Abstract

A linearly chirped fiber Bragg grating (LCFBG) has been used as a temperature sensor for online monitoring of radiofrequency thermal ablation (RFTA). The LCFBG acts as a distributed sensor, with spatial resolution of 75 μm. A white-light setup that records the LCFBG spectrum estimates the temperature profile in real time. Three RFTA experiments have been performed ex-vivo on porcine liver measuring the radial temperature distribution during the heating process. The analysis of thermal maps quantifies the spatial heat distribution along the measurement axis and determines the ablation efficiency.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-X. Xu, X.-Y. Xie, M.-D. Lu, J.-W. Chen, X.-Y. Yin, Z.-F. Xu, and G.-J. Liu, “Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation,” Clin. Radiol.59(1), 53–61 (2004).
    [CrossRef] [PubMed]
  2. B. J. Wood, J. R. Ramkaransingh, T. Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer94(2), 443–451 (2002).
    [CrossRef] [PubMed]
  3. S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, “Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance,” Am. J. Roentgenol.174(2), 323–331 (2000).
    [CrossRef] [PubMed]
  4. J. P. McGhana and G. D. Dodd, “Radiofrequency ablation of the liver: current status,” Am. J. Roentgenol.176(1), 3–16 (2001).
    [CrossRef] [PubMed]
  5. S. A. Curley, “Radiofrequency ablation of malignant liver tumors,” Ann. Surg. Oncol.10(4), 338–347 (2003).
    [CrossRef] [PubMed]
  6. S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol.100(8), 619–634 (2009).
    [CrossRef] [PubMed]
  7. L. Solbiati, T. Livraghi, S. N. Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology221(1), 159–166 (2001).
    [CrossRef] [PubMed]
  8. P. L. Pereira, “Actual role of radiofrequency ablation of liver metastases,” Eur. Radiol.17(8), 2062–2070 (2007).
    [CrossRef] [PubMed]
  9. K. Ogan, W. W. Roberts, D. M. Wilhelm, L. Bonnell, D. Leiner, G. Lindberg, L. R. Kavoussi, and J. A. Cadeddu, “Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins,” Urology62(1), 146–151 (2003).
    [CrossRef] [PubMed]
  10. E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley Interscience, New York, 1991).
  11. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications (Artech House, 1999).
  12. V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sens. Actuators A Phys.167(2), 279–290 (2011).
    [CrossRef]
  13. F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel)13(10), 14105–14120 (2013).
    [CrossRef] [PubMed]
  14. P. Saccomandi, E. Schena, and S. Silvestri, “Techniques for temperature monitoring during laser-induced thermotherapy: an overview,” Int. J. Hyperthermia29(7), 609–619 (2013).
    [CrossRef] [PubMed]
  15. A. Micco, G. Quero, A. Crescitelli, A. Ricciardi, and A. Cusano, “Ultracompact optical fiber Fabry-Perot interferometer based on in-line integrated sub-micron film,” Proc. SPIE8794, 87940P (2013).
    [CrossRef]
  16. Luna Inc, http://lunainc.com/obr4600ts .
  17. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]
  18. Y. Okabe, R. Tsuji, and N. Takeda, “Application of chiped fiber Bragg grating sensors for identification of crack location in composites,” Compos., Part A Appl. Sci. Manuf.35(1), 59–65 (2004).
    [CrossRef]
  19. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37(2), 165–173 (2001).
    [CrossRef]

2013

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel)13(10), 14105–14120 (2013).
[CrossRef] [PubMed]

P. Saccomandi, E. Schena, and S. Silvestri, “Techniques for temperature monitoring during laser-induced thermotherapy: an overview,” Int. J. Hyperthermia29(7), 609–619 (2013).
[CrossRef] [PubMed]

A. Micco, G. Quero, A. Crescitelli, A. Ricciardi, and A. Cusano, “Ultracompact optical fiber Fabry-Perot interferometer based on in-line integrated sub-micron film,” Proc. SPIE8794, 87940P (2013).
[CrossRef]

2011

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sens. Actuators A Phys.167(2), 279–290 (2011).
[CrossRef]

