Abstract

Combining Fluorescent Molecular Tomography (FMT) with anatomical imaging, e.g. MRI facilitates interpreting functional information. Furthermore, using a heterogeneous model for light propagation has been shown in simulations to be superior to homogeneous modeling to quantify fluorescence. Here, we present a combined FMT-MRI system and apply it to heart and aorta molecular imaging, a challenging area due to strong tissue heterogeneity and the presence of air-voids due to lungs. First investigating performance in a phantom and mouse corpse, the MRI-enabled heterogeneous models resulted in an improved quantification of fluorescence reconstructions. The system was then used in mice for in vivo atherosclerosis molecular imaging. Results show that, when using the heterogeneous model, reconstructions were in agreement with the ex vivo measurements. Therefore, the proposed system might serve as a powerful imaging tool for atherosclerosis in mice.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
    [CrossRef] [PubMed]
  2. A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010).
    [CrossRef] [PubMed]
  3. B. Li, M. Abran, C. Matteau-Pelletier, L. Rouleau, T. Lam, R. Sharma, E. Rhéaume, A. Kakkar, J.-C. Tardif, and F. Lesage, “Low-cost three-dimensional imaging system combining fluorescence and ultrasound,” J. Biomed. Opt.16(12), 126010 (2011).
    [CrossRef] [PubMed]
  4. Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt.15(4), 040503 (2010).
    [CrossRef] [PubMed]
  5. B. P. Flynn, A. V. DSouza, S. C. Kanick, S. C. Davis, and B. W. Pogue, “White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX,” J. Biomed. Opt.18(4), 046008 (2013).
    [CrossRef] [PubMed]
  6. K. Radrich, A. Ale, V. Ermolayev, and V. Ntziachristos, “Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan,” J. Biomed. Opt.17(12), 126011 (2012).
    [CrossRef] [PubMed]
  7. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26(12), 893–895 (2001).
    [CrossRef] [PubMed]
  8. T. Pyka, R. Schulz, A. Ale, and V. Ntziachristos, “Revisiting the normalized Born approximation: effects of scattering,” Opt. Lett.36(22), 4329–4331 (2011).
    [CrossRef] [PubMed]
  9. J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt.17(3), 036013 (2012).
    [CrossRef] [PubMed]
  10. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
    [CrossRef] [PubMed]
  11. A. Laidevant, L. Hervé, M. Debourdeau, J. Boutet, N. Grenier, and J.-M. Dinten, “Fluorescence time-resolved imaging system embedded in an ultrasound prostate probe,” Biomed. Opt. Express2(1), 194–206 (2011).
    [CrossRef] [PubMed]
  12. J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt.14(6), 064001 (2009).
    [CrossRef] [PubMed]
  13. A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods9(6), 615–620 (2012).
    [CrossRef] [PubMed]
  14. A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt.18(5), 056006 (2013).
    [CrossRef] [PubMed]
  15. D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation115(11), 1384–1391 (2007).
    [CrossRef] [PubMed]
  16. J.-C. Tardif, F. Lesage, F. Harel, P. Romeo, and J. Pressacco, “Imaging biomarkers in atherosclerosis trials,” Circ Cardiovasc Imaging4(3), 319–333 (2011).
    [CrossRef] [PubMed]
  17. F. A. Jaffer, P. Libby, and R. Weissleder, “Optical and multimodality molecular imaging: insights into atherosclerosis,” Arterioscler. Thromb. Vasc. Biol.29(7), 1017–1024 (2009).
    [CrossRef] [PubMed]
  18. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
    [CrossRef] [PubMed]
  19. Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol.56(15), 4731–4747 (2011).
    [CrossRef] [PubMed]
  20. C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt.15(3), 036026 (2010).
    [CrossRef] [PubMed]
  21. J. Sanz and Z. A. Fayad, “Imaging of atherosclerotic cardiovascular disease,” Nature451(7181), 953–957 (2008).
    [CrossRef] [PubMed]
  22. D. A. Sanan, D. L. Newland, R. Tao, S. Marcovina, J. Wang, V. Mooser, R. E. Hammer, and H. H. Hobbs, “Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a),” Proc. Natl. Acad. Sci. U.S.A.95(8), 4544–4549 (1998).
    [CrossRef] [PubMed]
  23. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express17(22), 20178–20190 (2009).
    [CrossRef] [PubMed]
  24. J. Yuan, E. Bae, and X.-C. Tai, “A study on continuous max-flow and min-cut approaches,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2217–2224 (2010).
    [CrossRef]
  25. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005).
    [CrossRef] [PubMed]
  26. S. A. Prahl, “Online resource: http://omlc.ogi.edu/spectra”.
  27. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys.34(6), 2085–2098 (2007).
    [CrossRef] [PubMed]
  28. P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput.14(6), 1487–1503 (1993).
    [CrossRef]
  29. V. S. Talanov, C. A. S. Regino, H. Kobayashi, M. Bernardo, P. L. Choyke, and M. W. Brechbiel, “Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging,” Nano Lett.6(7), 1459–1463 (2006).
    [CrossRef] [PubMed]
  30. F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt.41(4), 778–791 (2002).
    [CrossRef] [PubMed]
  31. F. Leblond, K. M. Tichauer, R. W. Holt, F. El-Ghussein, and B. W. Pogue, “Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography,” Opt. Lett.36(19), 3723–3725 (2011).
    [CrossRef] [PubMed]

