Abstract

The study of hemodynamic and vascular changes following ischemic stroke is of great importance in the understanding of physiological and pathological processes during the thrombus formation. The photothrombosis model is preferred by researchers in stroke study for its minimal invasiveness, controllable infarct volume and lesion location. Nevertheless, there is a lack in high spatiotemporal resolution techniques for real time monitoring of cerebral blood flow (CBF) changes in 2D-profile. In this study, we implemented a microscopic laser speckle imaging (LSI) system to detect CBF and other vascular changes in the rodent model of photothrombotic stroke. Using a high resolution and high speed CCD (640 × 480 pixels, 60 fps), online image registration technique, and automatic parabolic curve fitting, we obtained real time CBF and blood velocity profile (BVP) changes in cortical vessels. Real time CBF and BVP monitoring has been shown to reveal details of vascular disturbances and the stages of blood coagulation in photothrombotic stroke. Moreover, LSI also provides information on additional parameters including vessel morphologic size, blood flow centerline velocity and CBF spatiotemporal fluctuations, which are very important for understanding the physiology and neurovascular pathology in the photothrombosis model.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol.17(5), 497–504 (1985).
    [CrossRef] [PubMed]
  2. M. Boquillon, J. P. Boquillon, and J. Bralet, “Photochemically induced, graded cerebral infarction in the mouse by laser irradiation evolution of brain edema,” J. Pharmacol. Toxicol. Methods27(1), 1–6 (1992).
    [CrossRef] [PubMed]
  3. A. H. Hainsworth and H. S. Markus, “Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review,” J. Cereb. Blood Flow Metab.28(12), 1877–1891 (2008).
    [CrossRef] [PubMed]
  4. M. D. Ginsberg and R. Busto, “Rodent models of cerebral ischemia,” Stroke20(12), 1627–1642 (1989).
    [CrossRef] [PubMed]
  5. S. Braeuninger and C. Kleinschnitz, “Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems,” Exp. Transl. Stroke Med.1(1), 8 (2009).
    [CrossRef] [PubMed]
  6. B. Furie and B. C. Furie, “Mechanisms of thrombus formation,” N. Engl. J. Med.359(9), 938–949 (2008).
    [CrossRef] [PubMed]
  7. S. P. Jackson, “Arterial thrombosis--insidious, unpredictable and deadly,” Nat. Med.17(11), 1423–1436 (2011).
    [CrossRef] [PubMed]
  8. J. M. Cosemans, A. Angelillo-Scherrer, N. J. Mattheij, and J. W. Heemskerk, “The effects of arterial flow on platelet activation, thrombus growth, and stabilization,” Cardiovasc. Res.99(2), 342–352 (2013).
    [CrossRef] [PubMed]
  9. A. Mailhac, J. J. Badimon, J. T. Fallon, A. Fernández-Ortiz, B. Meyer, J. H. Chesebro, V. Fuster, and L. Badimon, “Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets,” Circulation90(2), 988–996 (1994).
    [CrossRef] [PubMed]
  10. W. S. Nesbitt, E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson, “A shear gradient-dependent platelet aggregation mechanism drives thrombus formation,” Nat. Med.15(6), 665–673 (2009).
    [CrossRef] [PubMed]
  11. J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Effect of erythrocyte aggregation on velocity profiles in venules,” Am. J. Physiol. Heart Circ. Physiol.280(1), H222–H236 (2001).
    [PubMed]
  12. C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
    [CrossRef] [PubMed]