2009

S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol.100(8), 619–634 (2009).
[CrossRef] [PubMed]

2007

P. L. Pereira, “Actual role of radiofrequency ablation of liver metastases,” Eur. Radiol.17(8), 2062–2070 (2007).
[CrossRef] [PubMed]

2004

H.-X. Xu, X.-Y. Xie, M.-D. Lu, J.-W. Chen, X.-Y. Yin, Z.-F. Xu, and G.-J. Liu, “Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation,” Clin. Radiol.59(1), 53–61 (2004).
[CrossRef] [PubMed]

Y. Okabe, R. Tsuji, and N. Takeda, “Application of chiped fiber Bragg grating sensors for identification of crack location in composites,” Compos., Part A Appl. Sci. Manuf.35(1), 59–65 (2004).
[CrossRef]

2003

S. A. Curley, “Radiofrequency ablation of malignant liver tumors,” Ann. Surg. Oncol.10(4), 338–347 (2003).
[CrossRef] [PubMed]

K. Ogan, W. W. Roberts, D. M. Wilhelm, L. Bonnell, D. Leiner, G. Lindberg, L. R. Kavoussi, and J. A. Cadeddu, “Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins,” Urology62(1), 146–151 (2003).
[CrossRef] [PubMed]

2002

B. J. Wood, J. R. Ramkaransingh, T. Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer94(2), 443–451 (2002).
[CrossRef] [PubMed]

2001

J. P. McGhana and G. D. Dodd, “Radiofrequency ablation of the liver: current status,” Am. J. Roentgenol.176(1), 3–16 (2001).
[CrossRef] [PubMed]

L. Solbiati, T. Livraghi, S. N. Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology221(1), 159–166 (2001).
[CrossRef] [PubMed]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37(2), 165–173 (2001).
[CrossRef]

2000

S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, “Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance,” Am. J. Roentgenol.174(2), 323–331 (2000).
[CrossRef] [PubMed]

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Bonnell, L.

K. Ogan, W. W. Roberts, D. M. Wilhelm, L. Bonnell, D. Leiner, G. Lindberg, L. R. Kavoussi, and J. A. Cadeddu, “Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins,” Urology62(1), 146–151 (2003).
[CrossRef] [PubMed]

Cadeddu, J. A.

K. Ogan, W. W. Roberts, D. M. Wilhelm, L. Bonnell, D. Leiner, G. Lindberg, L. R. Kavoussi, and J. A. Cadeddu, “Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins,” Urology62(1), 146–151 (2003).
[CrossRef] [PubMed]

Chen, J.-W.

H.-X. Xu, X.-Y. Xie, M.-D. Lu, J.-W. Chen, X.-Y. Yin, Z.-F. Xu, and G.-J. Liu, “Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation,” Clin. Radiol.59(1), 53–61 (2004).
[CrossRef] [PubMed]

Cova, L.

L. Solbiati, T. Livraghi, S. N. Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology221(1), 159–166 (2001).
[CrossRef] [PubMed]

Crescitelli, A.

A. Micco, G. Quero, A. Crescitelli, A. Ricciardi, and A. Cusano, “Ultracompact optical fiber Fabry-Perot interferometer based on in-line integrated sub-micron film,” Proc. SPIE8794, 87940P (2013).
[CrossRef]

Curley, S. A.

S. A. Curley, “Radiofrequency ablation of malignant liver tumors,” Ann. Surg. Oncol.10(4), 338–347 (2003).
[CrossRef] [PubMed]

Cusano, A.

A. Micco, G. Quero, A. Crescitelli, A. Ricciardi, and A. Cusano, “Ultracompact optical fiber Fabry-Perot interferometer based on in-line integrated sub-micron film,” Proc. SPIE8794, 87940P (2013).
[CrossRef]

Dellanoce, M.

L. Solbiati, T. Livraghi, S. N. Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology221(1), 159–166 (2001).
[CrossRef] [PubMed]

Di Pino, G.

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel)13(10), 14105–14120 (2013).
[CrossRef] [PubMed]

Dodd, G. D.