2013 (2)

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt.18(5), 056006 (2013).
[CrossRef] [PubMed]

B. P. Flynn, A. V. DSouza, S. C. Kanick, S. C. Davis, and B. W. Pogue, “White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX,” J. Biomed. Opt.18(4), 046008 (2013).
[CrossRef] [PubMed]

2012 (3)

K. Radrich, A. Ale, V. Ermolayev, and V. Ntziachristos, “Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan,” J. Biomed. Opt.17(12), 126011 (2012).
[CrossRef] [PubMed]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods9(6), 615–620 (2012).
[CrossRef] [PubMed]

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt.17(3), 036013 (2012).
[CrossRef] [PubMed]

2011 (6)

A. Laidevant, L. Hervé, M. Debourdeau, J. Boutet, N. Grenier, and J.-M. Dinten, “Fluorescence time-resolved imaging system embedded in an ultrasound prostate probe,” Biomed. Opt. Express2(1), 194–206 (2011).
[CrossRef] [PubMed]

F. Leblond, K. M. Tichauer, R. W. Holt, F. El-Ghussein, and B. W. Pogue, “Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography,” Opt. Lett.36(19), 3723–3725 (2011).
[CrossRef] [PubMed]

T. Pyka, R. Schulz, A. Ale, and V. Ntziachristos, “Revisiting the normalized Born approximation: effects of scattering,” Opt. Lett.36(22), 4329–4331 (2011).
[CrossRef] [PubMed]

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol.56(15), 4731–4747 (2011).
[CrossRef] [PubMed]

J.-C. Tardif, F. Lesage, F. Harel, P. Romeo, and J. Pressacco, “Imaging biomarkers in atherosclerosis trials,” Circ Cardiovasc Imaging4(3), 319–333 (2011).
[CrossRef] [PubMed]

B. Li, M. Abran, C. Matteau-Pelletier, L. Rouleau, T. Lam, R. Sharma, E. Rhéaume, A. Kakkar, J.-C. Tardif, and F. Lesage, “Low-cost three-dimensional imaging system combining fluorescence and ultrasound,” J. Biomed. Opt.16(12), 126010 (2011).
[CrossRef] [PubMed]

2010 (3)

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt.15(4), 040503 (2010).
[CrossRef] [PubMed]

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt.15(3), 036026 (2010).
[CrossRef] [PubMed]

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

2009 (3)

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express17(22), 20178–20190 (2009).
[CrossRef] [PubMed]

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt.14(6), 064001 (2009).
[CrossRef] [PubMed]

F. A. Jaffer, P. Libby, and R. Weissleder, “Optical and multimodality molecular imaging: insights into atherosclerosis,” Arterioscler. Thromb. Vasc. Biol.29(7), 1017–1024 (2009).
[CrossRef] [PubMed]

2008 (2)

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

J. Sanz and Z. A. Fayad, “Imaging of atherosclerotic cardiovascular disease,” Nature451(7181), 953–957 (2008).
[CrossRef] [PubMed]

2007 (3)

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation115(11), 1384–1391 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys.34(6), 2085–2098 (2007).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

2006 (1)

V. S. Talanov, C. A. S. Regino, H. Kobayashi, M. Bernardo, P. L. Choyke, and M. W. Brechbiel, “Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging,” Nano Lett.6(7), 1459–1463 (2006).
[CrossRef] [PubMed]

2005 (2)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

1998 (1)

D. A. Sanan, D. L. Newland, R. Tao, S. Marcovina, J. Wang, V. Mooser, R. E. Hammer, and H. H. Hobbs, “Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a),” Proc. Natl. Acad. Sci. U.S.A.95(8), 4544–4549 (1998).
[CrossRef] [PubMed]

1993 (1)

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput.14(6), 1487–1503 (1993).
[CrossRef]

Abascal, J. F. P.-J.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt.17(3), 036013 (2012).
[CrossRef] [PubMed]

Abran, M.

