Abstract

Existing methods for low cost lenses using parallel mold stamping and high temperature reflow requires complex engineering controls to produce high quality lenses. These manufacturing techniques rely on expensive equipment. In this paper, we propose a low cost (< $ 0.01 per pc) flexible moldless lens fabrication method based on curing a hanging transparent polydimethylsiloxane (PDMS) elastomer droplet on a curved substrate. Additional deposition of hanging droplets in the same manner led to a substantial increase in the lens curvature and concomitant decrease in the focal length of the PDMS lenses down to ~2 mm. The shortest focal length lenses were shown to collimate light from a bare light emitting diode (LED) and image microscopic structures down to around 4 µm with 160x magnification. Our hanging droplet lens fabrication technique heralds a new paradigm in the manufacture of low cost, high performance optical lenses for the masses. Using these lenses, we were able to transform an ordinary commercial smartphone camera into a low-cost digital dermascope (60x magnification) that can readily visualize microscopic structures on skin such as sweat pores.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Tolley, “Polymer optics gain respect,” Photon. Spectra37, 76–79 (2003).
  2. S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009).
    [CrossRef] [PubMed]
  3. L. Bellina and E. Missoni, “Mobile cell-phones (M-phones) in telemicroscopy: increasing connectivity of isolated laboratories,” Diagn. Pathol.4(1), 19 (2009).
    [CrossRef] [PubMed]
  4. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. K. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
    [CrossRef] [PubMed]
  5. E. Linder, A. Grote, S. Varjo, N. Linder, M. Lebbad, M. Lundin, V. Diwan, J. Hannuksela, and J. Lundin, “On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision,” PLoS Negl. Trop. Dis.7(12), e2547 (2013).
    [CrossRef] [PubMed]
  6. D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS ONE4(7), e6320 (2009).
    [CrossRef] [PubMed]
  7. H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical imaging techniques for point-of-care diagnostics,” Lab Chip13(1), 51–67 (2012).
    [CrossRef] [PubMed]
  8. X.-H. Lee, I. Moreno, and C.-C. Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express21(9), 10612–10621 (2013).
    [CrossRef] [PubMed]
  9. P. J. Gramann and T. A. Osswald, Injection Molding Handbook (Hanser Gardner Publication Inc, Cincinnati, 2002).
  10. J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
    [CrossRef]
  11. Y. Gambin, O. Legrand, and S. R. Quake, “Microfabricated rubber microscope using soft solid immersion lenses,” Appl. Phys. Lett.88(17), 174102 (2006).
    [CrossRef]
  12. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science312(5773), 557–561 (2006).
    [CrossRef] [PubMed]
  13. J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18674–18678 (2012).
    [CrossRef] [PubMed]
  14. Dow Corning Newest Moldable Optical Silicone Further Expands Options for More Energy Efficient and Reliable LED Lighting Designs,” (2013), http://www.dowcorning.com/content/news/Moldable_Optical_Silicone.aspx .
  15. H. Ren, S. Xu, and S.-T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun.283(17), 3255–3258 (2010).
    [CrossRef]
  16. R. Tadmor, P. Bahadur, A. Leh, H. E. N’guessan, R. Jaini, and L. Dang, “Measurement of Lateral Adhesion Forces at the Interface between a Liquid Drop and a Substrate,” Phys. Rev. Lett.103(26), 266101 (2009).
    [CrossRef] [PubMed]
  17. F. A. Chowdhury and K. J. Chau, “Variable focus microscopy using a suspended water droplet,” J. Opt.14(5), 055501 (2012).
    [CrossRef]
  18. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett.82(3), 316–318 (2003).
    [CrossRef]
  19. Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express21(26), 32400–32410 (2013).
    [CrossRef] [PubMed]

2013 (3)

E. Linder, A. Grote, S. Varjo, N. Linder, M. Lebbad, M. Lundin, V. Diwan, J. Hannuksela, and J. Lundin, “On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision,” PLoS Negl. Trop. Dis.7(12), e2547 (2013).
[CrossRef] [PubMed]

X.-H. Lee, I. Moreno, and C.-C. Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express21(9), 10612–10621 (2013).
[CrossRef] [PubMed]

Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express21(26), 32400–32410 (2013).
[CrossRef] [PubMed]

2012 (3)

H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical imaging techniques for point-of-care diagnostics,” Lab Chip13(1), 51–67 (2012).
[CrossRef] [PubMed]

F. A. Chowdhury and K. J. Chau, “Variable focus microscopy using a suspended water droplet,” J. Opt.14(5), 055501 (2012).
[CrossRef]

