Abstract

We investigate the dynamics of a vesicle suspension under shear flow between plates using DHM with a spatially reduced coherent source. Holograms are grabbed at a frequency of 24 frames/sec. The distribution of the vesicle suspension is obtained after numerical processing of the digital holograms sequence resulting in a 4D distribution. Obtaining this distribution is not straightforward and requires special processing to automate the analysis. We present an original method that fully automates the analysis and provides distributions that are further analyzed to extract physical properties of the fluid. Details of the numerical implementation, as well as sample experimental results are presented.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
Influence of cell shape and aggregate formation on the optical properties of flowing whole blood

Annika M. K. Enejder, Johannes Swartling, Prakasa Aruna, and Stefan Andersson-Engels
Appl. Opt. 42(7) 1384-1394 (2003)

Extended focused imaging of a microparticle field with digital holographic microscopy

Maciej Antkowiak, Natacha Callens, Catherine Yourassowsky, and Frank Dubois
Opt. Lett. 33(14) 1626-1628 (2008)

Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography

Christophe Minetti, Natacha Callens, Gwennou Coupier, Thomas Podgorski, and Frank Dubois
Appl. Opt. 47(29) 5305-5314 (2008)

References

  • View by:
  • |
  • |
  • |

  1. C. Minetti and C. Buffone, “Three-dimensional Marangoni cell in self-induced evaporating cooling unveiled by digital holographic microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 013007 (2014).
    [Crossref] [PubMed]
  2. Y. Yang, G. Li, L. Tang, and L. Huang, “Integrated gray-level gradient method applied for the extraction of three-dimensional velocity fields of sprays in in-line digital holography,” Appl. Opt. 51(2), 255–267 (2012).
    [Crossref] [PubMed]
  3. I. Moon, B. Javidi, F. Yi, D. Boss, and P. Marquet, “Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells,” Opt. Express 20(9), 10295–10309 (2012).
    [Crossref] [PubMed]
  4. I. Moon, F. Yi, Y. H. Lee, B. Javidi, D. Boss, and P. Marquet, “Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods,” Opt. Express 21(25), 30947–30957 (2013).
    [Crossref] [PubMed]
  5. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
    [Crossref] [PubMed]
  6. L. Miccio, A. Finizio, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization,” Biomed. Opt. Express 2(2), 331–344 (2011).
    [Crossref] [PubMed]
  7. Y.-S. Choi and S.-J. Lee, “Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy,” Appl. Opt. 48(16), 2983–2990 (2009).
    [Crossref] [PubMed]
  8. A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: Application to the monitoring of drinking water resources,” Appl. Opt. 52(1), A68–A80 (2013).
    [Crossref] [PubMed]
  9. R. Liu, D. K. Dey, D. Boss, P. Marquet, and B. Javidi, “Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis,” J. Opt. Soc. Am. A 28(6), 1204–1210 (2011).
    [Crossref] [PubMed]
  10. P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, “On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change,” Opt. Express 20(27), 28485–28493 (2012).
    [Crossref] [PubMed]
  11. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
    [Crossref] [PubMed]
  12. F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
    [Crossref] [PubMed]
  13. J.-M. Poiseuille, C. R. Hebd. Seances Acad. Sci.1, 554 (1835).
  14. N. Callens, C. Minetti, G. Coupier, M.-A. Mader, F. Dubois, C. Misbah, and T. Podgorski, “Hydrodynamical lift of vesicles undear shear flow in microgravity,” Europhys. Lett. 83(2), 24002 (2008).
    [Crossref]
  15. C. Minetti, N. Callens, G. Coupier, T. Podgorski, and F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47(29), 5305–5314 (2008).
    [Crossref] [PubMed]
  16. V. Vitkova, M.-A. Mader, B. Polack, C. Misbah, and T. Podgorski, “Micro-macro link in rheology of erythrocyte and vesicle suspensions,” Biophys. J. 95(6), L33–L35 (2008).
    [Crossref] [PubMed]
  17. K. H. de Haas, C. Blom, D. van den Ende, M. H. G. Duits, B. Haveman, and J. Mellema, “Rheological behavior of a dispersion of small lipid bilayer vesicles,” Langmuir 13(25), 6658–6668 (1997).
    [Crossref]
  18. M. Abkarian, C. Lartigue, and A. Viallat, “Tank Treading and Unbinding of Deformable Vesicles in Shear Flow: Determination of the Lift Force,” Phys. Rev. Lett. 88(6), 068103 (2002).
    [Crossref] [PubMed]
  19. V. Kantsler, E. Segre, and V. Steinberg, “Dynamics of interacting vesicles and rheology of vesicle suspension in shear flow,” Europhys. Lett. 82(5), 58005 (2008).
    [Crossref]
  20. G. Coupier, B. Kaoui, T. Podgorski, and C. Misbah, “Noninertial lateral migration of vesicles in bounded Poiseuille flow,” Phys. Fluids 20(11), 111702 (2008).
    [Crossref]
  21. J. Deschamps, V. Kantsler, and V. Steinberg, “Phase Diagram of Single Vesicle Dynamical States in Shear Flow,” Phys. Rev. Lett. 102(11), 118105 (2009).
    [Crossref] [PubMed]
  22. J. Deschamps, V. Kantsler, E. Segre, and V. Steinberg, “Dynamics of a vesicle in general flow,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11444–11447 (2009).
    [Crossref] [PubMed]
  23. H. Noguchi, G. Gompper, L. Schmid, A. Wixforth, and T. Franke, “Dynamics of fluid vesicles in flow through structured microchannels,” Europhys. Lett. 89(2), 28002 (2010).
    [Crossref]
  24. G. Coupier, A. Farutin, C. Minetti, T. Podgorski, and C. Misbah, “Shape Diagram of Vesicles in Poiseuille Flow,” Phys. Rev. Lett. 108(17), 178106 (2012).
    [Crossref] [PubMed]
  25. M. Levant, J. Deschamps, E. Afik, and V. Steinberg, “Characteristic spatial scale of vesicle pair interactions in a plane linear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(5), 056306 (2012).
    [Crossref] [PubMed]
  26. P.-Y. Gires, A. Srivastav, C. Misbah, T. Podgorski, and G. Coupier, “Pairwise hydrodynamic interactions and diffusion in a vesicle suspension,” Phys. Fluids 26(1), 013304 (2014).
    [Crossref]
  27. P. Olla, “The Lift on a Tank-Treading Ellipsoidal Cell in a Shear Flow,” J. Phys. II 7(10), 1533–1540 (1997).
    [Crossref]
  28. V. V. Lebedev, K. S. Turitsyn, and S. S. Vergeles, “Dynamics of Nearly Spherical Vesicles in an External Flow,” Phys. Rev. Lett. 99(21), 218101 (2007).
    [Crossref] [PubMed]
  29. G. Danker and C. Misbah, “Rheology of a Dilute Suspension of Vesicles,” Phys. Rev. Lett. 98(8), 088104 (2007).
    [Crossref] [PubMed]
  30. B. Kaoui, G. Biros, and C. Misbah, “Why Do Red Blood Cells Have Asymmetric Shapes Even in a Symmetric Flow?” Phys. Rev. Lett. 103(18), 188101 (2009).
    [Crossref] [PubMed]
  31. H. Zhao, A. Spann, and E. S. G. Shaqfeh, “The dynamics of a vesicle in a wall-bound shear flow,” Phys. Fluids 23(12), 121901 (2011).
    [Crossref]
  32. T. Biben, A. Farutin, and C. Misbah, “Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 031921 (2011).
    [Crossref] [PubMed]
  33. A. Farutin and C. Misbah, “Squaring, Parity Breaking, and S Tumbling of Vesicles under Shear Flow,” Phys. Rev. Lett. 109(24), 248106 (2012).
    [Crossref] [PubMed]
  34. A. Farutin and C. Misbah, “Rheology of vesicle suspensions under combined steady and oscillating shear flows,” J. Fluid Mech. 700, 362–381 (2012).
    [Crossref]
  35. G. Boedec, M. Jaeger, and M. Leonetti, “Settling of a vesicle in the limit of quasispherical shapes,” J. Fluid Mech. 690, 227–261 (2012).
    [Crossref]
  36. A. Farutin and C. Misbah, “Analytical and Numerical Study of Three Main Migration Laws for Vesicles Under Flow,” Phys. Rev. Lett. 110(10), 108104 (2013).
    [Crossref] [PubMed]
  37. D. Abreu and U. Seifert, “Noisy Nonlinear Dynamics of Vesicles in Flow,” Phys. Rev. Lett. 110(23), 238103 (2013).
    [Crossref]
  38. H. Zhao and E. S. G. Shaqfeh, “The dynamics of a non-dilute vesicle suspension in a simple shear flow,” J. Fluid Mech. 725, 709–731 (2013).
    [Crossref]
  39. T. Podgorski, N. Callens, C. Minetti, G. Coupier, F. Dubois, and C. Misbah, “Dynamics of vesicle suspension in shear flow between walls,” Microgravity Sci. Technol. 23(2), 263–270 (2011).
    [Crossref]
  40. A. S. Popel and P. C. Johnson, “Microcirculation and hemorheology,” Annu. Rev. Fluid Mech. 37(1), 43–69 (2005).
    [Crossref] [PubMed]
  41. M. I. Angelova, S. Soleau, P. Meleard, J.-F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external A.C. electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127 (1992).
  42. J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21(22), 26432–26449 (2013).
    [Crossref] [PubMed]
  43. D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52(16), 3790–3801 (2013).
    [Crossref] [PubMed]
  44. T. Kreis, “Digital holographic interference phase measurement using the Fourier-transform method,” J. Opt. Soc. Am. A 3(6), 847–855 (1986).
    [Crossref]
  45. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–180 (1982).
    [Crossref]
  46. D. C. Ghigliz and M. D. Pritt, Two-Dimensional Phase unwrapping. Theory, Algorithms, and Sofware (Wiley-Interscience 1998).
  47. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177–3190 (2006).
    [Crossref] [PubMed]
  48. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31(10), 1405–1407 (2006).
    [Crossref] [PubMed]
  49. F. Dubois, O. Monnom, C. Yourassowsky, and J.-C. Legros, “Border processing in digital holography by extension of the digital hologram and reduction of the higher spatial frequencies,” Appl. Opt. 41(14), 2621–2626 (2002).
    [Crossref] [PubMed]
  50. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14(13), 5895–5908 (2006).
    [Crossref] [PubMed]
  51. A. El Mallahi and F. Dubois, “Separation of overlapped particles in digital holographic microscopy,” Opt. Express 21(5), 6466–6479 (2013).
    [Crossref] [PubMed]
  52. A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express 19(7), 6684–6698 (2011).
    [Crossref] [PubMed]
  53. D. Mumford and J. Shah, “Optimal approximation by piece-wise smooth functions and associated variational problems,” Commun. Pure Appl. Math. 42(5), 577–685 (1989).
    [Crossref]
  54. O. Monnom, F. Dubois, C. Yourassowsky, and J. C. Legros, “Improvement in visibility of an in-focus reconstructed image in digital holography by reduction of the influence of out-of-focus objects,” Appl. Opt. 44(18), 3827–3832 (2005).
    [Crossref] [PubMed]
  55. X. Grandchamp, G. Coupier, A. Srivastav, C. Minetti, and T. Podgorski, “Lift and down-gradient shear-induced diffusion in red blood cell suspensions,” Phys. Rev. Lett. 110(10), 108101 (2013).
    [Crossref] [PubMed]
  56. A. Srivastav, T. Podgorski, and G. Coupier, “Efficiency of size-dependent particle separation by pinched flow fractionation,” Microfluid. Nanofluid. 13(5), 697–701 (2012).
    [Crossref]
  57. M. Yamada, M. Nakashima, and M. Seki, “Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel,” Anal. Chem. 76(18), 5465–5471 (2004).
    [Crossref] [PubMed]
  58. F. Da Cunha and E. Hinch, “Shear-induced dispersion in a dilute suspension of rough spheres,” J. Fluid Mech. 309(-1), 211–223 (1996).
    [Crossref]
  59. R. E. Pattle, “Diffusion from an instantaneous point source with a concentration-dependent coefficient,” Q. J. Mech. Appl. Math. 12(4), 407–409 (1959).
    [Crossref]