B. Li, M. Abran, C. Matteau-Pelletier, L. Rouleau, T. Lam, R. Sharma, E. Rhéaume, A. Kakkar, J.-C. Tardif, and F. Lesage, “Low-cost three-dimensional imaging system combining fluorescence and ultrasound,” J. Biomed. Opt.16(12), 126010 (2011).
[CrossRef] [PubMed]

Aguirre, J.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt.17(3), 036013 (2012).
[CrossRef] [PubMed]

Aikawa, E.

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation115(11), 1384–1391 (2007).
[CrossRef] [PubMed]

Ale, A.

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt.18(5), 056006 (2013).
[CrossRef] [PubMed]

K. Radrich, A. Ale, V. Ermolayev, and V. Ntziachristos, “Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan,” J. Biomed. Opt.17(12), 126011 (2012).
[CrossRef] [PubMed]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods9(6), 615–620 (2012).
[CrossRef] [PubMed]

T. Pyka, R. Schulz, A. Ale, and V. Ntziachristos, “Revisiting the normalized Born approximation: effects of scattering,” Opt. Lett.36(22), 4329–4331 (2011).
[CrossRef] [PubMed]

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

Alexandrakis, G.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Arridge, S.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt.17(3), 036013 (2012).
[CrossRef] [PubMed]

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Bae, E.

J. Yuan, E. Bae, and X.-C. Tai, “A study on continuous max-flow and min-cut approaches,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2217–2224 (2010).
[CrossRef]

Barber, W. C.

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt.15(4), 040503 (2010).
[CrossRef] [PubMed]

Bernardo, M.

V. S. Talanov, C. A. S. Regino, H. Kobayashi, M. Bernardo, P. L. Choyke, and M. W. Brechbiel, “Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging,” Nano Lett.6(7), 1459–1463 (2006).
[CrossRef] [PubMed]

Boas, D. A.

Boutet, J.

A. Laidevant, L. Hervé, M. Debourdeau, J. Boutet, N. Grenier, and J.-M. Dinten, “Fluorescence time-resolved imaging system embedded in an ultrasound prostate probe,” Biomed. Opt. Express2(1), 194–206 (2011).
[CrossRef] [PubMed]

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt.14(6), 064001 (2009).
[CrossRef] [PubMed]

Brechbiel, M. W.

V. S. Talanov, C. A. S. Regino, H. Kobayashi, M. Bernardo, P. L. Choyke, and M. W. Brechbiel, “Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging,” Nano Lett.6(7), 1459–1463 (2006).
[CrossRef] [PubMed]

Carpenter, C. M.

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt.15(3), 036026 (2010).
[CrossRef] [PubMed]

Chamorro-Servent, J.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt.17(3), 036013 (2012).
[CrossRef] [PubMed]

Chatziioannou, A. F.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Choyke, P. L.

V. S. Talanov, C. A. S. Regino, H. Kobayashi, M. Bernardo, P. L. Choyke, and M. W. Brechbiel, “Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging,” Nano Lett.6(7), 1459–1463 (2006).
[CrossRef] [PubMed]

Cohrs, C.

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods9(6), 615–620 (2012).
[CrossRef] [PubMed]

Daniel, B. L.

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt.15(3), 036026 (2010).
[CrossRef] [PubMed]

Davis, S. C.

B. P. Flynn, A. V. DSouza, S. C. Kanick, S. C. Davis, and B. W. Pogue, “White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX,” J. Biomed. Opt.18(4), 046008 (2013).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

de Angelis, M. H.

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods9(6), 615–620 (2012).
[CrossRef] [PubMed]

Debourdeau, M.

A. Laidevant, L. Hervé, M. Debourdeau, J. Boutet, N. Grenier, and J.-M. Dinten, “Fluorescence time-resolved imaging system embedded in an ultrasound prostate probe,” Biomed. Opt. Express2(1), 194–206 (2011).
[CrossRef] [PubMed]

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt.14(6), 064001 (2009).
[CrossRef] [PubMed]

Dehghani, H.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys.34(6), 2085–2098 (2007).
[CrossRef] [PubMed]

Deliolanis, N.

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation115(11), 1384–1391 (2007).
[CrossRef] [PubMed]

Deliolanis, N. C.

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt.18(5), 056006 (2013).
[CrossRef] [PubMed]

Desco, M.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt.17(3), 036013 (2012).
[CrossRef] [PubMed]

Dinten, J. M.

