T. U. Hauser, S. Rotzer, R. H. Grabner, S. Mérillat, and L. Jäncke, “Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS),” Front Hum. Neurosci.7, 244 (2013).
[CrossRef] [PubMed]

Jang, S. H.

Y. H. Kwon, M.-H. Ko, S. H. Ahn, Y.-H. Kim, J. C. Song, C.-H. Lee, M. C. Chang, and S. H. Jang, “Primary motor cortex activation by transcranial direct current stimulation in the human brain,” Neurosci. Lett.435(1), 56–59 (2008).
[CrossRef] [PubMed]

Jarry, G.

C. Calmels, M. Hars, P. Holmes, G. Jarry, and C. J. Stam, “Non-linear EEG synchronization during observation and execution of simple and complex sequential finger movements,” Exp. Brain Res.190(4), 389–400 (2008).
[CrossRef] [PubMed]

Jiao, Y.

Q. L. Yao, H.-Y. Zhang, B. B. Nie, F. Fang, Y. Jiao, and G.-J. Teng, “MRI assessment of amplitude of low-frequency fluctuation in rat brains with acute cerebral ischemic stroke,” Neurosci. Lett.509(1), 22–26 (2012).
[CrossRef] [PubMed]

Johnston, J.

S. Slobounov, J. Johnston, H. Chiang, and W. Ray, “Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment,” Clin. Neurophysiol.113(7), 1125–1135 (2002).
[CrossRef] [PubMed]

Jung, Y.-J.

Y.-J. Jung, J.-H. Kim, D. Kim, and C.-H. Im, “An image-guided transcranial direct current stimulation system: a pilot phantom study,” Physiol. Meas.34(8), 937–950 (2013).
[CrossRef] [PubMed]

Keeser, D.

U. Palm, C. Schiller, Z. Fintescu, M. Obermeier, D. Keeser, E. Reisinger, O. Pogarell, M. A. Nitsche, H.-J. Möller, and F. Padberg, “Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study,” Brain Stimulat.5(3), 242–251 (2012).
[CrossRef] [PubMed]

Kim, D.

Y.-J. Jung, J.-H. Kim, D. Kim, and C.-H. Im, “An image-guided transcranial direct current stimulation system: a pilot phantom study,” Physiol. Meas.34(8), 937–950 (2013).
[CrossRef] [PubMed]

Kim, J.-H.

Y.-J. Jung, J.-H. Kim, D. Kim, and C.-H. Im, “An image-guided transcranial direct current stimulation system: a pilot phantom study,” Physiol. Meas.34(8), 937–950 (2013).
[CrossRef] [PubMed]

Kim, Y.-H.

Y. H. Kwon, M.-H. Ko, S. H. Ahn, Y.-H. Kim, J. C. Song, C.-H. Lee, M. C. Chang, and S. H. Jang, “Primary motor cortex activation by transcranial direct current stimulation in the human brain,” Neurosci. Lett.435(1), 56–59 (2008).
[CrossRef] [PubMed]

Kincses, T. Z.

A. Antal, T. Z. Kincses, M. A. Nitsche, O. Bartfai, and W. Paulus, “Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence,” Invest. Ophthalmol. Vis. Sci.45, 702–707 (2004).

Ko, M.-H.

Y. H. Kwon, M.-H. Ko, S. H. Ahn, Y.-H. Kim, J. C. Song, C.-H. Lee, M. C. Chang, and S. H. Jang, “Primary motor cortex activation by transcranial direct current stimulation in the human brain,” Neurosci. Lett.435(1), 56–59 (2008).
[CrossRef] [PubMed]

Koch, R.

D. Liebetanz, R. Koch, S. Mayenfels, F. König, W. Paulus, and M. A. Nitsche, “Safety limits of cathodal transcranial direct current stimulation in rats,” Clin. Neurophysiol.120(6), 1161–1167 (2009).
[CrossRef] [PubMed]

König, F.

D. Liebetanz, R. Koch, S. Mayenfels, F. König, W. Paulus, and M. A. Nitsche, “Safety limits of cathodal transcranial direct current stimulation in rats,” Clin. Neurophysiol.120(6), 1161–1167 (2009).
[CrossRef] [PubMed]

Kutschenko, A.

D. Wachter, A. Wrede, W. Schulz-Schaeffer, A. Taghizadeh-Waghefi, M. A. Nitsche, A. Kutschenko, V. Rohde, and D. Liebetanz, “Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat,” Exp. Neurol.227(2), 322–327 (2011).
[CrossRef] [PubMed]

Kwon, Y. H.

Y. H. Kwon, M.-H. Ko, S. H. Ahn, Y.-H. Kim, J. C. Song, C.-H. Lee, M. C. Chang, and S. H. Jang, “Primary motor cortex activation by transcranial direct current stimulation in the human brain,” Neurosci. Lett.435(1), 56–59 (2008).
[CrossRef] [PubMed]

Lang, N.