2014 (2)

C. Minetti and C. Buffone, “Three-dimensional Marangoni cell in self-induced evaporating cooling unveiled by digital holographic microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 013007 (2014).
[Crossref] [PubMed]

P.-Y. Gires, A. Srivastav, C. Misbah, T. Podgorski, and G. Coupier, “Pairwise hydrodynamic interactions and diffusion in a vesicle suspension,” Phys. Fluids 26(1), 013304 (2014).
[Crossref]

2013 (9)

I. Moon, F. Yi, Y. H. Lee, B. Javidi, D. Boss, and P. Marquet, “Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods,” Opt. Express 21(25), 30947–30957 (2013).
[Crossref] [PubMed]

A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: Application to the monitoring of drinking water resources,” Appl. Opt. 52(1), A68–A80 (2013).
[Crossref] [PubMed]

A. Farutin and C. Misbah, “Analytical and Numerical Study of Three Main Migration Laws for Vesicles Under Flow,” Phys. Rev. Lett. 110(10), 108104 (2013).
[Crossref] [PubMed]

D. Abreu and U. Seifert, “Noisy Nonlinear Dynamics of Vesicles in Flow,” Phys. Rev. Lett. 110(23), 238103 (2013).
[Crossref]

H. Zhao and E. S. G. Shaqfeh, “The dynamics of a non-dilute vesicle suspension in a simple shear flow,” J. Fluid Mech. 725, 709–731 (2013).
[Crossref]

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21(22), 26432–26449 (2013).
[Crossref] [PubMed]

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52(16), 3790–3801 (2013).
[Crossref] [PubMed]

A. El Mallahi and F. Dubois, “Separation of overlapped particles in digital holographic microscopy,” Opt. Express 21(5), 6466–6479 (2013).
[Crossref] [PubMed]

X. Grandchamp, G. Coupier, A. Srivastav, C. Minetti, and T. Podgorski, “Lift and down-gradient shear-induced diffusion in red blood cell suspensions,” Phys. Rev. Lett. 110(10), 108101 (2013).
[Crossref] [PubMed]

2012 (9)

A. Srivastav, T. Podgorski, and G. Coupier, “Efficiency of size-dependent particle separation by pinched flow fractionation,” Microfluid. Nanofluid. 13(5), 697–701 (2012).
[Crossref]

Y. Yang, G. Li, L. Tang, and L. Huang, “Integrated gray-level gradient method applied for the extraction of three-dimensional velocity fields of sprays in in-line digital holography,” Appl. Opt. 51(2), 255–267 (2012).
[Crossref] [PubMed]

I. Moon, B. Javidi, F. Yi, D. Boss, and P. Marquet, “Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells,” Opt. Express 20(9), 10295–10309 (2012).
[Crossref] [PubMed]

P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, “On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change,” Opt. Express 20(27), 28485–28493 (2012).
[Crossref] [PubMed]

G. Coupier, A. Farutin, C. Minetti, T. Podgorski, and C. Misbah, “Shape Diagram of Vesicles in Poiseuille Flow,” Phys. Rev. Lett. 108(17), 178106 (2012).
[Crossref] [PubMed]

M. Levant, J. Deschamps, E. Afik, and V. Steinberg, “Characteristic spatial scale of vesicle pair interactions in a plane linear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(5), 056306 (2012).
[Crossref] [PubMed]

A. Farutin and C. Misbah, “Squaring, Parity Breaking, and S Tumbling of Vesicles under Shear Flow,” Phys. Rev. Lett. 109(24), 248106 (2012).
[Crossref] [PubMed]

A. Farutin and C. Misbah, “Rheology of vesicle suspensions under combined steady and oscillating shear flows,” J. Fluid Mech. 700, 362–381 (2012).
[Crossref]

G. Boedec, M. Jaeger, and M. Leonetti, “Settling of a vesicle in the limit of quasispherical shapes,” J. Fluid Mech. 690, 227–261 (2012).
[Crossref]

2011 (6)

H. Zhao, A. Spann, and E. S. G. Shaqfeh, “The dynamics of a vesicle in a wall-bound shear flow,” Phys. Fluids 23(12), 121901 (2011).
[Crossref]