J. P. McGhana and G. D. Dodd, “Radiofrequency ablation of the liver: current status,” Am. J. Roentgenol.176(1), 3–16 (2001).
[CrossRef] [PubMed]

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37(2), 165–173 (2001).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Fojo, T.

B. J. Wood, J. R. Ramkaransingh, T. Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer94(2), 443–451 (2002).
[CrossRef] [PubMed]

Formica, D.

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel)13(10), 14105–14120 (2013).
[CrossRef] [PubMed]

Gazelle, G. S.

L. Solbiati, T. Livraghi, S. N. Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology221(1), 159–166 (2001).
[CrossRef] [PubMed]

S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, “Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance,” Am. J. Roentgenol.174(2), 323–331 (2000).
[CrossRef] [PubMed]

Goldberg, S. N.

L. Solbiati, T. Livraghi, S. N. Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology221(1), 159–166 (2001).
[CrossRef] [PubMed]

S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, “Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance,” Am. J. Roentgenol.174(2), 323–331 (2000).
[CrossRef] [PubMed]

Halpern, E. F.

L. Solbiati, T. Livraghi, S. N. Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology221(1), 159–166 (2001).
[CrossRef] [PubMed]

Iannitti, D. A.

S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol.100(8), 619–634 (2009).
[CrossRef] [PubMed]

Ierace, T.

L. Solbiati, T. Livraghi, S. N. Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology221(1), 159–166 (2001).
[CrossRef] [PubMed]

Kapur, P.

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sens. Actuators A Phys.167(2), 279–290 (2011).
[CrossRef]

Kavoussi, L. R.

K. Ogan, W. W. Roberts, D. M. Wilhelm, L. Bonnell, D. Leiner, G. Lindberg, L. R. Kavoussi, and J. A. Cadeddu, “Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins,” Urology62(1), 146–151 (2003).
[CrossRef] [PubMed]

Leiner, D.

K. Ogan, W. W. Roberts, D. M. Wilhelm, L. Bonnell, D. Leiner, G. Lindberg, L. R. Kavoussi, and J. A. Cadeddu, “Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins,” Urology62(1), 146–151 (2003).
[CrossRef] [PubMed]

Libutti, S. K.

B. J. Wood, J. R. Ramkaransingh, T. Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer94(2), 443–451 (2002).
[CrossRef] [PubMed]

Lindberg, G.

K. Ogan, W. W. Roberts, D. M. Wilhelm, L. Bonnell, D. Leiner, G. Lindberg, L. R. Kavoussi, and J. A. Cadeddu, “Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins,” Urology62(1), 146–151 (2003).
[CrossRef] [PubMed]

Liu, G.-J.

H.-X. Xu, X.-Y. Xie, M.-D. Lu, J.-W. Chen, X.-Y. Yin, Z.-F. Xu, and G.-J. Liu, “Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation,” Clin. Radiol.59(1), 53–61 (2004).
[CrossRef] [PubMed]

Livraghi, T.

L. Solbiati, T. Livraghi, S. N. Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology221(1), 159–166 (2001).
[CrossRef] [PubMed]

Lu, M.-D.

H.-X. Xu, X.-Y. Xie, M.-D. Lu, J.-W. Chen, X.-Y. Yin, Z.-F. Xu, and G.-J. Liu, “Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation,” Clin. Radiol.59(1), 53–61 (2004).
[CrossRef] [PubMed]

Martinie, J. B.

S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol.100(8), 619–634 (2009).
[CrossRef] [PubMed]

McGhana, J. P.

J. P. McGhana and G. D. Dodd, “Radiofrequency ablation of the liver: current status,” Am. J. Roentgenol.176(1), 3–16 (2001).
[CrossRef] [PubMed]

Meloni, F.

L. Solbiati, T. Livraghi, S. N. Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology221(1), 159–166 (2001).
[CrossRef] [PubMed]

Micco, A.

A. Micco, G. Quero, A. Crescitelli, A. Ricciardi, and A. Cusano, “Ultracompact optical fiber Fabry-Perot interferometer based on in-line integrated sub-micron film,” Proc. SPIE8794, 87940P (2013).
[CrossRef]

Mishra, V.