  13. J. Nguyen, N. Nishimura, R. N. Fetcho, C. Iadecola, and C. B. Schaffer, “Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries,” J. Cereb. Blood Flow Metab.31(11), 2243–2254 (2011).
    [CrossRef] [PubMed]
  14. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
    [CrossRef] [PubMed]
  15. T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
    [CrossRef] [PubMed]
  16. H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med.8(2), 136–142 (2002).
    [CrossRef] [PubMed]
  17. H. K. Shin, A. K. Dunn, P. B. Jones, D. A. Boas, M. A. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” J. Cereb. Blood Flow Metab.26(8), 1018–1030 (2006).
    [CrossRef] [PubMed]
  18. J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage29(1), 38–45 (2006).
    [CrossRef] [PubMed]
  19. A. Sigler, M. H. Mohajerani, and T. H. Murphy, “Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice,” Proc. Natl. Acad. Sci. U.S.A.106(28), 11759–11764 (2009).
    [CrossRef] [PubMed]
  20. W. C. Risher, D. Ard, J. Yuan, and S. A. Kirov, “Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra,” J. Neurosci.30(29), 9859–9868 (2010).
    [CrossRef] [PubMed]
  21. P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High Resolution Cerebral Blood Flow Imaging by Registered Laser Speckle Contrast Analysis,” IEEE Trans. Biomed. Eng.57(5), 1152–1157 (2010).
    [CrossRef] [PubMed]
  22. L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv.24(4), 325–376 (1992).
    [CrossRef]
  23. A. K. Dunn, “Laser Speckle Contrast Imaging of Cerebral Blood Flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
    [CrossRef] [PubMed]
  24. P. A. Lemieux and D. Durian, “Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions,” J. Opt. Soc. Am. A16(7), 1651–1664 (1999).
    [CrossRef]
  25. Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.52(7), 4151–4157 (2011).
    [CrossRef] [PubMed]
  26. A. Rege, K. Murari, N. Li, and N. Thakor, “Imaging microvascular flow characteristics using laser speckle contrast imaging,” in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, (IEEE, 2010), 1978–1981.
    [CrossRef]
  27. M. Sato and N. Ohshima, “Flow-induced changes in shape and cytoskeletal structure of vascular endothelial cells,” Biorheology31(2), 143–153 (1994).
    [PubMed]
  28. A. Gnasso, C. Carallo, C. Irace, M. S. De Franceschi, P. L. Mattioli, C. Motti, and C. Cortese, “Association between wall shear stress and flow-mediated vasodilation in healthy men,” Atherosclerosis156(1), 171–176 (2001).
    [CrossRef] [PubMed]
  29. B. D. Watson, R. Prado, A. Veloso, J. P. Brunschwig, and W. D. Dietrich, “Cerebral blood flow restoration and reperfusion injury after ultraviolet laser-facilitated middle cerebral artery recanalization in rat thrombotic stroke,” Stroke33(2), 428–434 (2002).
    [CrossRef] [PubMed]
  30. N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010).
    [CrossRef] [PubMed]
  31. J. M. Valdueza, B. Draganski, O. Hoffmann, U. Dirnagl, and K. M. Einhäupl, “Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings,” Stroke30(1), 81–86 (1999).
    [CrossRef] [PubMed]
  32. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25(18), 1358–1360 (2000).
    [CrossRef] [PubMed]
  33. A. B. Parthasarathy, S. M. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express1(1), 246–259 (2010).
    [CrossRef] [PubMed]
  34. S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
    [CrossRef] [PubMed]