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt.14(6), 064001 (2009).
[CrossRef] [PubMed]

Dinten, J.-M.

DSouza, A. V.

B. P. Flynn, A. V. DSouza, S. C. Kanick, S. C. Davis, and B. W. Pogue, “White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX,” J. Biomed. Opt.18(4), 046008 (2013).
[CrossRef] [PubMed]

Duboeuf, F.

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt.14(6), 064001 (2009).
[CrossRef] [PubMed]

El-Ghussein, F.

Ermolayev, V.

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt.18(5), 056006 (2013).
[CrossRef] [PubMed]

K. Radrich, A. Ale, V. Ermolayev, and V. Ntziachristos, “Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan,” J. Biomed. Opt.17(12), 126011 (2012).
[CrossRef] [PubMed]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods9(6), 615–620 (2012).
[CrossRef] [PubMed]

Fang, Q.

Fayad, Z. A.

J. Sanz and Z. A. Fayad, “Imaging of atherosclerotic cardiovascular disease,” Nature451(7181), 953–957 (2008).
[CrossRef] [PubMed]

Flynn, B. P.

B. P. Flynn, A. V. DSouza, S. C. Kanick, S. C. Davis, and B. W. Pogue, “White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX,” J. Biomed. Opt.18(4), 046008 (2013).
[CrossRef] [PubMed]

Gao, F.

Gao, H.

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol.56(15), 4731–4747 (2011).
[CrossRef] [PubMed]

Ghijsen, M. T.

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol.56(15), 4731–4747 (2011).
[CrossRef] [PubMed]

Gibbs-Strauss, S. L.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Glover, G. H.

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt.15(3), 036026 (2010).
[CrossRef] [PubMed]

Grenier, N.

Gulsen, G.

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol.56(15), 4731–4747 (2011).
[CrossRef] [PubMed]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt.15(4), 040503 (2010).
[CrossRef] [PubMed]

Guyon, L.

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt.14(6), 064001 (2009).
[CrossRef] [PubMed]

Hammer, R. E.

D. A. Sanan, D. L. Newland, R. Tao, S. Marcovina, J. Wang, V. Mooser, R. E. Hammer, and H. H. Hobbs, “Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a),” Proc. Natl. Acad. Sci. U.S.A.95(8), 4544–4549 (1998).
[CrossRef] [PubMed]

Hansen, P. C.

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput.14(6), 1487–1503 (1993).
[CrossRef]

Harel, F.

J.-C. Tardif, F. Lesage, F. Harel, P. Romeo, and J. Pressacco, “Imaging biomarkers in atherosclerosis trials,” Circ Cardiovasc Imaging4(3), 319–333 (2011).
[CrossRef] [PubMed]

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Herve, L.

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt.14(6), 064001 (2009).
[CrossRef] [PubMed]

Hervé, L.

Herzog, E.

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods9(6), 615–620 (2012).
[CrossRef] [PubMed]

Hobbs, H. H.

D. A. Sanan, D. L. Newland, R. Tao, S. Marcovina, J. Wang, V. Mooser, R. E. Hammer, and H. H. Hobbs, “Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a),” Proc. Natl. Acad. Sci. U.S.A.95(8), 4544–4549 (1998).
[CrossRef] [PubMed]

Holt, R. W.

Iwanczyk, J. S.

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt.15(4), 040503 (2010).
[CrossRef] [PubMed]

Jaffer, F. A.

F. A. Jaffer, P. Libby, and R. Weissleder, “Optical and multimodality molecular imaging: insights into atherosclerosis,” Arterioscler. Thromb. Vasc. Biol.29(7), 1017–1024 (2009).
[CrossRef] [PubMed]

Jiang, S.

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt.15(3), 036026 (2010).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

Jiang, S. S.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Josephson, L.

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation115(11), 1384–1391 (2007).
[CrossRef] [PubMed]

Kakkar, A.

B. Li, M. Abran, C. Matteau-Pelletier, L. Rouleau, T. Lam, R. Sharma, E. Rhéaume, A. Kakkar, J.-C. Tardif, and F. Lesage, “Low-cost three-dimensional imaging system combining fluorescence and ultrasound,” J. Biomed. Opt.16(12), 126010 (2011).
[CrossRef] [PubMed]

Kanick, S. C.

B. P. Flynn, A. V. DSouza, S. C. Kanick, S. C. Davis, and B. W. Pogue, “White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX,” J. Biomed. Opt.18(4), 046008 (2013).
[CrossRef] [PubMed]

Kobayashi, H.