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sens. Actuators A Phys.167(2), 279–290 (2011).
[CrossRef]

Mueller, P. R.

S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, “Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance,” Am. J. Roentgenol.174(2), 323–331 (2000).
[CrossRef] [PubMed]

Ogan, K.

K. Ogan, W. W. Roberts, D. M. Wilhelm, L. Bonnell, D. Leiner, G. Lindberg, L. R. Kavoussi, and J. A. Cadeddu, “Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins,” Urology62(1), 146–151 (2003).
[CrossRef] [PubMed]

Okabe, Y.

Y. Okabe, R. Tsuji, and N. Takeda, “Application of chiped fiber Bragg grating sensors for identification of crack location in composites,” Compos., Part A Appl. Sci. Manuf.35(1), 59–65 (2004).
[CrossRef]

Padma, S.

S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol.100(8), 619–634 (2009).
[CrossRef] [PubMed]

Pereira, P. L.

P. L. Pereira, “Actual role of radiofrequency ablation of liver metastases,” Eur. Radiol.17(8), 2062–2070 (2007).
[CrossRef] [PubMed]

Quero, G.

A. Micco, G. Quero, A. Crescitelli, A. Ricciardi, and A. Cusano, “Ultracompact optical fiber Fabry-Perot interferometer based on in-line integrated sub-micron film,” Proc. SPIE8794, 87940P (2013).
[CrossRef]

Ramkaransingh, J. R.

B. J. Wood, J. R. Ramkaransingh, T. Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer94(2), 443–451 (2002).
[CrossRef] [PubMed]

Ricciardi, A.

A. Micco, G. Quero, A. Crescitelli, A. Ricciardi, and A. Cusano, “Ultracompact optical fiber Fabry-Perot interferometer based on in-line integrated sub-micron film,” Proc. SPIE8794, 87940P (2013).
[CrossRef]

Roberts, W. W.

K. Ogan, W. W. Roberts, D. M. Wilhelm, L. Bonnell, D. Leiner, G. Lindberg, L. R. Kavoussi, and J. A. Cadeddu, “Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins,” Urology62(1), 146–151 (2003).
[CrossRef] [PubMed]

Saccomandi, P.

P. Saccomandi, E. Schena, and S. Silvestri, “Techniques for temperature monitoring during laser-induced thermotherapy: an overview,” Int. J. Hyperthermia29(7), 609–619 (2013).
[CrossRef] [PubMed]

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel)13(10), 14105–14120 (2013).
[CrossRef] [PubMed]

Schena, E.

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel)13(10), 14105–14120 (2013).
[CrossRef] [PubMed]

P. Saccomandi, E. Schena, and S. Silvestri, “Techniques for temperature monitoring during laser-induced thermotherapy: an overview,” Int. J. Hyperthermia29(7), 609–619 (2013).
[CrossRef] [PubMed]

Silvestri, S.

P. Saccomandi, E. Schena, and S. Silvestri, “Techniques for temperature monitoring during laser-induced thermotherapy: an overview,” Int. J. Hyperthermia29(7), 609–619 (2013).
[CrossRef] [PubMed]

Singh, N.

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sens. Actuators A Phys.167(2), 279–290 (2011).
[CrossRef]

Skaar, J.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37(2), 165–173 (2001).
[CrossRef]

Solbiati, L.

L. Solbiati, T. Livraghi, S. N. Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology221(1), 159–166 (2001).
[CrossRef] [PubMed]

Taffoni, F.

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel)13(10), 14105–14120 (2013).
[CrossRef] [PubMed]

Takeda, N.

Y. Okabe, R. Tsuji, and N. Takeda, “Application of chiped fiber Bragg grating sensors for identification of crack location in composites,” Compos., Part A Appl. Sci. Manuf.35(1), 59–65 (2004).
[CrossRef]

Tiwari, U.

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sens. Actuators A Phys.167(2), 279–290 (2011).
[CrossRef]

Tsuji, R.

Y. Okabe, R. Tsuji, and N. Takeda, “Application of chiped fiber Bragg grating sensors for identification of crack location in composites,” Compos., Part A Appl. Sci. Manuf.35(1), 59–65 (2004).
[CrossRef]

Walther, M. M.