2013

J. M. Cosemans, A. Angelillo-Scherrer, N. J. Mattheij, and J. W. Heemskerk, “The effects of arterial flow on platelet activation, thrombus growth, and stabilization,” Cardiovasc. Res.99(2), 342–352 (2013).
[CrossRef] [PubMed]

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
[CrossRef] [PubMed]

2012

A. K. Dunn, “Laser Speckle Contrast Imaging of Cerebral Blood Flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
[CrossRef] [PubMed]

2011

Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.52(7), 4151–4157 (2011).
[CrossRef] [PubMed]

S. P. Jackson, “Arterial thrombosis--insidious, unpredictable and deadly,” Nat. Med.17(11), 1423–1436 (2011).
[CrossRef] [PubMed]

J. Nguyen, N. Nishimura, R. N. Fetcho, C. Iadecola, and C. B. Schaffer, “Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries,” J. Cereb. Blood Flow Metab.31(11), 2243–2254 (2011).
[CrossRef] [PubMed]

2010

W. C. Risher, D. Ard, J. Yuan, and S. A. Kirov, “Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra,” J. Neurosci.30(29), 9859–9868 (2010).
[CrossRef] [PubMed]

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High Resolution Cerebral Blood Flow Imaging by Registered Laser Speckle Contrast Analysis,” IEEE Trans. Biomed. Eng.57(5), 1152–1157 (2010).
[CrossRef] [PubMed]

N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, S. M. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express1(1), 246–259 (2010).
[CrossRef] [PubMed]

2009

A. Sigler, M. H. Mohajerani, and T. H. Murphy, “Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice,” Proc. Natl. Acad. Sci. U.S.A.106(28), 11759–11764 (2009).
[CrossRef] [PubMed]

W. S. Nesbitt, E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson, “A shear gradient-dependent platelet aggregation mechanism drives thrombus formation,” Nat. Med.15(6), 665–673 (2009).
[CrossRef] [PubMed]

S. Braeuninger and C. Kleinschnitz, “Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems,” Exp. Transl. Stroke Med.1(1), 8 (2009).
[CrossRef] [PubMed]

2008

B. Furie and B. C. Furie, “Mechanisms of thrombus formation,” N. Engl. J. Med.359(9), 938–949 (2008).
[CrossRef] [PubMed]

A. H. Hainsworth and H. S. Markus, “Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review,” J. Cereb. Blood Flow Metab.28(12), 1877–1891 (2008).
[CrossRef] [PubMed]

2006

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

H. K. Shin, A. K. Dunn, P. B. Jones, D. A. Boas, M. A. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” J. Cereb. Blood Flow Metab.26(8), 1018–1030 (2006).
[CrossRef] [PubMed]

J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage29(1), 38–45 (2006).
[CrossRef] [PubMed]

2004

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

2002

H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med.8(2), 136–142 (2002).
[CrossRef] [PubMed]

B. D. Watson, R. Prado, A. Veloso, J. P. Brunschwig, and W. D. Dietrich, “Cerebral blood flow restoration and reperfusion injury after ultraviolet laser-facilitated middle cerebral artery recanalization in rat thrombotic stroke,” Stroke33(2), 428–434 (2002).
[CrossRef] [PubMed]

2001

A. Gnasso, C. Carallo, C. Irace, M. S. De Franceschi, P. L. Mattioli, C. Motti, and C. Cortese, “Association between wall shear stress and flow-mediated vasodilation in healthy men,” Atherosclerosis156(1), 171–176 (2001).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Effect of erythrocyte aggregation on velocity profiles in venules,” Am. J. Physiol. Heart Circ. Physiol.280(1), H222–H236 (2001).
[PubMed]

2000

1999

J. M. Valdueza, B. Draganski, O. Hoffmann, U. Dirnagl, and K. M. Einhäupl, “Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings,” Stroke30(1), 81–86 (1999).
[CrossRef] [PubMed]

P. A. Lemieux and D. Durian, “Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions,” J. Opt. Soc. Am. A16(7), 1651–1664 (1999).
[CrossRef]

1994

M. Sato and N. Ohshima, “Flow-induced changes in shape and cytoskeletal structure of vascular endothelial cells,” Biorheology31(2), 143–153 (1994).
[PubMed]

A. Mailhac, J. J. Badimon, J. T. Fallon, A. Fernández-Ortiz, B. Meyer, J. H. Chesebro, V. Fuster, and L. Badimon, “Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets,” Circulation90(2), 988–996 (1994).
[CrossRef] [PubMed]

1992

M. Boquillon, J. P. Boquillon, and J. Bralet, “Photochemically induced, graded cerebral infarction in the mouse by laser irradiation evolution of brain edema,” J. Pharmacol. Toxicol. Methods27(1), 1–6 (1992).
[CrossRef] [PubMed]

L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv.24(4), 325–376 (1992).
[CrossRef]

1989

M. D. Ginsberg and R. Busto, “Rodent models of cerebral ischemia,” Stroke20(12), 1627–1642 (1989).
[CrossRef] [PubMed]

1985

B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol.17(5), 497–504 (1985).
[CrossRef] [PubMed]

Angelillo-Scherrer, A.

J. M. Cosemans, A. Angelillo-Scherrer, N. J. Mattheij, and J. W. Heemskerk, “The effects of arterial flow on platelet activation, thrombus growth, and stabilization,” Cardiovasc. Res.99(2), 342–352 (2013).
[CrossRef] [PubMed]

Ard, D.

