Abstract

We propose a method to utilize colloidal quantum dots (QDs) as a swept light source for hyperspectral microscopy. The use of QD allows for uniform multicolor emission which covers visible-NIR wavelengths. We used 8 colors of CdSe/ZnS and CdTe/ZnS colloidal quantum dots with the peak emission wavelengths from 520 nm to 800 nm. The QDs are packed in a compact enclosure, composing a low-cost, solid-state swept light source that can be easily used in most microscopes. Multicolor emission from the QDs is simply controlled by digitally switching excitation UVLEDs, eliminating the use of mechanically-driven gratings or filters. We used gold nanoparticles as optical markers for hyperspectral microscopy. Due to the effect of localized surface plasmon resonance, gold nanoparticles demonstrate size and shape-dependent absorption spectra. Employed in a standard microscope, the QD light source enabled multispectral absorption imaging of macrophage cells labeled with gold nanorods and nanospheres.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry43(4), 239–247 (2001).
    [CrossRef] [PubMed]
  2. A. Y. Fong and E. Wachman, “Hyperspectral Imaging for the Life Sciences,” Biophoton. Int.15, 38 (2008).
  3. K. Hoshino, Y. Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang, “Microchip-based immunomagnetic detection of circulating tumor cells,” Lab Chip11(20), 3449–3457 (2011).
    [CrossRef] [PubMed]
  4. J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012).
    [CrossRef] [PubMed]
  5. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
    [CrossRef] [PubMed]
  6. P. P. Joshi, S. J. Yoon, Y. S. Chen, S. Emelianov, and K. V. Sokolov, “Development and optimization of near-IR contrast agents for immune cell tracking,” Biomed. Opt. Express4(11), 2609–2618 (2013).
    [CrossRef] [PubMed]
  7. N. R. Jana, L. Gearheart, and C. Murphy, “Seed‐mediated growth approach for shape‐controlled synthesis of spheroidal and rod‐like gold nanoparticles using a surfactant template,” Adv. Mater.13(18), 1389–1393 (2001).
    [CrossRef]
  8. B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater.15(10), 1957–1962 (2003).
    [CrossRef]
  9. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
    [CrossRef]
  10. Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express18(9), 8867–8878 (2010).
    [CrossRef] [PubMed]
  11. S. Fantini, B. B. Barbieri, E. Gratton, M. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).
  12. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt.39(34), 6498–6507 (2000).
    [CrossRef] [PubMed]
  13. S. Susstrunk, R. Buckley, and S. Swen, “Standard RGB color spaces.” in Proceedings of Color and Imaging Conference, (Society for Imaging Science and Technology, 1999), pp. 127–134.

2013

2012

J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012).
[CrossRef] [PubMed]

2011

K. Hoshino, Y. Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang, “Microchip-based immunomagnetic detection of circulating tumor cells,” Lab Chip11(20), 3449–3457 (2011).
[CrossRef] [PubMed]

2010

2008

A. Y. Fong and E. Wachman, “Hyperspectral Imaging for the Life Sciences,” Biophoton. Int.15, 38 (2008).

2006

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

2003

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

2001

N. R. Jana, L. Gearheart, and C. Murphy, “Seed‐mediated growth approach for shape‐controlled synthesis of spheroidal and rod‐like gold nanoparticles using a surfactant template,” Adv. Mater.13(18), 1389–1393 (2001).
[CrossRef]

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry43(4), 239–247 (2001).
[CrossRef] [PubMed]

2000

1995

S. Fantini, B. B. Barbieri, E. Gratton, M. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).

1968

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
[CrossRef]

Ashfaq, R.

J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012).
[CrossRef] [PubMed]

Barbieri, B. B.

S. Fantini, B. B. Barbieri, E. Gratton, M. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).

Berger, A. J.

Bevilacqua, F.

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
[CrossRef]

Cerussi, A. E.

Chen, Y. S.