M. A. Nitsche, L. G. Cohen, E. M. Wassermann, A. Priori, N. Lang, A. Antal, W. Paulus, F. Hummel, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulat.1(3), 206–223 (2008).
[CrossRef] [PubMed]

Laudenbach, V.

A. Mignon, V. Laudenbach, F. Guischard, A. Limoge, J.-M. Desmonts, and J. Mantz, “Transcutaneous cranial electrical stimulation (Limoge’s currents) decreases early buprenorphine analgesic requirements after abdominal surgery,” Anesth. Analg.83(4), 771–775 (1996).
[PubMed]

Lavidor, M.

K. Weltman and M. Lavidor, “Modulating lexical and semantic processing by transcranial direct current stimulation,” Exp. Brain Res.226(1), 121–135 (2013).
[CrossRef] [PubMed]

Lee, C.-H.

Y. H. Kwon, M.-H. Ko, S. H. Ahn, Y.-H. Kim, J. C. Song, C.-H. Lee, M. C. Chang, and S. H. Jang, “Primary motor cortex activation by transcranial direct current stimulation in the human brain,” Neurosci. Lett.435(1), 56–59 (2008).
[CrossRef] [PubMed]

Liebetanz, D.

D. Wachter, A. Wrede, W. Schulz-Schaeffer, A. Taghizadeh-Waghefi, M. A. Nitsche, A. Kutschenko, V. Rohde, and D. Liebetanz, “Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat,” Exp. Neurol.227(2), 322–327 (2011).
[CrossRef] [PubMed]

D. Liebetanz, R. Koch, S. Mayenfels, F. König, W. Paulus, and M. A. Nitsche, “Safety limits of cathodal transcranial direct current stimulation in rats,” Clin. Neurophysiol.120(6), 1161–1167 (2009).
[CrossRef] [PubMed]

Limoge, A.

A. Mignon, V. Laudenbach, F. Guischard, A. Limoge, J.-M. Desmonts, and J. Mantz, “Transcutaneous cranial electrical stimulation (Limoge’s currents) decreases early buprenorphine analgesic requirements after abdominal surgery,” Anesth. Analg.83(4), 771–775 (1996).
[PubMed]

Loo, C. K.

C. K. Loo, A. Alonzo, D. Martin, P. B. Mitchell, V. Galvez, and P. Sachdev, “Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial,” Br. J. Psychiatry200(1), 52–59 (2012).
[CrossRef] [PubMed]

Machado, G.

Á. Foerster, S. Rocha, C. Wiesiolek, A. P. Chagas, G. Machado, E. Silva, F. Fregni, and K. Monte-Silva, “Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning,” Eur. J. Neurosci.37(5), 786–794 (2013).
[CrossRef] [PubMed]

Mantz, J.

A. Mignon, V. Laudenbach, F. Guischard, A. Limoge, J.-M. Desmonts, and J. Mantz, “Transcutaneous cranial electrical stimulation (Limoge’s currents) decreases early buprenorphine analgesic requirements after abdominal surgery,” Anesth. Analg.83(4), 771–775 (1996).
[PubMed]

Martin, D.

C. K. Loo, A. Alonzo, D. Martin, P. B. Mitchell, V. Galvez, and P. Sachdev, “Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial,” Br. J. Psychiatry200(1), 52–59 (2012).
[CrossRef] [PubMed]

Mayenfels, S.

D. Liebetanz, R. Koch, S. Mayenfels, F. König, W. Paulus, and M. A. Nitsche, “Safety limits of cathodal transcranial direct current stimulation in rats,” Clin. Neurophysiol.120(6), 1161–1167 (2009).
[CrossRef] [PubMed]

Mendonca, M. E.

M. E. Mendonca, M. B. Santana, A. F. Baptista, A. Datta, M. Bikson, F. Fregni, and C. P. Araujo, “Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models,” J. Pain12(5), 610–617 (2011).
[CrossRef] [PubMed]

Mérillat, S.

T. U. Hauser, S. Rotzer, R. H. Grabner, S. Mérillat, and L. Jäncke, “Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS),” Front Hum. Neurosci.7, 244 (2013).
[CrossRef] [PubMed]

Merzagora, A. C.

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage49(3), 2304–2310 (2010).
[CrossRef] [PubMed]

Meyer, F. G.

J. Tanabe, D. Miller, J. Tregellas, R. Freedman, and F. G. Meyer, “Comparison of detrending methods for optimal fMRI preprocessing,” Neuroimage15(4), 902–907 (2002).
[CrossRef] [PubMed]

Mignon, A.

A. Mignon, V. Laudenbach, F. Guischard, A. Limoge, J.-M. Desmonts, and J. Mantz, “Transcutaneous cranial electrical stimulation (Limoge’s currents) decreases early buprenorphine analgesic requirements after abdominal surgery,” Anesth. Analg.83(4), 771–775 (1996).
[PubMed]

Miller, D.