W. C. Risher, D. Ard, J. Yuan, and S. A. Kirov, “Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra,” J. Neurosci.30(29), 9859–9868 (2010).
[CrossRef] [PubMed]

Ayata, C.

H. K. Shin, A. K. Dunn, P. B. Jones, D. A. Boas, M. A. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” J. Cereb. Blood Flow Metab.26(8), 1018–1030 (2006).
[CrossRef] [PubMed]

Badimon, J. J.

A. Mailhac, J. J. Badimon, J. T. Fallon, A. Fernández-Ortiz, B. Meyer, J. H. Chesebro, V. Fuster, and L. Badimon, “Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets,” Circulation90(2), 988–996 (1994).
[CrossRef] [PubMed]

Badimon, L.

A. Mailhac, J. J. Badimon, J. T. Fallon, A. Fernández-Ortiz, B. Meyer, J. H. Chesebro, V. Fuster, and L. Badimon, “Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets,” Circulation90(2), 988–996 (1994).
[CrossRef] [PubMed]

Bishop, J. J.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Effect of erythrocyte aggregation on velocity profiles in venules,” Am. J. Physiol. Heart Circ. Physiol.280(1), H222–H236 (2001).
[PubMed]

Boas, D. A.

H. K. Shin, A. K. Dunn, P. B. Jones, D. A. Boas, M. A. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” J. Cereb. Blood Flow Metab.26(8), 1018–1030 (2006).
[CrossRef] [PubMed]

H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med.8(2), 136–142 (2002).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Bolay, H.

H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med.8(2), 136–142 (2002).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Boquillon, J. P.

M. Boquillon, J. P. Boquillon, and J. Bralet, “Photochemically induced, graded cerebral infarction in the mouse by laser irradiation evolution of brain edema,” J. Pharmacol. Toxicol. Methods27(1), 1–6 (1992).
[CrossRef] [PubMed]

Boquillon, M.

M. Boquillon, J. P. Boquillon, and J. Bralet, “Photochemically induced, graded cerebral infarction in the mouse by laser irradiation evolution of brain edema,” J. Pharmacol. Toxicol. Methods27(1), 1–6 (1992).
[CrossRef] [PubMed]

Braeuninger, S.

S. Braeuninger and C. Kleinschnitz, “Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems,” Exp. Transl. Stroke Med.1(1), 8 (2009).
[CrossRef] [PubMed]

Bralet, J.

M. Boquillon, J. P. Boquillon, and J. Bralet, “Photochemically induced, graded cerebral infarction in the mouse by laser irradiation evolution of brain edema,” J. Pharmacol. Toxicol. Methods27(1), 1–6 (1992).
[CrossRef] [PubMed]

Brown, L. G.

L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv.24(4), 325–376 (1992).
[CrossRef]

Brunschwig, J. P.

B. D. Watson, R. Prado, A. Veloso, J. P. Brunschwig, and W. D. Dietrich, “Cerebral blood flow restoration and reperfusion injury after ultraviolet laser-facilitated middle cerebral artery recanalization in rat thrombotic stroke,” Stroke33(2), 428–434 (2002).
[CrossRef] [PubMed]

Burnett, M. G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Burns, S. A.

Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.52(7), 4151–4157 (2011).
[CrossRef] [PubMed]

Busto, R.

M. D. Ginsberg and R. Busto, “Rodent models of cerebral ischemia,” Stroke20(12), 1627–1642 (1989).
[CrossRef] [PubMed]

B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol.17(5), 497–504 (1985).
[CrossRef] [PubMed]

Carallo, C.

A. Gnasso, C. Carallo, C. Irace, M. S. De Franceschi, P. L. Mattioli, C. Motti, and C. Cortese, “Association between wall shear stress and flow-mediated vasodilation in healthy men,” Atherosclerosis156(1), 171–176 (2001).
[CrossRef] [PubMed]

Carberry, J.

W. S. Nesbitt, E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson, “A shear gradient-dependent platelet aggregation mechanism drives thrombus formation,” Nat. Med.15(6), 665–673 (2009).
[CrossRef] [PubMed]

Chen, Z.