V. S. Talanov, C. A. S. Regino, H. Kobayashi, M. Bernardo, P. L. Choyke, and M. W. Brechbiel, “Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging,” Nano Lett.6(7), 1459–1463 (2006).
[CrossRef] [PubMed]

Laidevant, A.

Lam, T.

B. Li, M. Abran, C. Matteau-Pelletier, L. Rouleau, T. Lam, R. Sharma, E. Rhéaume, A. Kakkar, J.-C. Tardif, and F. Lesage, “Low-cost three-dimensional imaging system combining fluorescence and ultrasound,” J. Biomed. Opt.16(12), 126010 (2011).
[CrossRef] [PubMed]

Leblond, F.

Lesage, F.

B. Li, M. Abran, C. Matteau-Pelletier, L. Rouleau, T. Lam, R. Sharma, E. Rhéaume, A. Kakkar, J.-C. Tardif, and F. Lesage, “Low-cost three-dimensional imaging system combining fluorescence and ultrasound,” J. Biomed. Opt.16(12), 126010 (2011).
[CrossRef] [PubMed]

J.-C. Tardif, F. Lesage, F. Harel, P. Romeo, and J. Pressacco, “Imaging biomarkers in atherosclerosis trials,” Circ Cardiovasc Imaging4(3), 319–333 (2011).
[CrossRef] [PubMed]

Leussler, C.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Li, B.

B. Li, M. Abran, C. Matteau-Pelletier, L. Rouleau, T. Lam, R. Sharma, E. Rhéaume, A. Kakkar, J.-C. Tardif, and F. Lesage, “Low-cost three-dimensional imaging system combining fluorescence and ultrasound,” J. Biomed. Opt.16(12), 126010 (2011).
[CrossRef] [PubMed]

Libby, P.

F. A. Jaffer, P. Libby, and R. Weissleder, “Optical and multimodality molecular imaging: insights into atherosclerosis,” Arterioscler. Thromb. Vasc. Biol.29(7), 1017–1024 (2009).
[CrossRef] [PubMed]

Lin, Y.

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol.56(15), 4731–4747 (2011).
[CrossRef] [PubMed]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt.15(4), 040503 (2010).
[CrossRef] [PubMed]

Liu, N.

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol.56(15), 4731–4747 (2011).
[CrossRef] [PubMed]

Marcovina, S.

D. A. Sanan, D. L. Newland, R. Tao, S. Marcovina, J. Wang, V. Mooser, R. E. Hammer, and H. H. Hobbs, “Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a),” Proc. Natl. Acad. Sci. U.S.A.95(8), 4544–4549 (1998).
[CrossRef] [PubMed]

Matteau-Pelletier, C.

B. Li, M. Abran, C. Matteau-Pelletier, L. Rouleau, T. Lam, R. Sharma, E. Rhéaume, A. Kakkar, J.-C. Tardif, and F. Lesage, “Low-cost three-dimensional imaging system combining fluorescence and ultrasound,” J. Biomed. Opt.16(12), 126010 (2011).
[CrossRef] [PubMed]

Mazurkewitz, P.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Mooser, V.

D. A. Sanan, D. L. Newland, R. Tao, S. Marcovina, J. Wang, V. Mooser, R. E. Hammer, and H. H. Hobbs, “Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a),” Proc. Natl. Acad. Sci. U.S.A.95(8), 4544–4549 (1998).
[CrossRef] [PubMed]

Nahrendorf, M.

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation115(11), 1384–1391 (2007).
[CrossRef] [PubMed]

Nalcioglu, O.

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol.56(15), 4731–4747 (2011).
[CrossRef] [PubMed]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt.15(4), 040503 (2010).
[CrossRef] [PubMed]

Newland, D. L.

D. A. Sanan, D. L. Newland, R. Tao, S. Marcovina, J. Wang, V. Mooser, R. E. Hammer, and H. H. Hobbs, “Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a),” Proc. Natl. Acad. Sci. U.S.A.95(8), 4544–4549 (1998).
[CrossRef] [PubMed]

Novikov, M.

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation115(11), 1384–1391 (2007).
[CrossRef] [PubMed]

Ntziachristos, V.

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt.18(5), 056006 (2013).
[CrossRef] [PubMed]

K. Radrich, A. Ale, V. Ermolayev, and V. Ntziachristos, “Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan,” J. Biomed. Opt.17(12), 126011 (2012).
[CrossRef] [PubMed]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods9(6), 615–620 (2012).
[CrossRef] [PubMed]

T. Pyka, R. Schulz, A. Ale, and V. Ntziachristos, “Revisiting the normalized Born approximation: effects of scattering,” Opt. Lett.36(22), 4329–4331 (2011).
[CrossRef] [PubMed]

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation115(11), 1384–1391 (2007).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26(12), 893–895 (2001).
[CrossRef] [PubMed]

O’Leary, D. P.