J. Tanabe, D. Miller, J. Tregellas, R. Freedman, and F. G. Meyer, “Comparison of detrending methods for optimal fMRI preprocessing,” Neuroimage15(4), 902–907 (2002).
[CrossRef] [PubMed]

Minhas, P.

P. Minhas, A. Datta, and M. Bikson, “Cutaneous perception during tDCS: role of electrode shape and sponge salinity,” Clin. Neurophysiol.122(4), 637–638 (2011).
[CrossRef] [PubMed]

Mitchell, P. B.

C. K. Loo, A. Alonzo, D. Martin, P. B. Mitchell, V. Galvez, and P. Sachdev, “Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial,” Br. J. Psychiatry200(1), 52–59 (2012).
[CrossRef] [PubMed]

Möller, H.-J.

U. Palm, C. Schiller, Z. Fintescu, M. Obermeier, D. Keeser, E. Reisinger, O. Pogarell, M. A. Nitsche, H.-J. Möller, and F. Padberg, “Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study,” Brain Stimulat.5(3), 242–251 (2012).
[CrossRef] [PubMed]

Monte-Silva, K.

Á. Foerster, S. Rocha, C. Wiesiolek, A. P. Chagas, G. Machado, E. Silva, F. Fregni, and K. Monte-Silva, “Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning,” Eur. J. Neurosci.37(5), 786–794 (2013).
[CrossRef] [PubMed]

Mordillo-Mateos, L.

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage49(3), 2304–2310 (2010).
[CrossRef] [PubMed]

Nie, B. B.

Q. L. Yao, H.-Y. Zhang, B. B. Nie, F. Fang, Y. Jiao, and G.-J. Teng, “MRI assessment of amplitude of low-frequency fluctuation in rat brains with acute cerebral ischemic stroke,” Neurosci. Lett.509(1), 22–26 (2012).
[CrossRef] [PubMed]

Nitsche, M.

P. S. Boggio, R. Ferrucci, S. P. Rigonatti, P. Covre, M. Nitsche, A. Pascual-Leone, and F. Fregni, “Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease,” J. Neurol. Sci.249(1), 31–38 (2006).
[CrossRef] [PubMed]

F. Fregni, P. S. Boggio, M. Nitsche, and A. Pascual-Leone, “Transcranial direct current stimulation,” Br. J. Psychiatry186(5), 446–447 (2005).
[CrossRef] [PubMed]

Nitsche, M. A.

U. Palm, C. Schiller, Z. Fintescu, M. Obermeier, D. Keeser, E. Reisinger, O. Pogarell, M. A. Nitsche, H.-J. Möller, and F. Padberg, “Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study,” Brain Stimulat.5(3), 242–251 (2012).
[CrossRef] [PubMed]

D. Wachter, A. Wrede, W. Schulz-Schaeffer, A. Taghizadeh-Waghefi, M. A. Nitsche, A. Kutschenko, V. Rohde, and D. Liebetanz, “Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat,” Exp. Neurol.227(2), 322–327 (2011).
[CrossRef] [PubMed]

M. A. Nitsche, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Treatment of depression with transcranial direct current stimulation (tDCS): a review,” Exp. Neurol.219(1), 14–19 (2009).
[CrossRef] [PubMed]

D. Liebetanz, R. Koch, S. Mayenfels, F. König, W. Paulus, and M. A. Nitsche, “Safety limits of cathodal transcranial direct current stimulation in rats,” Clin. Neurophysiol.120(6), 1161–1167 (2009).
[CrossRef] [PubMed]

M. A. Nitsche, L. G. Cohen, E. M. Wassermann, A. Priori, N. Lang, A. Antal, W. Paulus, F. Hummel, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulat.1(3), 206–223 (2008).
[CrossRef] [PubMed]

P. S. Boggio, A. Nunes, S. P. Rigonatti, M. A. Nitsche, A. Pascual-Leone, and F. Fregni, “Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients,” Restor. Neurol. Neurosci.25(2), 123–129 (2007).
[PubMed]

A. Antal, T. Z. Kincses, M. A. Nitsche, O. Bartfai, and W. Paulus, “Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence,” Invest. Ophthalmol. Vis. Sci.45, 702–707 (2004).

M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” J. Physiol.527(3), 633–639 (2000).
[CrossRef] [PubMed]

Nunes, A.

P. S. Boggio, A. Nunes, S. P. Rigonatti, M. A. Nitsche, A. Pascual-Leone, and F. Fregni, “Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients,” Restor. Neurol. Neurosci.25(2), 123–129 (2007).
[PubMed]

Obermeier, M.

U. Palm, C. Schiller, Z. Fintescu, M. Obermeier, D. Keeser, E. Reisinger, O. Pogarell, M. A. Nitsche, H.-J. Möller, and F. Padberg, “Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study,” Brain Stimulat.5(3), 242–251 (2012).
[CrossRef] [PubMed]

Oliviero, A.