Cheng, L.

J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012).
[CrossRef] [PubMed]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

Emelianov, S.

Fantini, S.

S. Fantini, B. B. Barbieri, E. Gratton, M. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
[CrossRef]

Fong, A. Y.

A. Y. Fong and E. Wachman, “Hyperspectral Imaging for the Life Sciences,” Biophoton. Int.15, 38 (2008).

Franceschini, M.

S. Fantini, B. B. Barbieri, E. Gratton, M. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).

Frenkel, E. P.

J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012).
[CrossRef] [PubMed]

K. Hoshino, Y. Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang, “Microchip-based immunomagnetic detection of circulating tumor cells,” Lab Chip11(20), 3449–3457 (2011).
[CrossRef] [PubMed]

Frey, W.

Garner, H. R.

J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012).
[CrossRef] [PubMed]

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry43(4), 239–247 (2001).
[CrossRef] [PubMed]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. Murphy, “Seed‐mediated growth approach for shape‐controlled synthesis of spheroidal and rod‐like gold nanoparticles using a surfactant template,” Adv. Mater.13(18), 1389–1393 (2001).
[CrossRef]

Gratton, E.

S. Fantini, B. B. Barbieri, E. Gratton, M. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).

Homan, K.

Hoshino, K.

K. Hoshino, Y. Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang, “Microchip-based immunomagnetic detection of circulating tumor cells,” Lab Chip11(20), 3449–3457 (2011).
[CrossRef] [PubMed]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Huang, Y. Y.

K. Hoshino, Y. Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang, “Microchip-based immunomagnetic detection of circulating tumor cells,” Lab Chip11(20), 3449–3457 (2011).
[CrossRef] [PubMed]

Huebschman, M.

K. Hoshino, Y. Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang, “Microchip-based immunomagnetic detection of circulating tumor cells,” Lab Chip11(20), 3449–3457 (2011).
[CrossRef] [PubMed]

Huebschman, M. L.

J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012).
[CrossRef] [PubMed]

Hughes, G. A.

J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012).
[CrossRef] [PubMed]

Jakubowski, D.

Jana, N. R.

N. R. Jana, L. Gearheart, and C. Murphy, “Seed‐mediated growth approach for shape‐controlled synthesis of spheroidal and rod‐like gold nanoparticles using a surfactant template,” Adv. Mater.13(18), 1389–1393 (2001).
[CrossRef]

Joshi, P. P.

Kim, S.

Kruizinga, P.

Lane, N.

K. Hoshino, Y. Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang, “Microchip-based immunomagnetic detection of circulating tumor cells,” Lab Chip11(20), 3449–3457 (2011).
[CrossRef] [PubMed]

Lane, N. L.

J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012).
[CrossRef] [PubMed]

Lin, A. T.

J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012).
[CrossRef] [PubMed]

Liu, H.

J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012).
[CrossRef] [PubMed]

Maier, J. S.

S. Fantini, B. B. Barbieri, E. Gratton, M. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).

Murphy, C.

N. R. Jana, L. Gearheart, and C. Murphy, “Seed‐mediated growth approach for shape‐controlled synthesis of spheroidal and rod‐like gold nanoparticles using a surfactant template,” Adv. Mater.13(18), 1389–1393 (2001).
[CrossRef]

Nielsen, T.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry43(4), 239–247 (2001).
[CrossRef] [PubMed]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Rana, D. R.

J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012).
[CrossRef] [PubMed]

Ruch, R.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry43(4), 239–247 (2001).
[CrossRef] [PubMed]

Schultz, R. A.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry43(4), 239–247 (2001).
[CrossRef] [PubMed]

Sokolov, K.

Sokolov, K. V.

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
[CrossRef]

Tromberg, B. J.

Uhr, J. W.

J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012).
[CrossRef] [PubMed]

K. Hoshino, Y. Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang, “Microchip-based immunomagnetic detection of circulating tumor cells,” Lab Chip11(20), 3449–3457 (2011).
[CrossRef] [PubMed]

Wachman, E.