Chesebro, J. H.

A. Mailhac, J. J. Badimon, J. T. Fallon, A. Fernández-Ortiz, B. Meyer, J. H. Chesebro, V. Fuster, and L. Badimon, “Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets,” Circulation90(2), 988–996 (1994).
[CrossRef] [PubMed]

Chui, T. Y. P.

Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.52(7), 4151–4157 (2011).
[CrossRef] [PubMed]

Cortese, C.

A. Gnasso, C. Carallo, C. Irace, M. S. De Franceschi, P. L. Mattioli, C. Motti, and C. Cortese, “Association between wall shear stress and flow-mediated vasodilation in healthy men,” Atherosclerosis156(1), 171–176 (2001).
[CrossRef] [PubMed]

Cosemans, J. M.

J. M. Cosemans, A. Angelillo-Scherrer, N. J. Mattheij, and J. W. Heemskerk, “The effects of arterial flow on platelet activation, thrombus growth, and stabilization,” Cardiovasc. Res.99(2), 342–352 (2013).
[CrossRef] [PubMed]

de Boer, J. F.

De Franceschi, M. S.

A. Gnasso, C. Carallo, C. Irace, M. S. De Franceschi, P. L. Mattioli, C. Motti, and C. Cortese, “Association between wall shear stress and flow-mediated vasodilation in healthy men,” Atherosclerosis156(1), 171–176 (2001).
[CrossRef] [PubMed]

Detre, J. A.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Dietrich, W. D.

B. D. Watson, R. Prado, A. Veloso, J. P. Brunschwig, and W. D. Dietrich, “Cerebral blood flow restoration and reperfusion injury after ultraviolet laser-facilitated middle cerebral artery recanalization in rat thrombotic stroke,” Stroke33(2), 428–434 (2002).
[CrossRef] [PubMed]

B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol.17(5), 497–504 (1985).
[CrossRef] [PubMed]

Dirnagl, U.

J. M. Valdueza, B. Draganski, O. Hoffmann, U. Dirnagl, and K. M. Einhäupl, “Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings,” Stroke30(1), 81–86 (1999).
[CrossRef] [PubMed]

Draganski, B.

J. M. Valdueza, B. Draganski, O. Hoffmann, U. Dirnagl, and K. M. Einhäupl, “Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings,” Stroke30(1), 81–86 (1999).
[CrossRef] [PubMed]

Dunn, A. K.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
[CrossRef] [PubMed]

A. K. Dunn, “Laser Speckle Contrast Imaging of Cerebral Blood Flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
[CrossRef] [PubMed]

A. B. Parthasarathy, S. M. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express1(1), 246–259 (2010).
[CrossRef] [PubMed]

H. K. Shin, A. K. Dunn, P. B. Jones, D. A. Boas, M. A. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” J. Cereb. Blood Flow Metab.26(8), 1018–1030 (2006).
[CrossRef] [PubMed]

H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med.8(2), 136–142 (2002).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Durduran, T.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Durian, D.

Ebner, F. F.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Einhäupl, K. M.

J. M. Valdueza, B. Draganski, O. Hoffmann, U. Dirnagl, and K. M. Einhäupl, “Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings,” Stroke30(1), 81–86 (1999).
[CrossRef] [PubMed]

Fallon, J. T.

A. Mailhac, J. J. Badimon, J. T. Fallon, A. Fernández-Ortiz, B. Meyer, J. H. Chesebro, V. Fuster, and L. Badimon, “Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets,” Circulation90(2), 988–996 (1994).
[CrossRef] [PubMed]

Fernández-Ortiz, A.

A. Mailhac, J. J. Badimon, J. T. Fallon, A. Fernández-Ortiz, B. Meyer, J. H. Chesebro, V. Fuster, and L. Badimon, “Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets,” Circulation90(2), 988–996 (1994).
[CrossRef] [PubMed]

Fetcho, R. N.

J. Nguyen, N. Nishimura, R. N. Fetcho, C. Iadecola, and C. B. Schaffer, “Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries,” J. Cereb. Blood Flow Metab.31(11), 2243–2254 (2011).
[CrossRef] [PubMed]

Fouras, A.