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage49(3), 2304–2310 (2010).
[CrossRef] [PubMed]

Onaral, B.

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage49(3), 2304–2310 (2010).
[CrossRef] [PubMed]

Padberg, F.

U. Palm, C. Schiller, Z. Fintescu, M. Obermeier, D. Keeser, E. Reisinger, O. Pogarell, M. A. Nitsche, H.-J. Möller, and F. Padberg, “Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study,” Brain Stimulat.5(3), 242–251 (2012).
[CrossRef] [PubMed]

Palm, U.

U. Palm, C. Schiller, Z. Fintescu, M. Obermeier, D. Keeser, E. Reisinger, O. Pogarell, M. A. Nitsche, H.-J. Möller, and F. Padberg, “Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study,” Brain Stimulat.5(3), 242–251 (2012).
[CrossRef] [PubMed]

Panyavin, I.

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage49(3), 2304–2310 (2010).
[CrossRef] [PubMed]

Pascual-Leone, A.

M. A. Nitsche, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Treatment of depression with transcranial direct current stimulation (tDCS): a review,” Exp. Neurol.219(1), 14–19 (2009).
[CrossRef] [PubMed]

M. A. Nitsche, L. G. Cohen, E. M. Wassermann, A. Priori, N. Lang, A. Antal, W. Paulus, F. Hummel, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulat.1(3), 206–223 (2008).
[CrossRef] [PubMed]

P. S. Boggio, A. Nunes, S. P. Rigonatti, M. A. Nitsche, A. Pascual-Leone, and F. Fregni, “Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients,” Restor. Neurol. Neurosci.25(2), 123–129 (2007).
[PubMed]

T. Wagner, A. Valero-Cabre, and A. Pascual-Leone, “Noninvasive human brain stimulation,” Annu. Rev. Biomed. Eng.9(1), 527–565 (2007).
[CrossRef] [PubMed]

F. Fregni, S. Freedman, and A. Pascual-Leone, “Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques,” Lancet Neurol.6(2), 188–191 (2007).
[CrossRef] [PubMed]

P. S. Boggio, R. Ferrucci, S. P. Rigonatti, P. Covre, M. Nitsche, A. Pascual-Leone, and F. Fregni, “Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease,” J. Neurol. Sci.249(1), 31–38 (2006).
[CrossRef] [PubMed]

F. Fregni, P. S. Boggio, M. Nitsche, and A. Pascual-Leone, “Transcranial direct current stimulation,” Br. J. Psychiatry186(5), 446–447 (2005).
[CrossRef] [PubMed]

Patel, J.

A. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, and M. Bikson, “Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad,” Brain Stimulat.2(4), 201–207 (2009).
[CrossRef] [PubMed]

Paulus, W.

D. Liebetanz, R. Koch, S. Mayenfels, F. König, W. Paulus, and M. A. Nitsche, “Safety limits of cathodal transcranial direct current stimulation in rats,” Clin. Neurophysiol.120(6), 1161–1167 (2009).
[CrossRef] [PubMed]

M. A. Nitsche, L. G. Cohen, E. M. Wassermann, A. Priori, N. Lang, A. Antal, W. Paulus, F. Hummel, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulat.1(3), 206–223 (2008).
[CrossRef] [PubMed]

A. Antal, T. Z. Kincses, M. A. Nitsche, O. Bartfai, and W. Paulus, “Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence,” Invest. Ophthalmol. Vis. Sci.45, 702–707 (2004).

M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” J. Physiol.527(3), 633–639 (2000).
[CrossRef] [PubMed]

Pogarell, O.

U. Palm, C. Schiller, Z. Fintescu, M. Obermeier, D. Keeser, E. Reisinger, O. Pogarell, M. A. Nitsche, H.-J. Möller, and F. Padberg, “Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study,” Brain Stimulat.5(3), 242–251 (2012).
[CrossRef] [PubMed]

Priori, A.

M. A. Nitsche, L. G. Cohen, E. M. Wassermann, A. Priori, N. Lang, A. Antal, W. Paulus, F. Hummel, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulat.1(3), 206–223 (2008).
[CrossRef] [PubMed]

A. Priori, “Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability,” Clin. Neurophysiol.114(4), 589–595 (2003).
[CrossRef] [PubMed]

Ray, W.

S. Slobounov, J. Johnston, H. Chiang, and W. Ray, “Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment,” Clin. Neurophysiol.113(7), 1125–1135 (2002).
[CrossRef] [PubMed]

Reato, D.

A. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, and M. Bikson, “Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad,” Brain Stimulat.2(4), 201–207 (2009).
[CrossRef] [PubMed]

Reisinger, E.

U. Palm, C. Schiller, Z. Fintescu, M. Obermeier, D. Keeser, E. Reisinger, O. Pogarell, M. A. Nitsche, H.-J. Möller, and F. Padberg, “Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study,” Brain Stimulat.5(3), 242–251 (2012).
[CrossRef] [PubMed]

Rigonatti, S. P.