T. Biben, A. Farutin, and C. Misbah, “Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 031921 (2011).
[Crossref] [PubMed]

R. Liu, D. K. Dey, D. Boss, P. Marquet, and B. Javidi, “Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis,” J. Opt. Soc. Am. A 28(6), 1204–1210 (2011).
[Crossref] [PubMed]

L. Miccio, A. Finizio, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization,” Biomed. Opt. Express 2(2), 331–344 (2011).
[Crossref] [PubMed]

A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express 19(7), 6684–6698 (2011).
[Crossref] [PubMed]

T. Podgorski, N. Callens, C. Minetti, G. Coupier, F. Dubois, and C. Misbah, “Dynamics of vesicle suspension in shear flow between walls,” Microgravity Sci. Technol. 23(2), 263–270 (2011).
[Crossref]

2010 (1)

H. Noguchi, G. Gompper, L. Schmid, A. Wixforth, and T. Franke, “Dynamics of fluid vesicles in flow through structured microchannels,” Europhys. Lett. 89(2), 28002 (2010).
[Crossref]

2009 (4)

B. Kaoui, G. Biros, and C. Misbah, “Why Do Red Blood Cells Have Asymmetric Shapes Even in a Symmetric Flow?” Phys. Rev. Lett. 103(18), 188101 (2009).
[Crossref] [PubMed]

J. Deschamps, V. Kantsler, and V. Steinberg, “Phase Diagram of Single Vesicle Dynamical States in Shear Flow,” Phys. Rev. Lett. 102(11), 118105 (2009).
[Crossref] [PubMed]

J. Deschamps, V. Kantsler, E. Segre, and V. Steinberg, “Dynamics of a vesicle in general flow,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11444–11447 (2009).
[Crossref] [PubMed]

Y.-S. Choi and S.-J. Lee, “Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy,” Appl. Opt. 48(16), 2983–2990 (2009).
[Crossref] [PubMed]

2008 (5)

N. Callens, C. Minetti, G. Coupier, M.-A. Mader, F. Dubois, C. Misbah, and T. Podgorski, “Hydrodynamical lift of vesicles undear shear flow in microgravity,” Europhys. Lett. 83(2), 24002 (2008).
[Crossref]

C. Minetti, N. Callens, G. Coupier, T. Podgorski, and F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47(29), 5305–5314 (2008).
[Crossref] [PubMed]

V. Vitkova, M.-A. Mader, B. Polack, C. Misbah, and T. Podgorski, “Micro-macro link in rheology of erythrocyte and vesicle suspensions,” Biophys. J. 95(6), L33–L35 (2008).
[Crossref] [PubMed]

V. Kantsler, E. Segre, and V. Steinberg, “Dynamics of interacting vesicles and rheology of vesicle suspension in shear flow,” Europhys. Lett. 82(5), 58005 (2008).
[Crossref]

G. Coupier, B. Kaoui, T. Podgorski, and C. Misbah, “Noninertial lateral migration of vesicles in bounded Poiseuille flow,” Phys. Fluids 20(11), 111702 (2008).
[Crossref]

2007 (2)

V. V. Lebedev, K. S. Turitsyn, and S. S. Vergeles, “Dynamics of Nearly Spherical Vesicles in an External Flow,” Phys. Rev. Lett. 99(21), 218101 (2007).
[Crossref] [PubMed]

G. Danker and C. Misbah, “Rheology of a Dilute Suspension of Vesicles,” Phys. Rev. Lett. 98(8), 088104 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (2)

2004 (3)

2002 (2)

M. Abkarian, C. Lartigue, and A. Viallat, “Tank Treading and Unbinding of Deformable Vesicles in Shear Flow: Determination of the Lift Force,” Phys. Rev. Lett. 88(6), 068103 (2002).
[Crossref] [PubMed]

F. Dubois, O. Monnom, C. Yourassowsky, and J.-C. Legros, “Border processing in digital holography by extension of the digital hologram and reduction of the higher spatial frequencies,” Appl. Opt. 41(14), 2621–2626 (2002).
[Crossref] [PubMed]

1999 (1)

1997 (2)

K. H. de Haas, C. Blom, D. van den Ende, M. H. G. Duits, B. Haveman, and J. Mellema, “Rheological behavior of a dispersion of small lipid bilayer vesicles,” Langmuir 13(25), 6658–6668 (1997).
[Crossref]

P. Olla, “The Lift on a Tank-Treading Ellipsoidal Cell in a Shear Flow,” J. Phys. II 7(10), 1533–1540 (1997).
[Crossref]

1996 (1)

F. Da Cunha and E. Hinch, “Shear-induced dispersion in a dilute suspension of rough spheres,” J. Fluid Mech. 309(-1), 211–223 (1996).
[Crossref]

1992 (1)

M. I. Angelova, S. Soleau, P. Meleard, J.-F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external A.C. electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127 (1992).

1989 (1)

D. Mumford and J. Shah, “Optimal approximation by piece-wise smooth functions and associated variational problems,” Commun. Pure Appl. Math. 42(5), 577–685 (1989).
[Crossref]

1986 (1)

1982 (1)

1959 (1)

R. E. Pattle, “Diffusion from an instantaneous point source with a concentration-dependent coefficient,” Q. J. Mech. Appl. Math. 12(4), 407–409 (1959).
[Crossref]

Abkarian, M.

M. Abkarian, C. Lartigue, and A. Viallat, “Tank Treading and Unbinding of Deformable Vesicles in Shear Flow: Determination of the Lift Force,” Phys. Rev. Lett. 88(6), 068103 (2002).
[Crossref] [PubMed]

Abreu, D.

D. Abreu and U. Seifert, “Noisy Nonlinear Dynamics of Vesicles in Flow,” Phys. Rev. Lett. 110(23), 238103 (2013).
[Crossref]

Afik, E.

M. Levant, J. Deschamps, E. Afik, and V. Steinberg, “Characteristic spatial scale of vesicle pair interactions in a plane linear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(5), 056306 (2012).
[Crossref] [PubMed]

Alferi, D.

Angelova, M. I.

M. I. Angelova, S. Soleau, P. Meleard, J.-F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external A.C. electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127 (1992).

Aspert, N.

Balduzzi, D.

Biben, T.

T. Biben, A. Farutin, and C. Misbah, “Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 031921 (2011).
[Crossref] [PubMed]

Biros, G.

B. Kaoui, G. Biros, and C. Misbah, “Why Do Red Blood Cells Have Asymmetric Shapes Even in a Symmetric Flow?” Phys. Rev. Lett. 103(18), 188101 (2009).
[Crossref] [PubMed]

Blom, C.

K. H. de Haas, C. Blom, D. van den Ende, M. H. G. Duits, B. Haveman, and J. Mellema, “Rheological behavior of a dispersion of small lipid bilayer vesicles,” Langmuir 13(25), 6658–6668 (1997).
[Crossref]

Boedec, G.

G. Boedec, M. Jaeger, and M. Leonetti, “Settling of a vesicle in the limit of quasispherical shapes,” J. Fluid Mech. 690, 227–261 (2012).
[Crossref]

Boss, D.

Bothorel, P.

M. I. Angelova, S. Soleau, P. Meleard, J.-F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external A.C. electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127 (1992).

Bourquin, S.

Buffone, C.

C. Minetti and C. Buffone, “Three-dimensional Marangoni cell in self-induced evaporating cooling unveiled by digital holographic microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 013007 (2014).
[Crossref] [PubMed]

Callens, N.

T. Podgorski, N. Callens, C. Minetti, G. Coupier, F. Dubois, and C. Misbah, “Dynamics of vesicle suspension in shear flow between walls,” Microgravity Sci. Technol. 23(2), 263–270 (2011).
[Crossref]

N. Callens, C. Minetti, G. Coupier, M.-A. Mader, F. Dubois, C. Misbah, and T. Podgorski, “Hydrodynamical lift of vesicles undear shear flow in microgravity,” Europhys. Lett. 83(2), 24002 (2008).
[Crossref]

C. Minetti, N. Callens, G. Coupier, T. Podgorski, and F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47(29), 5305–5314 (2008).
[Crossref] [PubMed]

F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14(13), 5895–5908 (2006).
[Crossref] [PubMed]

Carl, D.