W. S. Nesbitt, E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson, “A shear gradient-dependent platelet aggregation mechanism drives thrombus formation,” Nat. Med.15(6), 665–673 (2009).
[CrossRef] [PubMed]

Friedman, B.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Fu, J.

W. S. Nesbitt, E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson, “A shear gradient-dependent platelet aggregation mechanism drives thrombus formation,” Nat. Med.15(6), 665–673 (2009).
[CrossRef] [PubMed]

Furie, B.

B. Furie and B. C. Furie, “Mechanisms of thrombus formation,” N. Engl. J. Med.359(9), 938–949 (2008).
[CrossRef] [PubMed]

Furie, B. C.

B. Furie and B. C. Furie, “Mechanisms of thrombus formation,” N. Engl. J. Med.359(9), 938–949 (2008).
[CrossRef] [PubMed]

Furuya, D.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Fuster, V.

A. Mailhac, J. J. Badimon, J. T. Fallon, A. Fernández-Ortiz, B. Meyer, J. H. Chesebro, V. Fuster, and L. Badimon, “Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets,” Circulation90(2), 988–996 (1994).
[CrossRef] [PubMed]

Ginsberg, M. D.

M. D. Ginsberg and R. Busto, “Rodent models of cerebral ischemia,” Stroke20(12), 1627–1642 (1989).
[CrossRef] [PubMed]

B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol.17(5), 497–504 (1985).
[CrossRef] [PubMed]

Gnasso, A.

A. Gnasso, C. Carallo, C. Irace, M. S. De Franceschi, P. L. Mattioli, C. Motti, and C. Cortese, “Association between wall shear stress and flow-mediated vasodilation in healthy men,” Atherosclerosis156(1), 171–176 (2001).
[CrossRef] [PubMed]

Greenberg, J. H.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Hainsworth, A. H.

A. H. Hainsworth and H. S. Markus, “Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review,” J. Cereb. Blood Flow Metab.28(12), 1877–1891 (2008).
[CrossRef] [PubMed]

Heemskerk, J. W.

J. M. Cosemans, A. Angelillo-Scherrer, N. J. Mattheij, and J. W. Heemskerk, “The effects of arterial flow on platelet activation, thrombus growth, and stabilization,” Cardiovasc. Res.99(2), 342–352 (2013).
[CrossRef] [PubMed]

Hoffmann, O.

J. M. Valdueza, B. Draganski, O. Hoffmann, U. Dirnagl, and K. M. Einhäupl, “Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings,” Stroke30(1), 81–86 (1999).
[CrossRef] [PubMed]

Huang, Z.

H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med.8(2), 136–142 (2002).
[CrossRef] [PubMed]

Iadecola, C.

J. Nguyen, N. Nishimura, R. N. Fetcho, C. Iadecola, and C. B. Schaffer, “Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries,” J. Cereb. Blood Flow Metab.31(11), 2243–2254 (2011).
[CrossRef] [PubMed]

N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010).
[CrossRef] [PubMed]

Intaglietta, M.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Effect of erythrocyte aggregation on velocity profiles in venules,” Am. J. Physiol. Heart Circ. Physiol.280(1), H222–H236 (2001).
[PubMed]

Irace, C.

A. Gnasso, C. Carallo, C. Irace, M. S. De Franceschi, P. L. Mattioli, C. Motti, and C. Cortese, “Association between wall shear stress and flow-mediated vasodilation in healthy men,” Atherosclerosis156(1), 171–176 (2001).
[CrossRef] [PubMed]

Jackson, S. P.

S. P. Jackson, “Arterial thrombosis--insidious, unpredictable and deadly,” Nat. Med.17(11), 1423–1436 (2011).
[CrossRef] [PubMed]

W. S. Nesbitt, E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson, “A shear gradient-dependent platelet aggregation mechanism drives thrombus formation,” Nat. Med.15(6), 665–673 (2009).
[CrossRef] [PubMed]

Johnson, P. C.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Effect of erythrocyte aggregation on velocity profiles in venules,” Am. J. Physiol. Heart Circ. Physiol.280(1), H222–H236 (2001).
[PubMed]

Jones, P. B.