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput.14(6), 1487–1503 (1993).
[CrossRef]

Paulsen, K. D.

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt.15(3), 036026 (2010).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys.34(6), 2085–2098 (2007).
[CrossRef] [PubMed]

Peltie, P.

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt.14(6), 064001 (2009).
[CrossRef] [PubMed]

Pogue, B. W.

B. P. Flynn, A. V. DSouza, S. C. Kanick, S. C. Davis, and B. W. Pogue, “White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX,” J. Biomed. Opt.18(4), 046008 (2013).
[CrossRef] [PubMed]

F. Leblond, K. M. Tichauer, R. W. Holt, F. El-Ghussein, and B. W. Pogue, “Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography,” Opt. Lett.36(19), 3723–3725 (2011).
[CrossRef] [PubMed]

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt.15(3), 036026 (2010).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys.34(6), 2085–2098 (2007).
[CrossRef] [PubMed]

Prahl, S. A.

S. A. Prahl, “Online resource: http://omlc.ogi.edu/spectra”.

Pressacco, J.

J.-C. Tardif, F. Lesage, F. Harel, P. Romeo, and J. Pressacco, “Imaging biomarkers in atherosclerosis trials,” Circ Cardiovasc Imaging4(3), 319–333 (2011).
[CrossRef] [PubMed]

Pyka, T.

Radrich, K.

K. Radrich, A. Ale, V. Ermolayev, and V. Ntziachristos, “Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan,” J. Biomed. Opt.17(12), 126011 (2012).
[CrossRef] [PubMed]

Rakow-Penner, R.

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt.15(3), 036026 (2010).
[CrossRef] [PubMed]

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Regino, C. A. S.

V. S. Talanov, C. A. S. Regino, H. Kobayashi, M. Bernardo, P. L. Choyke, and M. W. Brechbiel, “Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging,” Nano Lett.6(7), 1459–1463 (2006).
[CrossRef] [PubMed]

Rhéaume, E.

B. Li, M. Abran, C. Matteau-Pelletier, L. Rouleau, T. Lam, R. Sharma, E. Rhéaume, A. Kakkar, J.-C. Tardif, and F. Lesage, “Low-cost three-dimensional imaging system combining fluorescence and ultrasound,” J. Biomed. Opt.16(12), 126010 (2011).
[CrossRef] [PubMed]

Ripoll, J.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt.17(3), 036013 (2012).
[CrossRef] [PubMed]

Roeck, W. W.

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt.15(4), 040503 (2010).
[CrossRef] [PubMed]

Romeo, P.

J.-C. Tardif, F. Lesage, F. Harel, P. Romeo, and J. Pressacco, “Imaging biomarkers in atherosclerosis trials,” Circ Cardiovasc Imaging4(3), 319–333 (2011).
[CrossRef] [PubMed]

Rosenzweig, A.

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation115(11), 1384–1391 (2007).
[CrossRef] [PubMed]

Rouleau, L.

B. Li, M. Abran, C. Matteau-Pelletier, L. Rouleau, T. Lam, R. Sharma, E. Rhéaume, A. Kakkar, J.-C. Tardif, and F. Lesage, “Low-cost three-dimensional imaging system combining fluorescence and ultrasound,” J. Biomed. Opt.16(12), 126010 (2011).
[CrossRef] [PubMed]

Sanan, D. A.

D. A. Sanan, D. L. Newland, R. Tao, S. Marcovina, J. Wang, V. Mooser, R. E. Hammer, and H. H. Hobbs, “Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a),” Proc. Natl. Acad. Sci. U.S.A.95(8), 4544–4549 (1998).
[CrossRef] [PubMed]

Sanz, J.

J. Sanz and Z. A. Fayad, “Imaging of atherosclerotic cardiovascular disease,” Nature451(7181), 953–957 (2008).
[CrossRef] [PubMed]

Sarantopoulos, A.

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

Saroul, L.

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt.14(6), 064001 (2009).
[CrossRef] [PubMed]

Schulz, R.

Schulz, R. B.

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

Schweiger, M.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt.17(3), 036013 (2012).
[CrossRef] [PubMed]

Sharma, R.

B. Li, M. Abran, C. Matteau-Pelletier, L. Rouleau, T. Lam, R. Sharma, E. Rhéaume, A. Kakkar, J.-C. Tardif, and F. Lesage, “Low-cost three-dimensional imaging system combining fluorescence and ultrasound,” J. Biomed. Opt.16(12), 126010 (2011).
[CrossRef] [PubMed]

Sosnovik, D. E.