Charrière, F.

Chen, J.

Choi, Y.-S.

Colomb, T.

Coupier, G.

P.-Y. Gires, A. Srivastav, C. Misbah, T. Podgorski, and G. Coupier, “Pairwise hydrodynamic interactions and diffusion in a vesicle suspension,” Phys. Fluids 26(1), 013304 (2014).
[Crossref]

X. Grandchamp, G. Coupier, A. Srivastav, C. Minetti, and T. Podgorski, “Lift and down-gradient shear-induced diffusion in red blood cell suspensions,” Phys. Rev. Lett. 110(10), 108101 (2013).
[Crossref] [PubMed]

A. Srivastav, T. Podgorski, and G. Coupier, “Efficiency of size-dependent particle separation by pinched flow fractionation,” Microfluid. Nanofluid. 13(5), 697–701 (2012).
[Crossref]

G. Coupier, A. Farutin, C. Minetti, T. Podgorski, and C. Misbah, “Shape Diagram of Vesicles in Poiseuille Flow,” Phys. Rev. Lett. 108(17), 178106 (2012).
[Crossref] [PubMed]

T. Podgorski, N. Callens, C. Minetti, G. Coupier, F. Dubois, and C. Misbah, “Dynamics of vesicle suspension in shear flow between walls,” Microgravity Sci. Technol. 23(2), 263–270 (2011).
[Crossref]

N. Callens, C. Minetti, G. Coupier, M.-A. Mader, F. Dubois, C. Misbah, and T. Podgorski, “Hydrodynamical lift of vesicles undear shear flow in microgravity,” Europhys. Lett. 83(2), 24002 (2008).
[Crossref]

G. Coupier, B. Kaoui, T. Podgorski, and C. Misbah, “Noninertial lateral migration of vesicles in bounded Poiseuille flow,” Phys. Fluids 20(11), 111702 (2008).
[Crossref]

C. Minetti, N. Callens, G. Coupier, T. Podgorski, and F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47(29), 5305–5314 (2008).
[Crossref] [PubMed]

Cuche, E.

Da Cunha, F.

F. Da Cunha and E. Hinch, “Shear-induced dispersion in a dilute suspension of rough spheres,” J. Fluid Mech. 309(-1), 211–223 (1996).
[Crossref]

Danker, G.

G. Danker and C. Misbah, “Rheology of a Dilute Suspension of Vesicles,” Phys. Rev. Lett. 98(8), 088104 (2007).
[Crossref] [PubMed]

de Haas, K. H.

K. H. de Haas, C. Blom, D. van den Ende, M. H. G. Duits, B. Haveman, and J. Mellema, “Rheological behavior of a dispersion of small lipid bilayer vesicles,” Langmuir 13(25), 6658–6668 (1997).
[Crossref]

De Nicola, S.

De Petrocellis, L.

Depeursinge, C.

Deschamps, J.

M. Levant, J. Deschamps, E. Afik, and V. Steinberg, “Characteristic spatial scale of vesicle pair interactions in a plane linear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(5), 056306 (2012).
[Crossref] [PubMed]

J. Deschamps, V. Kantsler, E. Segre, and V. Steinberg, “Dynamics of a vesicle in general flow,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11444–11447 (2009).
[Crossref] [PubMed]

J. Deschamps, V. Kantsler, and V. Steinberg, “Phase Diagram of Single Vesicle Dynamical States in Shear Flow,” Phys. Rev. Lett. 102(11), 118105 (2009).
[Crossref] [PubMed]

Dey, D. K.

Dubois, F.

A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: Application to the monitoring of drinking water resources,” Appl. Opt. 52(1), A68–A80 (2013).
[Crossref] [PubMed]

A. El Mallahi and F. Dubois, “Separation of overlapped particles in digital holographic microscopy,” Opt. Express 21(5), 6466–6479 (2013).
[Crossref] [PubMed]

A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express 19(7), 6684–6698 (2011).
[Crossref] [PubMed]

T. Podgorski, N. Callens, C. Minetti, G. Coupier, F. Dubois, and C. Misbah, “Dynamics of vesicle suspension in shear flow between walls,” Microgravity Sci. Technol. 23(2), 263–270 (2011).
[Crossref]

N. Callens, C. Minetti, G. Coupier, M.-A. Mader, F. Dubois, C. Misbah, and T. Podgorski, “Hydrodynamical lift of vesicles undear shear flow in microgravity,” Europhys. Lett. 83(2), 24002 (2008).
[Crossref]

C. Minetti, N. Callens, G. Coupier, T. Podgorski, and F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47(29), 5305–5314 (2008).
[Crossref] [PubMed]

F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14(13), 5895–5908 (2006).
[Crossref] [PubMed]

O. Monnom, F. Dubois, C. Yourassowsky, and J. C. Legros, “Improvement in visibility of an in-focus reconstructed image in digital holography by reduction of the influence of out-of-focus objects,” Appl. Opt. 44(18), 3827–3832 (2005).
[Crossref] [PubMed]

F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
[Crossref] [PubMed]

F. Dubois, O. Monnom, C. Yourassowsky, and J.-C. Legros, “Border processing in digital holography by extension of the digital hologram and reduction of the higher spatial frequencies,” Appl. Opt. 41(14), 2621–2626 (2002).
[Crossref] [PubMed]

F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
[Crossref] [PubMed]

Duits, M. H. G.

K. H. de Haas, C. Blom, D. van den Ende, M. H. G. Duits, B. Haveman, and J. Mellema, “Rheological behavior of a dispersion of small lipid bilayer vesicles,” Langmuir 13(25), 6658–6668 (1997).
[Crossref]

El Mallahi, A.

Farutin, A.

A. Farutin and C. Misbah, “Analytical and Numerical Study of Three Main Migration Laws for Vesicles Under Flow,” Phys. Rev. Lett. 110(10), 108104 (2013).
[Crossref] [PubMed]

A. Farutin and C. Misbah, “Squaring, Parity Breaking, and S Tumbling of Vesicles under Shear Flow,” Phys. Rev. Lett. 109(24), 248106 (2012).
[Crossref] [PubMed]

A. Farutin and C. Misbah, “Rheology of vesicle suspensions under combined steady and oscillating shear flows,” J. Fluid Mech. 700, 362–381 (2012).
[Crossref]

G. Coupier, A. Farutin, C. Minetti, T. Podgorski, and C. Misbah, “Shape Diagram of Vesicles in Poiseuille Flow,” Phys. Rev. Lett. 108(17), 178106 (2012).
[Crossref] [PubMed]

T. Biben, A. Farutin, and C. Misbah, “Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 031921 (2011).
[Crossref] [PubMed]

Faucon, J.-F.

M. I. Angelova, S. Soleau, P. Meleard, J.-F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external A.C. electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127 (1992).

Ferraro, P.

Finizio, A.

Franke, T.

H. Noguchi, G. Gompper, L. Schmid, A. Wixforth, and T. Franke, “Dynamics of fluid vesicles in flow through structured microchannels,” Europhys. Lett. 89(2), 28002 (2010).
[Crossref]

Galli, A.

Gao, J.

Gires, P.-Y.

P.-Y. Gires, A. Srivastav, C. Misbah, T. Podgorski, and G. Coupier, “Pairwise hydrodynamic interactions and diffusion in a vesicle suspension,” Phys. Fluids 26(1), 013304 (2014).
[Crossref]

Gompper, G.

H. Noguchi, G. Gompper, L. Schmid, A. Wixforth, and T. Franke, “Dynamics of fluid vesicles in flow through structured microchannels,” Europhys. Lett. 89(2), 28002 (2010).
[Crossref]

Grandchamp, X.

X. Grandchamp, G. Coupier, A. Srivastav, C. Minetti, and T. Podgorski, “Lift and down-gradient shear-induced diffusion in red blood cell suspensions,” Phys. Rev. Lett. 110(10), 108101 (2013).
[Crossref] [PubMed]

Guildenbecher, D. R.

Haveman, B.

K. H. de Haas, C. Blom, D. van den Ende, M. H. G. Duits, B. Haveman, and J. Mellema, “Rheological behavior of a dispersion of small lipid bilayer vesicles,” Langmuir 13(25), 6658–6668 (1997).
[Crossref]

Hinch, E.