B. J. Wood, J. R. Ramkaransingh, T. Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer94(2), 443–451 (2002).
[CrossRef] [PubMed]

Wang, L.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37(2), 165–173 (2001).
[CrossRef]

Wilhelm, D. M.

K. Ogan, W. W. Roberts, D. M. Wilhelm, L. Bonnell, D. Leiner, G. Lindberg, L. R. Kavoussi, and J. A. Cadeddu, “Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins,” Urology62(1), 146–151 (2003).
[CrossRef] [PubMed]

Wood, B. J.

B. J. Wood, J. R. Ramkaransingh, T. Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer94(2), 443–451 (2002).
[CrossRef] [PubMed]

Xie, X.-Y.

H.-X. Xu, X.-Y. Xie, M.-D. Lu, J.-W. Chen, X.-Y. Yin, Z.-F. Xu, and G.-J. Liu, “Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation,” Clin. Radiol.59(1), 53–61 (2004).
[CrossRef] [PubMed]

Xu, H.-X.

H.-X. Xu, X.-Y. Xie, M.-D. Lu, J.-W. Chen, X.-Y. Yin, Z.-F. Xu, and G.-J. Liu, “Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation,” Clin. Radiol.59(1), 53–61 (2004).
[CrossRef] [PubMed]

Xu, Z.-F.

H.-X. Xu, X.-Y. Xie, M.-D. Lu, J.-W. Chen, X.-Y. Yin, Z.-F. Xu, and G.-J. Liu, “Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation,” Clin. Radiol.59(1), 53–61 (2004).
[CrossRef] [PubMed]

Yin, X.-Y.

H.-X. Xu, X.-Y. Xie, M.-D. Lu, J.-W. Chen, X.-Y. Yin, Z.-F. Xu, and G.-J. Liu, “Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation,” Clin. Radiol.59(1), 53–61 (2004).
[CrossRef] [PubMed]

Am. J. Roentgenol.

S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, “Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance,” Am. J. Roentgenol.174(2), 323–331 (2000).
[CrossRef] [PubMed]

J. P. McGhana and G. D. Dodd, “Radiofrequency ablation of the liver: current status,” Am. J. Roentgenol.176(1), 3–16 (2001).
[CrossRef] [PubMed]

Ann. Surg. Oncol.

S. A. Curley, “Radiofrequency ablation of malignant liver tumors,” Ann. Surg. Oncol.10(4), 338–347 (2003).
[CrossRef] [PubMed]

Cancer

B. J. Wood, J. R. Ramkaransingh, T. Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer94(2), 443–451 (2002).
[CrossRef] [PubMed]

Clin. Radiol.

H.-X. Xu, X.-Y. Xie, M.-D. Lu, J.-W. Chen, X.-Y. Yin, Z.-F. Xu, and G.-J. Liu, “Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation,” Clin. Radiol.59(1), 53–61 (2004).
[CrossRef] [PubMed]

Compos., Part A Appl. Sci. Manuf.

Y. Okabe, R. Tsuji, and N. Takeda, “Application of chiped fiber Bragg grating sensors for identification of crack location in composites,” Compos., Part A Appl. Sci. Manuf.35(1), 59–65 (2004).
[CrossRef]

Eur. Radiol.

P. L. Pereira, “Actual role of radiofrequency ablation of liver metastases,” Eur. Radiol.17(8), 2062–2070 (2007).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37(2), 165–173 (2001).
[CrossRef]

Int. J. Hyperthermia

P. Saccomandi, E. Schena, and S. Silvestri, “Techniques for temperature monitoring during laser-induced thermotherapy: an overview,” Int. J. Hyperthermia29(7), 609–619 (2013).
[CrossRef] [PubMed]

J. Lightwave Technol.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

J. Surg. Oncol.

S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol.100(8), 619–634 (2009).
[CrossRef] [PubMed]

Proc. SPIE

A. Micco, G. Quero, A. Crescitelli, A. Ricciardi, and A. Cusano, “Ultracompact optical fiber Fabry-Perot interferometer based on in-line integrated sub-micron film,” Proc. SPIE8794, 87940P (2013).
[CrossRef]

Radiology

L. Solbiati, T. Livraghi, S. N. Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology221(1), 159–166 (2001).
[CrossRef] [PubMed]

Sens. Actuators A Phys.