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18674–18678 (2012).
[CrossRef] [PubMed]

2010 (2)

H. Ren, S. Xu, and S.-T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun.283(17), 3255–3258 (2010).
[CrossRef]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. K. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

2009 (4)

S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009).
[CrossRef] [PubMed]

L. Bellina and E. Missoni, “Mobile cell-phones (M-phones) in telemicroscopy: increasing connectivity of isolated laboratories,” Diagn. Pathol.4(1), 19 (2009).
[CrossRef] [PubMed]

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS ONE4(7), e6320 (2009).
[CrossRef] [PubMed]

R. Tadmor, P. Bahadur, A. Leh, H. E. N’guessan, R. Jaini, and L. Dang, “Measurement of Lateral Adhesion Forces at the Interface between a Liquid Drop and a Substrate,” Phys. Rev. Lett.103(26), 266101 (2009).
[CrossRef] [PubMed]

2006 (2)

Y. Gambin, O. Legrand, and S. R. Quake, “Microfabricated rubber microscope using soft solid immersion lenses,” Appl. Phys. Lett.88(17), 174102 (2006).
[CrossRef]

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science312(5773), 557–561 (2006).
[CrossRef] [PubMed]

2003 (2)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett.82(3), 316–318 (2003).
[CrossRef]

P. Tolley, “Polymer optics gain respect,” Photon. Spectra37, 76–79 (2003).

1996 (1)

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

Avramidis, M.

S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009).
[CrossRef] [PubMed]

Bahadur, P.

R. Tadmor, P. Bahadur, A. Leh, H. E. N’guessan, R. Jaini, and L. Dang, “Measurement of Lateral Adhesion Forces at the Interface between a Liquid Drop and a Substrate,” Phys. Rev. Lett.103(26), 266101 (2009).
[CrossRef] [PubMed]

Bellina, L.

L. Bellina and E. Missoni, “Mobile cell-phones (M-phones) in telemicroscopy: increasing connectivity of isolated laboratories,” Diagn. Pathol.4(1), 19 (2009).
[CrossRef] [PubMed]

Bian, Z.

Bishara, W.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. K. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Breslauer, D. N.

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS ONE4(7), e6320 (2009).
[CrossRef] [PubMed]

Burton, R. C.

S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009).
[CrossRef] [PubMed]

Chau, K. J.

F. A. Chowdhury and K. J. Chau, “Variable focus microscopy using a suspended water droplet,” J. Opt.14(5), 055501 (2012).
[CrossRef]

Cheung, E. L.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

Choi, K. J.

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18674–18678 (2012).
[CrossRef] [PubMed]

Chowdhury, F. A.

F. A. Chowdhury and K. J. Chau, “Variable focus microscopy using a suspended water droplet,” J. Opt.14(5), 055501 (2012).
[CrossRef]

Dang, L.

R. Tadmor, P. Bahadur, A. Leh, H. E. N’guessan, R. Jaini, and L. Dang, “Measurement of Lateral Adhesion Forces at the Interface between a Liquid Drop and a Substrate,” Phys. Rev. Lett.103(26), 266101 (2009).
[CrossRef] [PubMed]

Davies, S.

S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009).
[CrossRef] [PubMed]

Diwan, V.

E. Linder, A. Grote, S. Varjo, N. Linder, M. Lebbad, M. Lundin, V. Diwan, J. Hannuksela, and J. Lundin, “On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision,” PLoS Negl. Trop. Dis.7(12), e2547 (2013).
[CrossRef] [PubMed]

Dong, S.

Elwood, J. M.

S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009).
[CrossRef] [PubMed]

Emery, J.

S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009).
[CrossRef] [PubMed]

Fletcher, D. A.

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS ONE4(7), e6320 (2009).
[CrossRef] [PubMed]

Fletcher, J.

S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009).
[CrossRef] [PubMed]

Gambin, Y.

Y. Gambin, O. Legrand, and S. R. Quake, “Microfabricated rubber microscope using soft solid immersion lenses,” Appl. Phys. Lett.88(17), 174102 (2006).
[CrossRef]

Greenbaum, A.

H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical imaging techniques for point-of-care diagnostics,” Lab Chip13(1), 51–67 (2012).
[CrossRef] [PubMed]

Grote, A.

E. Linder, A. Grote, S. Varjo, N. Linder, M. Lebbad, M. Lundin, V. Diwan, J. Hannuksela, and J. Lundin, “On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision,” PLoS Negl. Trop. Dis.7(12), e2547 (2013).
[CrossRef] [PubMed]

Hannuksela, J.