F. Da Cunha and E. Hinch, “Shear-induced dispersion in a dilute suspension of rough spheres,” J. Fluid Mech. 309(-1), 211–223 (1996).
[Crossref]

Huang, L.

Iannone, M.

Ina, H.

Istasse, E.

Jaeger, M.

G. Boedec, M. Jaeger, and M. Leonetti, “Settling of a vesicle in the limit of quasispherical shapes,” J. Fluid Mech. 690, 227–261 (2012).
[Crossref]

Javidi, B.

Joannes, L.

Johnson, P. C.

A. S. Popel and P. C. Johnson, “Microcirculation and hemorheology,” Annu. Rev. Fluid Mech. 37(1), 43–69 (2005).
[Crossref] [PubMed]

Kantsler, V.

J. Deschamps, V. Kantsler, and V. Steinberg, “Phase Diagram of Single Vesicle Dynamical States in Shear Flow,” Phys. Rev. Lett. 102(11), 118105 (2009).
[Crossref] [PubMed]

J. Deschamps, V. Kantsler, E. Segre, and V. Steinberg, “Dynamics of a vesicle in general flow,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11444–11447 (2009).
[Crossref] [PubMed]

V. Kantsler, E. Segre, and V. Steinberg, “Dynamics of interacting vesicles and rheology of vesicle suspension in shear flow,” Europhys. Lett. 82(5), 58005 (2008).
[Crossref]

Kaoui, B.

B. Kaoui, G. Biros, and C. Misbah, “Why Do Red Blood Cells Have Asymmetric Shapes Even in a Symmetric Flow?” Phys. Rev. Lett. 103(18), 188101 (2009).
[Crossref] [PubMed]

G. Coupier, B. Kaoui, T. Podgorski, and C. Misbah, “Noninertial lateral migration of vesicles in bounded Poiseuille flow,” Phys. Fluids 20(11), 111702 (2008).
[Crossref]

Kemper, B.

Kobayashi, S.

Kreis, T.

Kühn, J.

Lartigue, C.

M. Abkarian, C. Lartigue, and A. Viallat, “Tank Treading and Unbinding of Deformable Vesicles in Shear Flow: Determination of the Lift Force,” Phys. Rev. Lett. 88(6), 068103 (2002).
[Crossref] [PubMed]

Lebedev, V. V.

V. V. Lebedev, K. S. Turitsyn, and S. S. Vergeles, “Dynamics of Nearly Spherical Vesicles in an External Flow,” Phys. Rev. Lett. 99(21), 218101 (2007).
[Crossref] [PubMed]

Lee, S.-J.

Lee, Y. H.

Legros, J. C.

Legros, J.-C.

Leonetti, M.

G. Boedec, M. Jaeger, and M. Leonetti, “Settling of a vesicle in the limit of quasispherical shapes,” J. Fluid Mech. 690, 227–261 (2012).
[Crossref]

Levant, M.

M. Levant, J. Deschamps, E. Afik, and V. Steinberg, “Characteristic spatial scale of vesicle pair interactions in a plane linear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(5), 056306 (2012).
[Crossref] [PubMed]

Li, G.

Liu, R.

Mader, M.-A.

V. Vitkova, M.-A. Mader, B. Polack, C. Misbah, and T. Podgorski, “Micro-macro link in rheology of erythrocyte and vesicle suspensions,” Biophys. J. 95(6), L33–L35 (2008).
[Crossref] [PubMed]

N. Callens, C. Minetti, G. Coupier, M.-A. Mader, F. Dubois, C. Misbah, and T. Podgorski, “Hydrodynamical lift of vesicles undear shear flow in microgravity,” Europhys. Lett. 83(2), 24002 (2008).
[Crossref]

Marian, A.

Marquet, P.

Meleard, P.

M. I. Angelova, S. Soleau, P. Meleard, J.-F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external A.C. electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127 (1992).

Mellema, J.

K. H. de Haas, C. Blom, D. van den Ende, M. H. G. Duits, B. Haveman, and J. Mellema, “Rheological behavior of a dispersion of small lipid bilayer vesicles,” Langmuir 13(25), 6658–6668 (1997).
[Crossref]

Memmolo, P.

Miccio, L.

Minetti, C.

C. Minetti and C. Buffone, “Three-dimensional Marangoni cell in self-induced evaporating cooling unveiled by digital holographic microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 013007 (2014).
[Crossref] [PubMed]

X. Grandchamp, G. Coupier, A. Srivastav, C. Minetti, and T. Podgorski, “Lift and down-gradient shear-induced diffusion in red blood cell suspensions,” Phys. Rev. Lett. 110(10), 108101 (2013).
[Crossref] [PubMed]

A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: Application to the monitoring of drinking water resources,” Appl. Opt. 52(1), A68–A80 (2013).
[Crossref] [PubMed]

G. Coupier, A. Farutin, C. Minetti, T. Podgorski, and C. Misbah, “Shape Diagram of Vesicles in Poiseuille Flow,” Phys. Rev. Lett. 108(17), 178106 (2012).
[Crossref] [PubMed]

T. Podgorski, N. Callens, C. Minetti, G. Coupier, F. Dubois, and C. Misbah, “Dynamics of vesicle suspension in shear flow between walls,” Microgravity Sci. Technol. 23(2), 263–270 (2011).
[Crossref]

N. Callens, C. Minetti, G. Coupier, M.-A. Mader, F. Dubois, C. Misbah, and T. Podgorski, “Hydrodynamical lift of vesicles undear shear flow in microgravity,” Europhys. Lett. 83(2), 24002 (2008).
[Crossref]

C. Minetti, N. Callens, G. Coupier, T. Podgorski, and F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47(29), 5305–5314 (2008).
[Crossref] [PubMed]

F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
[Crossref] [PubMed]

Misbah, C.

P.-Y. Gires, A. Srivastav, C. Misbah, T. Podgorski, and G. Coupier, “Pairwise hydrodynamic interactions and diffusion in a vesicle suspension,” Phys. Fluids 26(1), 013304 (2014).
[Crossref]

A. Farutin and C. Misbah, “Analytical and Numerical Study of Three Main Migration Laws for Vesicles Under Flow,” Phys. Rev. Lett. 110(10), 108104 (2013).
[Crossref] [PubMed]

A. Farutin and C. Misbah, “Rheology of vesicle suspensions under combined steady and oscillating shear flows,” J. Fluid Mech. 700, 362–381 (2012).
[Crossref]

A. Farutin and C. Misbah, “Squaring, Parity Breaking, and S Tumbling of Vesicles under Shear Flow,” Phys. Rev. Lett. 109(24), 248106 (2012).
[Crossref] [PubMed]

G. Coupier, A. Farutin, C. Minetti, T. Podgorski, and C. Misbah, “Shape Diagram of Vesicles in Poiseuille Flow,” Phys. Rev. Lett. 108(17), 178106 (2012).
[Crossref] [PubMed]

T. Biben, A. Farutin, and C. Misbah, “Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 031921 (2011).
[Crossref] [PubMed]

T. Podgorski, N. Callens, C. Minetti, G. Coupier, F. Dubois, and C. Misbah, “Dynamics of vesicle suspension in shear flow between walls,” Microgravity Sci. Technol. 23(2), 263–270 (2011).
[Crossref]

B. Kaoui, G. Biros, and C. Misbah, “Why Do Red Blood Cells Have Asymmetric Shapes Even in a Symmetric Flow?” Phys. Rev. Lett. 103(18), 188101 (2009).
[Crossref] [PubMed]

G. Coupier, B. Kaoui, T. Podgorski, and C. Misbah, “Noninertial lateral migration of vesicles in bounded Poiseuille flow,” Phys. Fluids 20(11), 111702 (2008).
[Crossref]

V. Vitkova, M.-A. Mader, B. Polack, C. Misbah, and T. Podgorski, “Micro-macro link in rheology of erythrocyte and vesicle suspensions,” Biophys. J. 95(6), L33–L35 (2008).
[Crossref] [PubMed]

N. Callens, C. Minetti, G. Coupier, M.-A. Mader, F. Dubois, C. Misbah, and T. Podgorski, “Hydrodynamical lift of vesicles undear shear flow in microgravity,” Europhys. Lett. 83(2), 24002 (2008).
[Crossref]

G. Danker and C. Misbah, “Rheology of a Dilute Suspension of Vesicles,” Phys. Rev. Lett. 98(8), 088104 (2007).
[Crossref] [PubMed]

Monnom, O.