A. Y. Fong and E. Wachman, “Hyperspectral Imaging for the Life Sciences,” Biophoton. Int.15, 38 (2008).

Walker, S. A.

S. Fantini, B. B. Barbieri, E. Gratton, M. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).

Wyatt, R.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry43(4), 239–247 (2001).
[CrossRef] [PubMed]

Yoon, S. J.

Zavaleta, J. R.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry43(4), 239–247 (2001).
[CrossRef] [PubMed]

Zhang, X.

K. Hoshino, Y. Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang, “Microchip-based immunomagnetic detection of circulating tumor cells,” Lab Chip11(20), 3449–3457 (2011).
[CrossRef] [PubMed]

Zhang, X. J.

J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012).
[CrossRef] [PubMed]

Adv. Mater.

N. R. Jana, L. Gearheart, and C. Murphy, “Seed‐mediated growth approach for shape‐controlled synthesis of spheroidal and rod‐like gold nanoparticles using a surfactant template,” Adv. Mater.13(18), 1389–1393 (2001).
[CrossRef]

Appl. Opt.

Biomed. Opt. Express

Biophoton. Int.

A. Y. Fong and E. Wachman, “Hyperspectral Imaging for the Life Sciences,” Biophoton. Int.15, 38 (2008).

Chem. Mater.

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

Cytometry

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry43(4), 239–247 (2001).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

J. Colloid Interface Sci.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
[CrossRef]

Lab Chip

K. Hoshino, Y. Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang, “Microchip-based immunomagnetic detection of circulating tumor cells,” Lab Chip11(20), 3449–3457 (2011).
[CrossRef] [PubMed]

Opt. Eng.

S. Fantini, B. B. Barbieri, E. Gratton, M. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).

Opt. Express

Transl. Res.

J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012).
[CrossRef] [PubMed]

Other

S. Susstrunk, R. Buckley, and S. Swen, “Standard RGB color spaces.” in Proceedings of Color and Imaging Conference, (Society for Imaging Science and Technology, 1999), pp. 127–134.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of QD excitation setup. (a) Typical hyperspectral microscopes consisting of a color wheel (top) or a mechanical stage (bottom). The figures are adapted from [2]. (b) The light source using colloidal QDs. Emission of 520 nm-800 nm can be chosen by digital on-off control of the excitation UVLEDs. (c) Emission spectra of the QD light source3. Gold nanorods and nanospheres.

Fig. 2
Fig. 2

TEM micrographs of silica coated (a) nanorods and (b) nanosphere. (c) Transmission spectra of (top) nanorods and (bottom) nanospheres suspended in buffer solutions.

Fig. 3
Fig. 3

Theoretical analysis of spectral resolution. (a) Emission spectra of two models of the QD light source. QD spectra 1 uniformly cover the spectral range of 520 – 800 nm, while QD spectra 2 are based on the measured value shown in Fig. 1(c). (b) Procedure of the theoretical analysis. A transmission spectrum can be reconstructed from the values measured with the multicolor QDs. (c) Transmission spectra of different types of gold nanorods are reconstructed using QD spectra 1 and QD spectra 2.

Fig. 4
Fig. 4

Macrophage cells stained with nanorods (top images) and nanospheres (bottom images). (a) Cell suspensions. (b) Microscopic RGB images. (c) Hyperspectral images. The peak wavelength for each pixel is shown with a color indicated in the color bar.

Fig. 5
Fig. 5

Hyperspectral images taken with the QD swept light source for (a) cells stained with nanorods (b) cells stained with nanospheres. The eight images shown on top are taken with the eight colors of the QD light source. Absorbance calculated from the images is plotted along with the curve from the reference hyperspectral microscope measured for the same region (circled in each panel). Scale bars = 20 µm

Metrics