E. Linder, A. Grote, S. Varjo, N. Linder, M. Lebbad, M. Lundin, V. Diwan, J. Hannuksela, and J. Lundin, “On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision,” PLoS Negl. Trop. Dis.7(12), e2547 (2013).
[CrossRef] [PubMed]

Isikman, S. O.

H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical imaging techniques for point-of-care diagnostics,” Lab Chip13(1), 51–67 (2012).
[CrossRef] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. K. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Jackman, R. J.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

Jaini, R.

R. Tadmor, P. Bahadur, A. Leh, H. E. N’guessan, R. Jaini, and L. Dang, “Measurement of Lateral Adhesion Forces at the Interface between a Liquid Drop and a Substrate,” Phys. Rev. Lett.103(26), 266101 (2009).
[CrossRef] [PubMed]

Jeong, K. H.

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18674–18678 (2012).
[CrossRef] [PubMed]

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science312(5773), 557–561 (2006).
[CrossRef] [PubMed]

Khademhosseini, B.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. K. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Kim, H. G.

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18674–18678 (2012).
[CrossRef] [PubMed]

Kim, J.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science312(5773), 557–561 (2006).
[CrossRef] [PubMed]

Kim, J. J.

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18674–18678 (2012).
[CrossRef] [PubMed]

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett.82(3), 316–318 (2003).
[CrossRef]

Kweon, H. S.

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18674–18678 (2012).
[CrossRef] [PubMed]

Lam, W. A.

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS ONE4(7), e6320 (2009).
[CrossRef] [PubMed]

Lebbad, M.

E. Linder, A. Grote, S. Varjo, N. Linder, M. Lebbad, M. Lundin, V. Diwan, J. Hannuksela, and J. Lundin, “On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision,” PLoS Negl. Trop. Dis.7(12), e2547 (2013).
[CrossRef] [PubMed]

Lee, L. K.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

Lee, L. P.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science312(5773), 557–561 (2006).
[CrossRef] [PubMed]

Lee, X.-H.

Lee, Y.

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18674–18678 (2012).
[CrossRef] [PubMed]

Legrand, O.

Y. Gambin, O. Legrand, and S. R. Quake, “Microfabricated rubber microscope using soft solid immersion lenses,” Appl. Phys. Lett.88(17), 174102 (2006).
[CrossRef]

Leh, A.

R. Tadmor, P. Bahadur, A. Leh, H. E. N’guessan, R. Jaini, and L. Dang, “Measurement of Lateral Adhesion Forces at the Interface between a Liquid Drop and a Substrate,” Phys. Rev. Lett.103(26), 266101 (2009).
[CrossRef] [PubMed]

Linder, E.

E. Linder, A. Grote, S. Varjo, N. Linder, M. Lebbad, M. Lundin, V. Diwan, J. Hannuksela, and J. Lundin, “On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision,” PLoS Negl. Trop. Dis.7(12), e2547 (2013).
[CrossRef] [PubMed]

Linder, N.

E. Linder, A. Grote, S. Varjo, N. Linder, M. Lebbad, M. Lundin, V. Diwan, J. Hannuksela, and J. Lundin, “On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision,” PLoS Negl. Trop. Dis.7(12), e2547 (2013).
[CrossRef] [PubMed]

Lundin, J.

E. Linder, A. Grote, S. Varjo, N. Linder, M. Lebbad, M. Lundin, V. Diwan, J. Hannuksela, and J. Lundin, “On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision,” PLoS Negl. Trop. Dis.7(12), e2547 (2013).
[CrossRef] [PubMed]

Lundin, M.

E. Linder, A. Grote, S. Varjo, N. Linder, M. Lebbad, M. Lundin, V. Diwan, J. Hannuksela, and J. Lundin, “On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision,” PLoS Negl. Trop. Dis.7(12), e2547 (2013).
[CrossRef] [PubMed]

Maamari, R. N.

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS ONE4(7), e6320 (2009).
[CrossRef] [PubMed]

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett.82(3), 316–318 (2003).
[CrossRef]

McAvoy, B.

S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009).
[CrossRef] [PubMed]

Menzies, S. W.

S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009).
[CrossRef] [PubMed]

Missoni, E.

L. Bellina and E. Missoni, “Mobile cell-phones (M-phones) in telemicroscopy: increasing connectivity of isolated laboratories,” Diagn. Pathol.4(1), 19 (2009).
[CrossRef] [PubMed]

Moreno, I.

Mudanyali, O.