Montfort, F.

Moon, I.

Mumford, D.

D. Mumford and J. Shah, “Optimal approximation by piece-wise smooth functions and associated variational problems,” Commun. Pure Appl. Math. 42(5), 577–685 (1989).
[Crossref]

Nakashima, M.

M. Yamada, M. Nakashima, and M. Seki, “Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel,” Anal. Chem. 76(18), 5465–5471 (2004).
[Crossref] [PubMed]

Netti, P. A.

Noguchi, H.

H. Noguchi, G. Gompper, L. Schmid, A. Wixforth, and T. Franke, “Dynamics of fluid vesicles in flow through structured microchannels,” Europhys. Lett. 89(2), 28002 (2010).
[Crossref]

Olla, P.

P. Olla, “The Lift on a Tank-Treading Ellipsoidal Cell in a Shear Flow,” J. Phys. II 7(10), 1533–1540 (1997).
[Crossref]

Pattle, R. E.

R. E. Pattle, “Diffusion from an instantaneous point source with a concentration-dependent coefficient,” Q. J. Mech. Appl. Math. 12(4), 407–409 (1959).
[Crossref]

Paturzo, M.

Pierattini, G.

Podgorski, T.

P.-Y. Gires, A. Srivastav, C. Misbah, T. Podgorski, and G. Coupier, “Pairwise hydrodynamic interactions and diffusion in a vesicle suspension,” Phys. Fluids 26(1), 013304 (2014).
[Crossref]

X. Grandchamp, G. Coupier, A. Srivastav, C. Minetti, and T. Podgorski, “Lift and down-gradient shear-induced diffusion in red blood cell suspensions,” Phys. Rev. Lett. 110(10), 108101 (2013).
[Crossref] [PubMed]

A. Srivastav, T. Podgorski, and G. Coupier, “Efficiency of size-dependent particle separation by pinched flow fractionation,” Microfluid. Nanofluid. 13(5), 697–701 (2012).
[Crossref]

G. Coupier, A. Farutin, C. Minetti, T. Podgorski, and C. Misbah, “Shape Diagram of Vesicles in Poiseuille Flow,” Phys. Rev. Lett. 108(17), 178106 (2012).
[Crossref] [PubMed]

T. Podgorski, N. Callens, C. Minetti, G. Coupier, F. Dubois, and C. Misbah, “Dynamics of vesicle suspension in shear flow between walls,” Microgravity Sci. Technol. 23(2), 263–270 (2011).
[Crossref]

N. Callens, C. Minetti, G. Coupier, M.-A. Mader, F. Dubois, C. Misbah, and T. Podgorski, “Hydrodynamical lift of vesicles undear shear flow in microgravity,” Europhys. Lett. 83(2), 24002 (2008).
[Crossref]

V. Vitkova, M.-A. Mader, B. Polack, C. Misbah, and T. Podgorski, “Micro-macro link in rheology of erythrocyte and vesicle suspensions,” Biophys. J. 95(6), L33–L35 (2008).
[Crossref] [PubMed]

G. Coupier, B. Kaoui, T. Podgorski, and C. Misbah, “Noninertial lateral migration of vesicles in bounded Poiseuille flow,” Phys. Fluids 20(11), 111702 (2008).
[Crossref]

C. Minetti, N. Callens, G. Coupier, T. Podgorski, and F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47(29), 5305–5314 (2008).
[Crossref] [PubMed]

Poiseuille, J.-M.

J.-M. Poiseuille, C. R. Hebd. Seances Acad. Sci.1, 554 (1835).

Polack, B.

V. Vitkova, M.-A. Mader, B. Polack, C. Misbah, and T. Podgorski, “Micro-macro link in rheology of erythrocyte and vesicle suspensions,” Biophys. J. 95(6), L33–L35 (2008).
[Crossref] [PubMed]

Popel, A. S.

A. S. Popel and P. C. Johnson, “Microcirculation and hemorheology,” Annu. Rev. Fluid Mech. 37(1), 43–69 (2005).
[Crossref] [PubMed]

Puglisi, R.

Requena, M. L.

Reu, P. L.

Schmid, L.

H. Noguchi, G. Gompper, L. Schmid, A. Wixforth, and T. Franke, “Dynamics of fluid vesicles in flow through structured microchannels,” Europhys. Lett. 89(2), 28002 (2010).
[Crossref]

Schockaert, C.

Segre, E.

J. Deschamps, V. Kantsler, E. Segre, and V. Steinberg, “Dynamics of a vesicle in general flow,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11444–11447 (2009).
[Crossref] [PubMed]

V. Kantsler, E. Segre, and V. Steinberg, “Dynamics of interacting vesicles and rheology of vesicle suspension in shear flow,” Europhys. Lett. 82(5), 58005 (2008).
[Crossref]

Seifert, U.

D. Abreu and U. Seifert, “Noisy Nonlinear Dynamics of Vesicles in Flow,” Phys. Rev. Lett. 110(23), 238103 (2013).
[Crossref]

Seki, M.

M. Yamada, M. Nakashima, and M. Seki, “Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel,” Anal. Chem. 76(18), 5465–5471 (2004).
[Crossref] [PubMed]

Shah, J.

D. Mumford and J. Shah, “Optimal approximation by piece-wise smooth functions and associated variational problems,” Commun. Pure Appl. Math. 42(5), 577–685 (1989).
[Crossref]

Shaqfeh, E. S. G.

H. Zhao and E. S. G. Shaqfeh, “The dynamics of a non-dilute vesicle suspension in a simple shear flow,” J. Fluid Mech. 725, 709–731 (2013).
[Crossref]

H. Zhao, A. Spann, and E. S. G. Shaqfeh, “The dynamics of a vesicle in a wall-bound shear flow,” Phys. Fluids 23(12), 121901 (2011).
[Crossref]

Soleau, S.

M. I. Angelova, S. Soleau, P. Meleard, J.-F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external A.C. electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127 (1992).

Spann, A.

H. Zhao, A. Spann, and E. S. G. Shaqfeh, “The dynamics of a vesicle in a wall-bound shear flow,” Phys. Fluids 23(12), 121901 (2011).
[Crossref]

Srivastav, A.

P.-Y. Gires, A. Srivastav, C. Misbah, T. Podgorski, and G. Coupier, “Pairwise hydrodynamic interactions and diffusion in a vesicle suspension,” Phys. Fluids 26(1), 013304 (2014).
[Crossref]

X. Grandchamp, G. Coupier, A. Srivastav, C. Minetti, and T. Podgorski, “Lift and down-gradient shear-induced diffusion in red blood cell suspensions,” Phys. Rev. Lett. 110(10), 108101 (2013).
[Crossref] [PubMed]

A. Srivastav, T. Podgorski, and G. Coupier, “Efficiency of size-dependent particle separation by pinched flow fractionation,” Microfluid. Nanofluid. 13(5), 697–701 (2012).
[Crossref]

Steinberg, V.

M. Levant, J. Deschamps, E. Afik, and V. Steinberg, “Characteristic spatial scale of vesicle pair interactions in a plane linear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(5), 056306 (2012).
[Crossref] [PubMed]

J. Deschamps, V. Kantsler, E. Segre, and V. Steinberg, “Dynamics of a vesicle in general flow,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11444–11447 (2009).
[Crossref] [PubMed]

J. Deschamps, V. Kantsler, and V. Steinberg, “Phase Diagram of Single Vesicle Dynamical States in Shear Flow,” Phys. Rev. Lett. 102(11), 118105 (2009).
[Crossref] [PubMed]

V. Kantsler, E. Segre, and V. Steinberg, “Dynamics of interacting vesicles and rheology of vesicle suspension in shear flow,” Europhys. Lett. 82(5), 58005 (2008).
[Crossref]

Takeda, M.

Tang, L.

Turitsyn, K. S.