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation115(11), 1384–1391 (2007).
[CrossRef] [PubMed]

Springett, R.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Tai, X.-C.

J. Yuan, E. Bae, and X.-C. Tai, “A study on continuous max-flow and min-cut approaches,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2217–2224 (2010).
[CrossRef]

Talanov, V. S.

V. S. Talanov, C. A. S. Regino, H. Kobayashi, M. Bernardo, P. L. Choyke, and M. W. Brechbiel, “Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging,” Nano Lett.6(7), 1459–1463 (2006).
[CrossRef] [PubMed]

Tao, R.

D. A. Sanan, D. L. Newland, R. Tao, S. Marcovina, J. Wang, V. Mooser, R. E. Hammer, and H. H. Hobbs, “Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a),” Proc. Natl. Acad. Sci. U.S.A.95(8), 4544–4549 (1998).
[CrossRef] [PubMed]

Tardif, J.-C.

J.-C. Tardif, F. Lesage, F. Harel, P. Romeo, and J. Pressacco, “Imaging biomarkers in atherosclerosis trials,” Circ Cardiovasc Imaging4(3), 319–333 (2011).
[CrossRef] [PubMed]

B. Li, M. Abran, C. Matteau-Pelletier, L. Rouleau, T. Lam, R. Sharma, E. Rhéaume, A. Kakkar, J.-C. Tardif, and F. Lesage, “Low-cost three-dimensional imaging system combining fluorescence and ultrasound,” J. Biomed. Opt.16(12), 126010 (2011).
[CrossRef] [PubMed]

Tichauer, K. M.

Tuttle, S. B.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Vaquero, J. J.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt.17(3), 036013 (2012).
[CrossRef] [PubMed]

Vray, D.

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt.14(6), 064001 (2009).
[CrossRef] [PubMed]

Wang, J.

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

D. A. Sanan, D. L. Newland, R. Tao, S. Marcovina, J. Wang, V. Mooser, R. E. Hammer, and H. H. Hobbs, “Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a),” Proc. Natl. Acad. Sci. U.S.A.95(8), 4544–4549 (1998).
[CrossRef] [PubMed]

Weissleder, R.

F. A. Jaffer, P. Libby, and R. Weissleder, “Optical and multimodality molecular imaging: insights into atherosclerosis,” Arterioscler. Thromb. Vasc. Biol.29(7), 1017–1024 (2009).
[CrossRef] [PubMed]

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation115(11), 1384–1391 (2007).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26(12), 893–895 (2001).
[CrossRef] [PubMed]

Yalavarthy, P. K.

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys.34(6), 2085–2098 (2007).
[CrossRef] [PubMed]

Yamada, Y.

Yuan, J.

J. Yuan, E. Bae, and X.-C. Tai, “A study on continuous max-flow and min-cut approaches,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2217–2224 (2010).
[CrossRef]

Zhao, H.

Appl. Opt. (1)

Arterioscler. Thromb. Vasc. Biol. (1)

F. A. Jaffer, P. Libby, and R. Weissleder, “Optical and multimodality molecular imaging: insights into atherosclerosis,” Arterioscler. Thromb. Vasc. Biol.29(7), 1017–1024 (2009).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Circ Cardiovasc Imaging (1)

J.-C. Tardif, F. Lesage, F. Harel, P. Romeo, and J. Pressacco, “Imaging biomarkers in atherosclerosis trials,” Circ Cardiovasc Imaging4(3), 319–333 (2011).
[CrossRef] [PubMed]

Circulation (1)

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation115(11), 1384–1391 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt. (8)

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt.18(5), 056006 (2013).
[CrossRef] [PubMed]

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt.14(6), 064001 (2009).
[CrossRef] [PubMed]

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt.15(3), 036026 (2010).
[CrossRef] [PubMed]

B. Li, M. Abran, C. Matteau-Pelletier, L. Rouleau, T. Lam, R. Sharma, E. Rhéaume, A. Kakkar, J.-C. Tardif, and F. Lesage, “Low-cost three-dimensional imaging system combining fluorescence and ultrasound,” J. Biomed. Opt.16(12), 126010 (2011).
[CrossRef] [PubMed]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt.15(4), 040503 (2010).
[CrossRef] [PubMed]

B. P. Flynn, A. V. DSouza, S. C. Kanick, S. C. Davis, and B. W. Pogue, “White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX,” J. Biomed. Opt.18(4), 046008 (2013).
[CrossRef] [PubMed]