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sens. Actuators A Phys.167(2), 279–290 (2011).
[CrossRef]

Sensors (Basel)

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel)13(10), 14105–14120 (2013).
[CrossRef] [PubMed]

Urology

K. Ogan, W. W. Roberts, D. M. Wilhelm, L. Bonnell, D. Leiner, G. Lindberg, L. R. Kavoussi, and J. A. Cadeddu, “Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins,” Urology62(1), 146–151 (2003).
[CrossRef] [PubMed]

Other

E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley Interscience, New York, 1991).

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications (Artech House, 1999).

Luna Inc, http://lunainc.com/obr4600ts .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Reflection spectrum of the LCFBG sensor acquired in reference conditions and non-uniformly heated through RFTA.

Fig. 2
Fig. 2

Setup of the LCFBG interrogation system. (a) Schematic of the interrogation system; (b) picture of the experimental setup.

Fig. 3
Fig. 3

Schematic of the LCFBG detection algorithm. The ratio γ(λ) is computed by normalizing the measured spectrum; a sample γ(λ) in non-uniform conditions is reported. The three regions R1, R2, and R3 are treated separately. A peak tracking technique simply computes the two side peaks in R1 and R2, relatively to previous calibration in uniform heating conditions, estimating the temperatures at both sides. The inner part is first filtered to smooth noise, then integrated, and normalized for a calibration function, obtaining the slope function ξ(λ), as in the bottom plot. The three thermal data are then combined returning the temperature profile on the whole distance axis.

Fig. 4
Fig. 4

Calibration of the LCFBG in uniform heating conditions. The upper chart shows the LCFBG spectrum for three different temperature values (starting temperature: 22.1°C) uniform along the distance axis. The bottom chart shows the recorded temperature T as a function of distance d, normalized by the temperature on the fiber tip T(d0).

Fig. 5
Fig. 5

Setup of the radial temperature field measurement. (a) Measurement chamber, prior to liver insertion. The RFTA needle (4 mm diameter, cylindrical hollow shape, 10 mm length) is inserted vertically into the chamber. The LCFBG (250 μm diameter), lighted with a red laser is positioned with the sensing tip in contact with the needle; the whole length of the LCFBG is illuminated by scattering into fiber recoating. (b) Picture of the porcine liver after RFTA; the lesion has a slightly asymmetrical shape in the radial direction with respect to the needle penetration point, but this asymmetry is only superficial. (c) Schematic of the ablation setup and sensor positioning.

Fig. 6
Fig. 6

Left: thermal map of the RFTA-induced irradiance along the radial axis; the chart reports the temperature (in the color map) as a function of the distance from the fiber tip recorded during heating (242s) and the following cooling. Right: temperature recorded with a thermistor inserted near the ablation peak.

Fig. 7
Fig. 7

Measurement of temperature distribution along the axis perpendicular to RFTA needle. The needle is inserted through the liver, with the LCFBG projecting on the side through two side holes. The picture shows the liver after the ablation, split between upper and lower part to show the ablation trace on both sides.

Fig. 8
Fig. 8

Thermal map of the RFTA-induced temperature along the axis perpendicular to the needle. The chart reports the temperature (in the color map) as a function of the distance from the fiber tip recorded during heating (132s) and the following cooling.

Fig. 9
Fig. 9

Contour plot of the temperature along the axis perpendicular to the RFTA needle, in near (0-0.75 mm), mid (1-3 mm), and far (5-10 mm) field.

Fig. 10
Fig. 10

Left: photograph of the liver after the 3D-experiment; red-light illuminates the fiber tip; right: sketch of the ablation setup.

Fig. 11
Fig. 11

Thermal distribution measured along the equatorial axis in the 3D experiment.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ B ( z )=2 n eff Λ( z )
Λ( z )= Λ 0 +kz
Δ λ B ( z )= s T ΔT( z )

Metrics