V. V. Lebedev, K. S. Turitsyn, and S. S. Vergeles, “Dynamics of Nearly Spherical Vesicles in an External Flow,” Phys. Rev. Lett. 99(21), 218101 (2007).
[Crossref] [PubMed]

van den Ende, D.

K. H. de Haas, C. Blom, D. van den Ende, M. H. G. Duits, B. Haveman, and J. Mellema, “Rheological behavior of a dispersion of small lipid bilayer vesicles,” Langmuir 13(25), 6658–6668 (1997).
[Crossref]

Ventre, M.

Vergeles, S. S.

V. V. Lebedev, K. S. Turitsyn, and S. S. Vergeles, “Dynamics of Nearly Spherical Vesicles in an External Flow,” Phys. Rev. Lett. 99(21), 218101 (2007).
[Crossref] [PubMed]

Viallat, A.

M. Abkarian, C. Lartigue, and A. Viallat, “Tank Treading and Unbinding of Deformable Vesicles in Shear Flow: Determination of the Lift Force,” Phys. Rev. Lett. 88(6), 068103 (2002).
[Crossref] [PubMed]

Vitkova, V.

V. Vitkova, M.-A. Mader, B. Polack, C. Misbah, and T. Podgorski, “Micro-macro link in rheology of erythrocyte and vesicle suspensions,” Biophys. J. 95(6), L33–L35 (2008).
[Crossref] [PubMed]

von Bally, G.

Wernicke, G.

Wixforth, A.

H. Noguchi, G. Gompper, L. Schmid, A. Wixforth, and T. Franke, “Dynamics of fluid vesicles in flow through structured microchannels,” Europhys. Lett. 89(2), 28002 (2010).
[Crossref]

Yamada, M.

M. Yamada, M. Nakashima, and M. Seki, “Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel,” Anal. Chem. 76(18), 5465–5471 (2004).
[Crossref] [PubMed]

Yang, Y.

Yi, F.

Yourassowsky, C.

Zhao, H.

H. Zhao and E. S. G. Shaqfeh, “The dynamics of a non-dilute vesicle suspension in a simple shear flow,” J. Fluid Mech. 725, 709–731 (2013).
[Crossref]

H. Zhao, A. Spann, and E. S. G. Shaqfeh, “The dynamics of a vesicle in a wall-bound shear flow,” Phys. Fluids 23(12), 121901 (2011).
[Crossref]

Anal. Chem. (1)

M. Yamada, M. Nakashima, and M. Seki, “Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel,” Anal. Chem. 76(18), 5465–5471 (2004).
[Crossref] [PubMed]

Annu. Rev. Fluid Mech. (1)

A. S. Popel and P. C. Johnson, “Microcirculation and hemorheology,” Annu. Rev. Fluid Mech. 37(1), 43–69 (2005).
[Crossref] [PubMed]

Appl. Opt. (10)

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52(16), 3790–3801 (2013).
[Crossref] [PubMed]

F. Dubois, O. Monnom, C. Yourassowsky, and J.-C. Legros, “Border processing in digital holography by extension of the digital hologram and reduction of the higher spatial frequencies,” Appl. Opt. 41(14), 2621–2626 (2002).
[Crossref] [PubMed]

O. Monnom, F. Dubois, C. Yourassowsky, and J. C. Legros, “Improvement in visibility of an in-focus reconstructed image in digital holography by reduction of the influence of out-of-focus objects,” Appl. Opt. 44(18), 3827–3832 (2005).
[Crossref] [PubMed]

Y. Yang, G. Li, L. Tang, and L. Huang, “Integrated gray-level gradient method applied for the extraction of three-dimensional velocity fields of sprays in in-line digital holography,” Appl. Opt. 51(2), 255–267 (2012).
[Crossref] [PubMed]

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
[Crossref] [PubMed]

Y.-S. Choi and S.-J. Lee, “Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy,” Appl. Opt. 48(16), 2983–2990 (2009).
[Crossref] [PubMed]

A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: Application to the monitoring of drinking water resources,” Appl. Opt. 52(1), A68–A80 (2013).
[Crossref] [PubMed]

F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
[Crossref] [PubMed]

F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
[Crossref] [PubMed]

C. Minetti, N. Callens, G. Coupier, T. Podgorski, and F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47(29), 5305–5314 (2008).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (1)

V. Vitkova, M.-A. Mader, B. Polack, C. Misbah, and T. Podgorski, “Micro-macro link in rheology of erythrocyte and vesicle suspensions,” Biophys. J. 95(6), L33–L35 (2008).
[Crossref] [PubMed]

Commun. Pure Appl. Math. (1)

D. Mumford and J. Shah, “Optimal approximation by piece-wise smooth functions and associated variational problems,” Commun. Pure Appl. Math. 42(5), 577–685 (1989).
[Crossref]

Europhys. Lett. (3)

N. Callens, C. Minetti, G. Coupier, M.-A. Mader, F. Dubois, C. Misbah, and T. Podgorski, “Hydrodynamical lift of vesicles undear shear flow in microgravity,” Europhys. Lett. 83(2), 24002 (2008).
[Crossref]

V. Kantsler, E. Segre, and V. Steinberg, “Dynamics of interacting vesicles and rheology of vesicle suspension in shear flow,” Europhys. Lett. 82(5), 58005 (2008).
[Crossref]

H. Noguchi, G. Gompper, L. Schmid, A. Wixforth, and T. Franke, “Dynamics of fluid vesicles in flow through structured microchannels,” Europhys. Lett. 89(2), 28002 (2010).
[Crossref]

J. Fluid Mech. (4)

A. Farutin and C. Misbah, “Rheology of vesicle suspensions under combined steady and oscillating shear flows,” J. Fluid Mech. 700, 362–381 (2012).
[Crossref]

G. Boedec, M. Jaeger, and M. Leonetti, “Settling of a vesicle in the limit of quasispherical shapes,” J. Fluid Mech. 690, 227–261 (2012).
[Crossref]

F. Da Cunha and E. Hinch, “Shear-induced dispersion in a dilute suspension of rough spheres,” J. Fluid Mech. 309(-1), 211–223 (1996).
[Crossref]

H. Zhao and E. S. G. Shaqfeh, “The dynamics of a non-dilute vesicle suspension in a simple shear flow,” J. Fluid Mech. 725, 709–731 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Phys. II (1)

P. Olla, “The Lift on a Tank-Treading Ellipsoidal Cell in a Shear Flow,” J. Phys. II 7(10), 1533–1540 (1997).
[Crossref]

Langmuir (1)

K. H. de Haas, C. Blom, D. van den Ende, M. H. G. Duits, B. Haveman, and J. Mellema, “Rheological behavior of a dispersion of small lipid bilayer vesicles,” Langmuir 13(25), 6658–6668 (1997).
[Crossref]

Microfluid. Nanofluid. (1)

A. Srivastav, T. Podgorski, and G. Coupier, “Efficiency of size-dependent particle separation by pinched flow fractionation,” Microfluid. Nanofluid. 13(5), 697–701 (2012).
[Crossref]

Microgravity Sci. Technol. (1)

T. Podgorski, N. Callens, C. Minetti, G. Coupier, F. Dubois, and C. Misbah, “Dynamics of vesicle suspension in shear flow between walls,” Microgravity Sci. Technol. 23(2), 263–270 (2011).
[Crossref]

Opt. Express (7)

F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14(13), 5895–5908 (2006).
[Crossref] [PubMed]

A. El Mallahi and F. Dubois, “Separation of overlapped particles in digital holographic microscopy,” Opt. Express 21(5), 6466–6479 (2013).
[Crossref] [PubMed]

A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express 19(7), 6684–6698 (2011).
[Crossref] [PubMed]

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21(22), 26432–26449 (2013).
[Crossref] [PubMed]

P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, “On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change,” Opt. Express 20(27), 28485–28493 (2012).
[Crossref] [PubMed]

I. Moon, B. Javidi, F. Yi, D. Boss, and P. Marquet, “Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells,” Opt. Express 20(9), 10295–10309 (2012).
[Crossref] [PubMed]

I. Moon, F. Yi, Y. H. Lee, B. Javidi, D. Boss, and P. Marquet, “Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods,” Opt. Express 21(25), 30947–30957 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Fluids (3)