P. S. Boggio, A. Nunes, S. P. Rigonatti, M. A. Nitsche, A. Pascual-Leone, and F. Fregni, “Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients,” Restor. Neurol. Neurosci.25(2), 123–129 (2007).
[PubMed]

P. S. Boggio, R. Ferrucci, S. P. Rigonatti, P. Covre, M. Nitsche, A. Pascual-Leone, and F. Fregni, “Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease,” J. Neurol. Sci.249(1), 31–38 (2006).
[CrossRef] [PubMed]

Rocha, S.

Á. Foerster, S. Rocha, C. Wiesiolek, A. P. Chagas, G. Machado, E. Silva, F. Fregni, and K. Monte-Silva, “Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning,” Eur. J. Neurosci.37(5), 786–794 (2013).
[CrossRef] [PubMed]

Rohde, V.

D. Wachter, A. Wrede, W. Schulz-Schaeffer, A. Taghizadeh-Waghefi, M. A. Nitsche, A. Kutschenko, V. Rohde, and D. Liebetanz, “Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat,” Exp. Neurol.227(2), 322–327 (2011).
[CrossRef] [PubMed]

Rotzer, S.

T. U. Hauser, S. Rotzer, R. H. Grabner, S. Mérillat, and L. Jäncke, “Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS),” Front Hum. Neurosci.7, 244 (2013).
[CrossRef] [PubMed]

Sachdev, P.

C. K. Loo, A. Alonzo, D. Martin, P. B. Mitchell, V. Galvez, and P. Sachdev, “Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial,” Br. J. Psychiatry200(1), 52–59 (2012).
[CrossRef] [PubMed]

Santana, M. B.

M. E. Mendonca, M. B. Santana, A. F. Baptista, A. Datta, M. Bikson, F. Fregni, and C. P. Araujo, “Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models,” J. Pain12(5), 610–617 (2011).
[CrossRef] [PubMed]

Schiller, C.

U. Palm, C. Schiller, Z. Fintescu, M. Obermeier, D. Keeser, E. Reisinger, O. Pogarell, M. A. Nitsche, H.-J. Möller, and F. Padberg, “Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study,” Brain Stimulat.5(3), 242–251 (2012).
[CrossRef] [PubMed]

Schlaug, G.

X. Zheng, D. C. Alsop, and G. Schlaug, “Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow,” Neuroimage58(1), 26–33 (2011).
[CrossRef] [PubMed]

Schulz-Schaeffer, W.

D. Wachter, A. Wrede, W. Schulz-Schaeffer, A. Taghizadeh-Waghefi, M. A. Nitsche, A. Kutschenko, V. Rohde, and D. Liebetanz, “Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat,” Exp. Neurol.227(2), 322–327 (2011).
[CrossRef] [PubMed]

Silva, E.

Á. Foerster, S. Rocha, C. Wiesiolek, A. P. Chagas, G. Machado, E. Silva, F. Fregni, and K. Monte-Silva, “Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning,” Eur. J. Neurosci.37(5), 786–794 (2013).
[CrossRef] [PubMed]

Slobounov, S.

S. Slobounov, J. Johnston, H. Chiang, and W. Ray, “Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment,” Clin. Neurophysiol.113(7), 1125–1135 (2002).
[CrossRef] [PubMed]

Song, J. C.

Y. H. Kwon, M.-H. Ko, S. H. Ahn, Y.-H. Kim, J. C. Song, C.-H. Lee, M. C. Chang, and S. H. Jang, “Primary motor cortex activation by transcranial direct current stimulation in the human brain,” Neurosci. Lett.435(1), 56–59 (2008).
[CrossRef] [PubMed]

Stam, C. J.

C. Calmels, M. Hars, P. Holmes, G. Jarry, and C. J. Stam, “Non-linear EEG synchronization during observation and execution of simple and complex sequential finger movements,” Exp. Brain Res.190(4), 389–400 (2008).
[CrossRef] [PubMed]

Strangman, G.

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage18(4), 865–879 (2003).
[CrossRef] [PubMed]

Taghizadeh-Waghefi, A.

D. Wachter, A. Wrede, W. Schulz-Schaeffer, A. Taghizadeh-Waghefi, M. A. Nitsche, A. Kutschenko, V. Rohde, and D. Liebetanz, “Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat,” Exp. Neurol.227(2), 322–327 (2011).
[CrossRef] [PubMed]

Tanabe, J.

J. Tanabe, D. Miller, J. Tregellas, R. Freedman, and F. G. Meyer, “Comparison of detrending methods for optimal fMRI preprocessing,” Neuroimage15(4), 902–907 (2002).
[CrossRef] [PubMed]

Teng, G.-J.