H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical imaging techniques for point-of-care diagnostics,” Lab Chip13(1), 51–67 (2012).
[CrossRef] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. K. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

N’guessan, H. E.

R. Tadmor, P. Bahadur, A. Leh, H. E. N’guessan, R. Jaini, and L. Dang, “Measurement of Lateral Adhesion Forces at the Interface between a Liquid Drop and a Substrate,” Phys. Rev. Lett.103(26), 266101 (2009).
[CrossRef] [PubMed]

Oh, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. K. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Ozcan, A.

H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical imaging techniques for point-of-care diagnostics,” Lab Chip13(1), 51–67 (2012).
[CrossRef] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. K. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Oztoprak, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. K. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Park, S.

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18674–18678 (2012).
[CrossRef] [PubMed]

Prentiss, M. G.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

Quake, S. R.

Y. Gambin, O. Legrand, and S. R. Quake, “Microfabricated rubber microscope using soft solid immersion lenses,” Appl. Phys. Lett.88(17), 174102 (2006).
[CrossRef]

Reid, G.

S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009).
[CrossRef] [PubMed]

Ren, H.

H. Ren, S. Xu, and S.-T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun.283(17), 3255–3258 (2010).
[CrossRef]

Sencan, I.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. K. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Seo, S. K.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. K. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Shahid, K. R.

S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009).
[CrossRef] [PubMed]

Staples, M.

S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009).
[CrossRef] [PubMed]

Sun, C.-C.

Switz, N. A.

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS ONE4(7), e6320 (2009).
[CrossRef] [PubMed]

Tadmor, R.

R. Tadmor, P. Bahadur, A. Leh, H. E. N’guessan, R. Jaini, and L. Dang, “Measurement of Lateral Adhesion Forces at the Interface between a Liquid Drop and a Substrate,” Phys. Rev. Lett.103(26), 266101 (2009).
[CrossRef] [PubMed]

Tolley, P.

P. Tolley, “Polymer optics gain respect,” Photon. Spectra37, 76–79 (2003).

Tseng, D.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. K. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Varjo, S.

E. Linder, A. Grote, S. Varjo, N. Linder, M. Lebbad, M. Lundin, V. Diwan, J. Hannuksela, and J. Lundin, “On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision,” PLoS Negl. Trop. Dis.7(12), e2547 (2013).
[CrossRef] [PubMed]

Ward, A. M.

S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009).
[CrossRef] [PubMed]

Whitesides, G. M.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

Wilbur, J. L.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

Wu, S.-T.

H. Ren, S. Xu, and S.-T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun.283(17), 3255–3258 (2010).
[CrossRef]

Xu, S.

H. Ren, S. Xu, and S.-T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun.283(17), 3255–3258 (2010).
[CrossRef]

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett.82(3), 316–318 (2003).
[CrossRef]

Zheng, G.

Zhu, H.

H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical imaging techniques for point-of-care diagnostics,” Lab Chip13(1), 51–67 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

Y. Gambin, O. Legrand, and S. R. Quake, “Microfabricated rubber microscope using soft solid immersion lenses,” Appl. Phys. Lett.88(17), 174102 (2006).
[CrossRef]

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett.82(3), 316–318 (2003).
[CrossRef]

Br. J. Dermatol. (1)

S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009).
[CrossRef] [PubMed]

Chem. Mater. (1)

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

Diagn. Pathol. (1)

L. Bellina and E. Missoni, “Mobile cell-phones (M-phones) in telemicroscopy: increasing connectivity of isolated laboratories,” Diagn. Pathol.4(1), 19 (2009).
[CrossRef] [PubMed]

J. Opt. (1)

F. A. Chowdhury and K. J. Chau, “Variable focus microscopy using a suspended water droplet,” J. Opt.14(5), 055501 (2012).
[CrossRef]

Lab Chip (2)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. K. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical imaging techniques for point-of-care diagnostics,” Lab Chip13(1), 51–67 (2012).
[CrossRef] [PubMed]

Opt. Commun. (1)

H. Ren, S. Xu, and S.-T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun.283(17), 3255–3258 (2010).
[CrossRef]

Opt. Express (2)

Photon. Spectra (1)

P. Tolley, “Polymer optics gain respect,” Photon. Spectra37, 76–79 (2003).

Phys. Rev. Lett. (1)

R. Tadmor, P. Bahadur, A. Leh, H. E. N’guessan, R. Jaini, and L. Dang, “Measurement of Lateral Adhesion Forces at the Interface between a Liquid Drop and a Substrate,” Phys. Rev. Lett.103(26), 266101 (2009).
[CrossRef] [PubMed]