K. Radrich, A. Ale, V. Ermolayev, and V. Ntziachristos, “Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan,” J. Biomed. Opt.17(12), 126011 (2012).
[CrossRef] [PubMed]

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt.17(3), 036013 (2012).
[CrossRef] [PubMed]

Med. Phys. (2)

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys.34(6), 2085–2098 (2007).
[CrossRef] [PubMed]

Nano Lett. (1)

V. S. Talanov, C. A. S. Regino, H. Kobayashi, M. Bernardo, P. L. Choyke, and M. W. Brechbiel, “Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging,” Nano Lett.6(7), 1459–1463 (2006).
[CrossRef] [PubMed]

Nat. Methods (1)

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods9(6), 615–620 (2012).
[CrossRef] [PubMed]

Nature (1)

J. Sanz and Z. A. Fayad, “Imaging of atherosclerotic cardiovascular disease,” Nature451(7181), 953–957 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Med. Biol. (3)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol.56(15), 4731–4747 (2011).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

D. A. Sanan, D. L. Newland, R. Tao, S. Marcovina, J. Wang, V. Mooser, R. E. Hammer, and H. H. Hobbs, “Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a),” Proc. Natl. Acad. Sci. U.S.A.95(8), 4544–4549 (1998).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

SIAM J. Sci. Comput. (1)

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput.14(6), 1487–1503 (1993).
[CrossRef]

Other (2)

S. A. Prahl, “Online resource: http://omlc.ogi.edu/spectra”.

J. Yuan, E. Bae, and X.-C. Tai, “A study on continuous max-flow and min-cut approaches,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2217–2224 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic (top) and photograph (bottom) of the FMT system. GM: Galvo mirror; EF: excitation fibers; DF: detection fibers; LD: laser driver; FW: Filter wheel.

Fig. 2
Fig. 2

Schematic diagram (left, top side) and photograph (right) of the optical probe working in an experiment. AH: animal holder; AP: animal plate; FMR: fiducial marker.

Fig. 3
Fig. 3

(a) Representative axial MR slice of ATX #2; (b) segmented image; (c) resampled segmented image with 1 mm voxel resolution.

Fig. 4
Fig. 4

Schematic diagram of the phantom: (a) view of X-Y plane; (b) view of X-Z plane. The attenuation and fluorescence inclusions are denoted by Diff and Fluo, respectively.

Fig. 5
Fig. 5

(a) A synthetic fluorescence slice of the phantom; (b) the corresponding slices of the reconstruction with the heterogeneous models (b), and with the homogeneous model (c), respectively; (d) plot of reconstructed values along the red dashed line. (e) CNR was compared with λ for both models.

Fig. 6
Fig. 6

(a) Ex vivo images of the fluorescent tubes were overlaid with transparency (alpha = 0.5) on the photographs of tubes, respectively; (b) the average reconstructed values (both models) of the fluorescent tubes were normalized of the maximum being 1, to compare with the ex vivo measurement (reference).

Fig. 7
Fig. 7

(a) Three orthogonal MR slices are shown: axial slice (Y-Z), coronal slice (X-Y) and sagittal slice (X-Z). The arrow of the X axes points to tail of the mouse; and the arrow of the Z axes points to abdomen. The tube was indicated by the red arrow; (b) the reconstructions with the heterogeneous models were overlaid with transparency (alpha = 0.5) on the MR slices, respectively; (c) the reconstructions with the homogeneous models were overlaid with transparency (alpha = 0.5) on the MR slices, respectively.

Fig. 8
Fig. 8

The images in the first column are the MR slices for each mouse. Heart and part of aorta of ATX #1 were denoted by red arrows. In the second column, the reconstructed εηC with the heterogeneous models were overlaid with transparency (alpha = 0.5) on the MR slices, respectively. Three orthogonal MR slices were chosen for each mouse: axial slice (Y-Z), coronal slice (X-Y) and sagittal slice (X-Z).

Fig. 9
Fig. 9

The hearts and aortas of the four mice were imaged ex vivo. In the first row, the ex vivo fluorescence images were overlaid with transparency (alpha = 0.5) on the corresponding photographs. Shown by the curves below, the average reconstructed εηC of the hearts and aortas for all mice were normalized with the maximum being 1 to compare with the ex vivo measurement.

Tables (1)

Tables Icon

Table 1 Dimension and optical properties of the phantom.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ω= Φ meas Wχ 2 +λ Lχ 2 ,
χ i+1 = [ W T W+λ L T L] 1 W T ( Φ i meas Φ i C )+ χ i ,
W= V G x ( r s ,r) G m (r, r d ) d 3 r G x ( r s , r d ) .

Metrics