Q. L. Yao, H.-Y. Zhang, B. B. Nie, F. Fang, Y. Jiao, and G.-J. Teng, “MRI assessment of amplitude of low-frequency fluctuation in rat brains with acute cerebral ischemic stroke,” Neurosci. Lett.509(1), 22–26 (2012).
[CrossRef] [PubMed]

Tregellas, J.

J. Tanabe, D. Miller, J. Tregellas, R. Freedman, and F. G. Meyer, “Comparison of detrending methods for optimal fMRI preprocessing,” Neuroimage15(4), 902–907 (2002).
[CrossRef] [PubMed]

Trumbo, M. C.

B. A. Coffman, M. C. Trumbo, and V. P. Clark, “Enhancement of object detection with transcranial direct current stimulation is associated with increased attention,” BMC Neurosci.13(1), 108 (2012).
[CrossRef] [PubMed]

Valero-Cabre, A.

T. Wagner, A. Valero-Cabre, and A. Pascual-Leone, “Noninvasive human brain stimulation,” Annu. Rev. Biomed. Eng.9(1), 527–565 (2007).
[CrossRef] [PubMed]

Wachter, D.

D. Wachter, A. Wrede, W. Schulz-Schaeffer, A. Taghizadeh-Waghefi, M. A. Nitsche, A. Kutschenko, V. Rohde, and D. Liebetanz, “Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat,” Exp. Neurol.227(2), 322–327 (2011).
[CrossRef] [PubMed]

Wagner, T.

T. Wagner, A. Valero-Cabre, and A. Pascual-Leone, “Noninvasive human brain stimulation,” Annu. Rev. Biomed. Eng.9(1), 527–565 (2007).
[CrossRef] [PubMed]

Wassermann, E. M.

M. A. Nitsche, L. G. Cohen, E. M. Wassermann, A. Priori, N. Lang, A. Antal, W. Paulus, F. Hummel, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulat.1(3), 206–223 (2008).
[CrossRef] [PubMed]

Weltman, K.

K. Weltman and M. Lavidor, “Modulating lexical and semantic processing by transcranial direct current stimulation,” Exp. Brain Res.226(1), 121–135 (2013).
[CrossRef] [PubMed]

Wiesiolek, C.

Á. Foerster, S. Rocha, C. Wiesiolek, A. P. Chagas, G. Machado, E. Silva, F. Fregni, and K. Monte-Silva, “Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning,” Eur. J. Neurosci.37(5), 786–794 (2013).
[CrossRef] [PubMed]

Williams, J. A.

J. A. Williams, M. Imamura, and F. Fregni, “Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine,” J. Rehabil. Med.41(5), 305–311 (2009).
[CrossRef] [PubMed]

Wrede, A.

D. Wachter, A. Wrede, W. Schulz-Schaeffer, A. Taghizadeh-Waghefi, M. A. Nitsche, A. Kutschenko, V. Rohde, and D. Liebetanz, “Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat,” Exp. Neurol.227(2), 322–327 (2011).
[CrossRef] [PubMed]

Yamaguchi, H.

H. Yamaguchi, H. Yamauchi, S. Hazama, H. Hamamoto, and N. Inoue, “Correlation between cerebral oxygen metabolism and cerebral blood flow simultaneously measured before and after acetazolamide administration,” J. Biomed. Opt.4(4), 418–423 (1999).
[CrossRef] [PubMed]

Yamauchi, H.

H. Yamaguchi, H. Yamauchi, S. Hazama, H. Hamamoto, and N. Inoue, “Correlation between cerebral oxygen metabolism and cerebral blood flow simultaneously measured before and after acetazolamide administration,” J. Biomed. Opt.4(4), 418–423 (1999).
[CrossRef] [PubMed]

Yao, Q. L.

Q. L. Yao, H.-Y. Zhang, B. B. Nie, F. Fang, Y. Jiao, and G.-J. Teng, “MRI assessment of amplitude of low-frequency fluctuation in rat brains with acute cerebral ischemic stroke,” Neurosci. Lett.509(1), 22–26 (2012).
[CrossRef] [PubMed]

Zhang, H.-Y.

Q. L. Yao, H.-Y. Zhang, B. B. Nie, F. Fang, Y. Jiao, and G.-J. Teng, “MRI assessment of amplitude of low-frequency fluctuation in rat brains with acute cerebral ischemic stroke,” Neurosci. Lett.509(1), 22–26 (2012).
[CrossRef] [PubMed]

Zheng, X.

X. Zheng, D. C. Alsop, and G. Schlaug, “Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow,” Neuroimage58(1), 26–33 (2011).
[CrossRef] [PubMed]

Anesth. Analg.

A. Mignon, V. Laudenbach, F. Guischard, A. Limoge, J.-M. Desmonts, and J. Mantz, “Transcutaneous cranial electrical stimulation (Limoge’s currents) decreases early buprenorphine analgesic requirements after abdominal surgery,” Anesth. Analg.83(4), 771–775 (1996).
[PubMed]

Annu. Rev. Biomed. Eng.