PLoS Negl. Trop. Dis. (1)

E. Linder, A. Grote, S. Varjo, N. Linder, M. Lebbad, M. Lundin, V. Diwan, J. Hannuksela, and J. Lundin, “On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision,” PLoS Negl. Trop. Dis.7(12), e2547 (2013).
[CrossRef] [PubMed]

PLoS ONE (1)

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS ONE4(7), e6320 (2009).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18674–18678 (2012).
[CrossRef] [PubMed]

Science (1)

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science312(5773), 557–561 (2006).
[CrossRef] [PubMed]

Other (2)

Dow Corning Newest Moldable Optical Silicone Further Expands Options for More Energy Efficient and Reliable LED Lighting Designs,” (2013), http://www.dowcorning.com/content/news/Moldable_Optical_Silicone.aspx .

P. J. Gramann and T. A. Osswald, Injection Molding Handbook (Hanser Gardner Publication Inc, Cincinnati, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparison of the magnification achieved without (a) and with a PDMS lens cured in an upright (b), and inverted (hanging droplet) position (c). The imaging lens (L) is maintained at a distance d1 away from the LCD screen (LCD) and a fixed distance from CMOS camera (CMOS) and the PDMS lenses positioned at imaging distance of du for the upright and di for the inverted hanging droplet lens. (a) shows the image of a magnifying glass displayed with just the imaging lenses L, dlens. (b) and (c) shows the magnified image of a magnifying glass with horizontally and hanging droplet respectively. The hanging droplet (c) shows an image with approximately twice the magnification of the horizontal droplet (b).

Fig. 2
Fig. 2

Inverted additive fabrication from the primary droplet to the additional droplets. (a) Flow chart of the fabrication process. (b) Sequence of steps from the extraction to deposition (inset experimental image) of the PDMS droplet and to the subsequent spread on the surface to form the initial base (white arrow indicate direction of steps). (c) Additional droplet added to the PDMS base and direct inversion of the slide. (d) Sequential deposition of additional inverted droplets increases the curvature of the PDMS layer and increases the apex angle (θ) as shown in the inset images (i) to (iv).

Fig. 3
Fig. 3

Quantification of the imaging resolution of the PDMS lens.. (a) shows the transmission light imaging where light emitted from the LED (green rays) is collimated and diffuses before undergoing diffraction (green solid line and orange dotted line) through the 1951 USAF resolution card (T1 and T2). L1 and L2 indicate the position of the camera imaging lens and PDMS lens respectively. CMOS is the imaging sensor used to capture the diffraction pattern. (b) shows the image taken with just L1. (c) to (f) show the image of the 1951 USAF resolution card taken for PDMS lenses (i) to (iv) shown in Fig. 2(d). The minimal resolvable lines on a USAF 1951 imaged by the PDMS lenses were plotted in (g). (c) –(f) have digital zoom ~4x.

Fig. 4
Fig. 4

Brightfield imaging with PDMS lens on an upright Olympus BX 51 microscope. (a) shows the image of a slice of human colon from a fixed pathology slide taken with the PDMS lens. (b) shows the image of the same sample taken with a 10 × 0.25 NA microscope objective. (c) shows image of pollen grains on a fixed slide (Carolina Biological Supply). (d) shows grating elements on a USAF 1951 target card group (6, 7) taken at different transfer position that are spaced 200 µm apart of each other. Scale Bar (a), (b), (c), (d) 50 µm.

Fig. 5
Fig. 5

Scheme for measurement of the lens for LED collimation with, and without an elastomeric lens. (a) shows the LED with PDMS lens and a fiber-coupled spectrometer setup. The origin point for the LED with and without PDMS lens are indicated by dotted red and blue line, (b) shows the normalized spectrum of the emitted light output with (blue) and without (red) the PDMS lenses. (c) and (d) shows the cross-sectional contour plot of the total emitted light intensity (the sum of the intensity values obtained for each wavelength).

Fig. 6
Fig. 6

Epi-reflectance imaging of stratum corneum layer of a human subject, with and without the PDMS 3D printed microscope device. (a) shows the microscope device attached to a Nexus 4 smartphone. (b) compares the imaging performance on a 1951 USAF resolution card between a non-angled LED illumination (left) and an angled (20°) LED illumination (right) on the smartphone camera resolving 22 µm line (Group 4,4). (c) shows the image of a fingertip taken without the microscope device and (d) showed the magnified image (~60X) of the fingertip using the microscope attachment. Scale bar (c) 1 cm, (d) 500 µm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M= d 1 d u,i ,

Metrics