H. Zhao, A. Spann, and E. S. G. Shaqfeh, “The dynamics of a vesicle in a wall-bound shear flow,” Phys. Fluids 23(12), 121901 (2011).
[Crossref]

P.-Y. Gires, A. Srivastav, C. Misbah, T. Podgorski, and G. Coupier, “Pairwise hydrodynamic interactions and diffusion in a vesicle suspension,” Phys. Fluids 26(1), 013304 (2014).
[Crossref]

G. Coupier, B. Kaoui, T. Podgorski, and C. Misbah, “Noninertial lateral migration of vesicles in bounded Poiseuille flow,” Phys. Fluids 20(11), 111702 (2008).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

M. Levant, J. Deschamps, E. Afik, and V. Steinberg, “Characteristic spatial scale of vesicle pair interactions in a plane linear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(5), 056306 (2012).
[Crossref] [PubMed]

C. Minetti and C. Buffone, “Three-dimensional Marangoni cell in self-induced evaporating cooling unveiled by digital holographic microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 013007 (2014).
[Crossref] [PubMed]

T. Biben, A. Farutin, and C. Misbah, “Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 031921 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (10)

A. Farutin and C. Misbah, “Squaring, Parity Breaking, and S Tumbling of Vesicles under Shear Flow,” Phys. Rev. Lett. 109(24), 248106 (2012).
[Crossref] [PubMed]

X. Grandchamp, G. Coupier, A. Srivastav, C. Minetti, and T. Podgorski, “Lift and down-gradient shear-induced diffusion in red blood cell suspensions,” Phys. Rev. Lett. 110(10), 108101 (2013).
[Crossref] [PubMed]

M. Abkarian, C. Lartigue, and A. Viallat, “Tank Treading and Unbinding of Deformable Vesicles in Shear Flow: Determination of the Lift Force,” Phys. Rev. Lett. 88(6), 068103 (2002).
[Crossref] [PubMed]

G. Coupier, A. Farutin, C. Minetti, T. Podgorski, and C. Misbah, “Shape Diagram of Vesicles in Poiseuille Flow,” Phys. Rev. Lett. 108(17), 178106 (2012).
[Crossref] [PubMed]

J. Deschamps, V. Kantsler, and V. Steinberg, “Phase Diagram of Single Vesicle Dynamical States in Shear Flow,” Phys. Rev. Lett. 102(11), 118105 (2009).
[Crossref] [PubMed]

V. V. Lebedev, K. S. Turitsyn, and S. S. Vergeles, “Dynamics of Nearly Spherical Vesicles in an External Flow,” Phys. Rev. Lett. 99(21), 218101 (2007).
[Crossref] [PubMed]

G. Danker and C. Misbah, “Rheology of a Dilute Suspension of Vesicles,” Phys. Rev. Lett. 98(8), 088104 (2007).
[Crossref] [PubMed]

B. Kaoui, G. Biros, and C. Misbah, “Why Do Red Blood Cells Have Asymmetric Shapes Even in a Symmetric Flow?” Phys. Rev. Lett. 103(18), 188101 (2009).
[Crossref] [PubMed]

A. Farutin and C. Misbah, “Analytical and Numerical Study of Three Main Migration Laws for Vesicles Under Flow,” Phys. Rev. Lett. 110(10), 108104 (2013).
[Crossref] [PubMed]

D. Abreu and U. Seifert, “Noisy Nonlinear Dynamics of Vesicles in Flow,” Phys. Rev. Lett. 110(23), 238103 (2013).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Deschamps, V. Kantsler, E. Segre, and V. Steinberg, “Dynamics of a vesicle in general flow,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11444–11447 (2009).
[Crossref] [PubMed]

Prog. Colloid Polym. Sci. (1)

M. I. Angelova, S. Soleau, P. Meleard, J.-F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external A.C. electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127 (1992).

Q. J. Mech. Appl. Math. (1)

R. E. Pattle, “Diffusion from an instantaneous point source with a concentration-dependent coefficient,” Q. J. Mech. Appl. Math. 12(4), 407–409 (1959).
[Crossref]

Other (2)

D. C. Ghigliz and M. D. Pritt, Two-Dimensional Phase unwrapping. Theory, Algorithms, and Sofware (Wiley-Interscience 1998).

J.-M. Poiseuille, C. R. Hebd. Seances Acad. Sci.1, 554 (1835).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Optical setup description. L1, focusing lens; RGG, Rotating Ground Glass for spatial coherence reduction; L2, collimating lens; L3, L4, identical microscope lenses (x20); L5, refocusing lens; CCD, charge-coupled device camera; M1-M3, mirrors; BS1, BS2, beam splitters; S, sample.

Fig. 2
Fig. 2

Sketch of the experimental shear flow chamber.

Fig. 3
Fig. 3

Examples of intensity and phase images of a vesicle (diameter around 20 µm) at different planes (focus plane + 46 µm, at the middle and out of focus −70 µm and + 100 µm). Scalebar on the right indicates the grey levels.

Fig. 4
Fig. 4

Example of compensation. (a) original phase map; (b) fitted phase map; (c) compensated phase map. Scalebar on the right indicates the grey levels.

Fig. 5
Fig. 5

Example of xy detection. (a) Original phase map. (b) XY detection and pre-segmentation of the vesicles. Scalebar on the left indicates the grey levels.

Fig. 6
Fig. 6

Description of the different ROIs. Row (I): Intensity, Row (II): Phase, Row (III): Compensated phase, Row (IV): Mask. Col (a): Vesicle under consideration, Col (b): Cropped ROI (110 x 128 pixels) ; IV-b is the pre-segmented vesicle, Col(c): Enlarged ROI (256 x 256 pixels) with values minimizing the diffraction (cropped ROI in dashed line), Col (d): Contour line of the region where the metrics for the best focus plane is computed – cropped ROI in dashed line.

Fig. 7
Fig. 7

Example of 4 vesicles with close xy position and different z positions. First row: intensity image, second row: compensated phase image. First column: identification of the 4 vesicles (ROI 210 x 210 pixels), column 2 to 5 correspond to vesicle 1 to 4 (ROI cropped around the center of each vesicle). Scalebar on the right indicates the grey levels.

Fig. 8
Fig. 8

Example of two vesicles with equivalent diameter (around 20 µm) but different deflations. First column: vesicle 1 and 2. Second column: Segmented vesicles (segmentation contour in white). Third column: corresponding fitted ellipse (a1 is the big axis, a2 is the small axis).

Fig. 9
Fig. 9

Example of false detections. First column: vesicle 1 and 2. Second column: Segmented vesicles (segmentation contour in white). Third column: corresponding fitted ellipse. Aggregate of first line: Orientation = 38.57°, MSE = 1.34 µm, AR = 2.16. Aggregate of second line: Orientation = 3.21°, MSE = 1.12 µm, AR = 1.61.

Fig. 10
Fig. 10

Size distribution within a vesicle suspension under shear: volume fraction density as a function of apparent long axis a1 .

Fig. 11
Fig. 11

Aspect ratio a1/a2 distribution in the vesicle suspension of Fig. 10.

Fig. 12
Fig. 12

z positions of vesicles across the shear chamber of thickness h = 170 microns. Shear rate is 50 s−1 and volume concentration 1.9x10−3 Vesicles were sorted by pinched flow fractionation method, so that a1 = 16 ± 3 microns. Only vesicles with AR between 1.1 and 1.3 are represented. Quasi-spherical vesicles lift much less. More deflated vesicles are rare (see Fig. 11). The full line shows the one parameter fit by the z(t) evolution obtained by solving dz/dt = A (1/z2-1/(h-z)2).

Fig. 13
Fig. 13

Same as Fig. 12 but with volume concentration 7.2x10−3 .

Fig. 14
Fig. 14

Time evolution of the standard deviation w in the distribution of vesicles for the two clouds of Figs. 12 (triangles) and 13 (squares), in log-log scale. Full lines have slopes 1/3 while the dotted line has slope 1/2.

Tables (2)

Tables Icon

Table 1 XYZ position and equivalent diameter of the 4 vesicles of Fig. 7.

Tables Icon

Table 2 Parameters extracted from the segmentation process of Fig. 8. MSE is the Mean Square Error.

Metrics