T. Wagner, A. Valero-Cabre, and A. Pascual-Leone, “Noninvasive human brain stimulation,” Annu. Rev. Biomed. Eng.9(1), 527–565 (2007).
[CrossRef] [PubMed]

BMC Neurosci.

B. A. Coffman, M. C. Trumbo, and V. P. Clark, “Enhancement of object detection with transcranial direct current stimulation is associated with increased attention,” BMC Neurosci.13(1), 108 (2012).
[CrossRef] [PubMed]

Br. J. Psychiatry

F. Fregni, P. S. Boggio, M. Nitsche, and A. Pascual-Leone, “Transcranial direct current stimulation,” Br. J. Psychiatry186(5), 446–447 (2005).
[CrossRef] [PubMed]

C. K. Loo, A. Alonzo, D. Martin, P. B. Mitchell, V. Galvez, and P. Sachdev, “Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial,” Br. J. Psychiatry200(1), 52–59 (2012).
[CrossRef] [PubMed]

Brain Stimulat.

U. Palm, C. Schiller, Z. Fintescu, M. Obermeier, D. Keeser, E. Reisinger, O. Pogarell, M. A. Nitsche, H.-J. Möller, and F. Padberg, “Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study,” Brain Stimulat.5(3), 242–251 (2012).
[CrossRef] [PubMed]

A. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, and M. Bikson, “Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad,” Brain Stimulat.2(4), 201–207 (2009).
[CrossRef] [PubMed]

M. A. Nitsche, L. G. Cohen, E. M. Wassermann, A. Priori, N. Lang, A. Antal, W. Paulus, F. Hummel, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulat.1(3), 206–223 (2008).
[CrossRef] [PubMed]

Clin. Neurophysiol.

A. Priori, “Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability,” Clin. Neurophysiol.114(4), 589–595 (2003).
[CrossRef] [PubMed]

P. C. Gandiga, F. C. Hummel, and L. G. Cohen, “Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation,” Clin. Neurophysiol.117(4), 845–850 (2006).
[CrossRef] [PubMed]

D. Liebetanz, R. Koch, S. Mayenfels, F. König, W. Paulus, and M. A. Nitsche, “Safety limits of cathodal transcranial direct current stimulation in rats,” Clin. Neurophysiol.120(6), 1161–1167 (2009).
[CrossRef] [PubMed]

P. Minhas, A. Datta, and M. Bikson, “Cutaneous perception during tDCS: role of electrode shape and sponge salinity,” Clin. Neurophysiol.122(4), 637–638 (2011).
[CrossRef] [PubMed]

S. Slobounov, J. Johnston, H. Chiang, and W. Ray, “Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment,” Clin. Neurophysiol.113(7), 1125–1135 (2002).
[CrossRef] [PubMed]

Eur. J. Neurosci.

Á. Foerster, S. Rocha, C. Wiesiolek, A. P. Chagas, G. Machado, E. Silva, F. Fregni, and K. Monte-Silva, “Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning,” Eur. J. Neurosci.37(5), 786–794 (2013).
[CrossRef] [PubMed]

Exp. Brain Res.

K. Weltman and M. Lavidor, “Modulating lexical and semantic processing by transcranial direct current stimulation,” Exp. Brain Res.226(1), 121–135 (2013).
[CrossRef] [PubMed]

C. Calmels, M. Hars, P. Holmes, G. Jarry, and C. J. Stam, “Non-linear EEG synchronization during observation and execution of simple and complex sequential finger movements,” Exp. Brain Res.190(4), 389–400 (2008).
[CrossRef] [PubMed]

Exp. Neurol.

M. A. Nitsche, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Treatment of depression with transcranial direct current stimulation (tDCS): a review,” Exp. Neurol.219(1), 14–19 (2009).
[CrossRef] [PubMed]

D. Wachter, A. Wrede, W. Schulz-Schaeffer, A. Taghizadeh-Waghefi, M. A. Nitsche, A. Kutschenko, V. Rohde, and D. Liebetanz, “Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat,” Exp. Neurol.227(2), 322–327 (2011).
[CrossRef] [PubMed]

Front Hum. Neurosci.

T. U. Hauser, S. Rotzer, R. H. Grabner, S. Mérillat, and L. Jäncke, “Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS),” Front Hum. Neurosci.7, 244 (2013).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

A. Antal, T. Z. Kincses, M. A. Nitsche, O. Bartfai, and W. Paulus, “Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence,” Invest. Ophthalmol. Vis. Sci.45, 702–707 (2004).

J. Biomed. Opt.

H. Yamaguchi, H. Yamauchi, S. Hazama, H. Hamamoto, and N. Inoue, “Correlation between cerebral oxygen metabolism and cerebral blood flow simultaneously measured before and after acetazolamide administration,” J. Biomed. Opt.4(4), 418–423 (1999).
[CrossRef] [PubMed]

J. Neurol. Sci.

P. S. Boggio, R. Ferrucci, S. P. Rigonatti, P. Covre, M. Nitsche, A. Pascual-Leone, and F. Fregni, “Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease,” J. Neurol. Sci.249(1), 31–38 (2006).
[CrossRef] [PubMed]

J. Pain

M. E. Mendonca, M. B. Santana, A. F. Baptista, A. Datta, M. Bikson, F. Fregni, and C. P. Araujo, “Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models,” J. Pain12(5), 610–617 (2011).
[CrossRef] [PubMed]

J. Physiol.

M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” J. Physiol.527(3), 633–639 (2000).
[CrossRef] [PubMed]

J. Rehabil. Med.

J. A. Williams, M. Imamura, and F. Fregni, “Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine,” J. Rehabil. Med.41(5), 305–311 (2009).
[CrossRef] [PubMed]

Lancet Neurol.

F. Fregni, S. Freedman, and A. Pascual-Leone, “Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques,” Lancet Neurol.6(2), 188–191 (2007).
[CrossRef] [PubMed]

Neuroimage

X. Zheng, D. C. Alsop, and G. Schlaug, “Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow,” Neuroimage58(1), 26–33 (2011).
[CrossRef] [PubMed]

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage49(3), 2304–2310 (2010).
[CrossRef] [PubMed]

J. Tanabe, D. Miller, J. Tregellas, R. Freedman, and F. G. Meyer, “Comparison of detrending methods for optimal fMRI preprocessing,” Neuroimage15(4), 902–907 (2002).
[CrossRef] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage18(4), 865–879 (2003).
[CrossRef] [PubMed]

Neurosci. Lett.

Q. L. Yao, H.-Y. Zhang, B. B. Nie, F. Fang, Y. Jiao, and G.-J. Teng, “MRI assessment of amplitude of low-frequency fluctuation in rat brains with acute cerebral ischemic stroke,” Neurosci. Lett.509(1), 22–26 (2012).
[CrossRef] [PubMed]

Y. H. Kwon, M.-H. Ko, S. H. Ahn, Y.-H. Kim, J. C. Song, C.-H. Lee, M. C. Chang, and S. H. Jang, “Primary motor cortex activation by transcranial direct current stimulation in the human brain,” Neurosci. Lett.435(1), 56–59 (2008).
[CrossRef] [PubMed]

Physiol. Meas.

Y.-J. Jung, J.-H. Kim, D. Kim, and C.-H. Im, “An image-guided transcranial direct current stimulation system: a pilot phantom study,” Physiol. Meas.34(8), 937–950 (2013).
[CrossRef] [PubMed]

Restor. Neurol. Neurosci.

P. S. Boggio, A. Nunes, S. P. Rigonatti, M. A. Nitsche, A. Pascual-Leone, and F. Fregni, “Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients,” Restor. Neurol. Neurosci.25(2), 123–129 (2007).
[PubMed]

Other

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition (Access Online via Elsevier, 2006).

V. G. Duffy, Brain Advances in Human Aspects of Healthcare (CRC Press, 2012), Chap. 53.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration of tDCS electrodes and NIRS probes. Left and middle pictures show the experimental environments. Red circles in the rightmost figure indicate positions of detectors and sources of NIRS, and a blue circle indicates the position of the tDCS anodal electrode.

Fig. 2
Fig. 2

Examples of NIRS data excluded from our post-analyses due to gross systemic noises/artifacts. Both data were acquired from the stimulation side (ipsilateral hemisphere). A figure on the left panel shows an example NIRS signal excluded due to the large unexpected baseline contamination (marked with gray), while a figure on the right panel shows that excluded due to large variation in the baseline NIRS signal.

Fig. 3
Fig. 3

Grand average of the concentration changes of oxy-Hb and deoxy-Hb during and after tDCS for contralateral (a) and ipsilateral (b) sides. Red solid lines indicate concentration changes of oxy-Hb and blue solid lines indicate concentration changes of deoxy-Hb. A vertical line in each graph indicates termination of tDCS stimulation.

Fig. 4
Fig. 4

Concentration changes of oxy-Hb during and after tDCS in each rat. A blue vertical line in each panel indicates the end of tDCS. Red solid lines in each graph present the first-order polynomial obtained from linear regression of the data.

Fig. 5
Fig. 5

Relationship between slope values in incremental and decremental phases

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔO D λ =ln I Final I Initial =( ε Hb O 2 λ Δ[Hb O 2 ]+ ε Hbr λ Δ[Hbr]) B λ L,
Δ[Hbr]= ε Hb O 2 λ 2 ΔO D λ 1 B λ 1 ε Hb O 2 λ 1 ΔO D λ 2 B λ 2 ( ε Hbr λ 1 ε Hb O 2 λ 2 ε Hbr λ 2 ε Hb O 2 λ 1 )L ,

Metrics