H. K. Shin, A. K. Dunn, P. B. Jones, D. A. Boas, M. A. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” J. Cereb. Blood Flow Metab.26(8), 1018–1030 (2006).
[CrossRef] [PubMed]

Jones, T. A.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
[CrossRef] [PubMed]

Kazmi, S. M.

Kazmi, S. M. S.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
[CrossRef] [PubMed]

Kirov, S. A.

W. C. Risher, D. Ard, J. Yuan, and S. A. Kirov, “Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra,” J. Neurosci.30(29), 9859–9868 (2010).
[CrossRef] [PubMed]

Kleinfeld, D.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Kleinschnitz, C.

S. Braeuninger and C. Kleinschnitz, “Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems,” Exp. Transl. Stroke Med.1(1), 8 (2009).
[CrossRef] [PubMed]

Lemieux, P. A.

Li, N.

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High Resolution Cerebral Blood Flow Imaging by Registered Laser Speckle Contrast Analysis,” IEEE Trans. Biomed. Eng.57(5), 1152–1157 (2010).
[CrossRef] [PubMed]

Luft, A. R.

J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage29(1), 38–45 (2006).
[CrossRef] [PubMed]

Lyden, P. D.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Mailhac, A.

A. Mailhac, J. J. Badimon, J. T. Fallon, A. Fernández-Ortiz, B. Meyer, J. H. Chesebro, V. Fuster, and L. Badimon, “Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets,” Circulation90(2), 988–996 (1994).
[CrossRef] [PubMed]

Markus, H. S.

A. H. Hainsworth and H. S. Markus, “Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review,” J. Cereb. Blood Flow Metab.28(12), 1877–1891 (2008).
[CrossRef] [PubMed]

Mattheij, N. J.

J. M. Cosemans, A. Angelillo-Scherrer, N. J. Mattheij, and J. W. Heemskerk, “The effects of arterial flow on platelet activation, thrombus growth, and stabilization,” Cardiovasc. Res.99(2), 342–352 (2013).
[CrossRef] [PubMed]

Mattioli, P. L.

A. Gnasso, C. Carallo, C. Irace, M. S. De Franceschi, P. L. Mattioli, C. Motti, and C. Cortese, “Association between wall shear stress and flow-mediated vasodilation in healthy men,” Atherosclerosis156(1), 171–176 (2001).
[CrossRef] [PubMed]

Meyer, B.

A. Mailhac, J. J. Badimon, J. T. Fallon, A. Fernández-Ortiz, B. Meyer, J. H. Chesebro, V. Fuster, and L. Badimon, “Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets,” Circulation90(2), 988–996 (1994).
[CrossRef] [PubMed]

Miao, P.

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High Resolution Cerebral Blood Flow Imaging by Registered Laser Speckle Contrast Analysis,” IEEE Trans. Biomed. Eng.57(5), 1152–1157 (2010).
[CrossRef] [PubMed]

Mitchell, A.

W. S. Nesbitt, E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson, “A shear gradient-dependent platelet aggregation mechanism drives thrombus formation,” Nat. Med.15(6), 665–673 (2009).
[CrossRef] [PubMed]

Mohajerani, M. H.

A. Sigler, M. H. Mohajerani, and T. H. Murphy, “Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice,” Proc. Natl. Acad. Sci. U.S.A.106(28), 11759–11764 (2009).
[CrossRef] [PubMed]

Moskowitz, M. A.

H. K. Shin, A. K. Dunn, P. B. Jones, D. A. Boas, M. A. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” J. Cereb. Blood Flow Metab.26(8), 1018–1030 (2006).
[CrossRef] [PubMed]

H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med.8(2), 136–142 (2002).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Motti, C.

A. Gnasso, C. Carallo, C. Irace, M. S. De Franceschi, P. L. Mattioli, C. Motti, and C. Cortese, “Association between wall shear stress and flow-mediated vasodilation in healthy men,” Atherosclerosis156(1), 171–176 (2001).
[CrossRef] [PubMed]

Murphy, T. H.

A. Sigler, M. H. Mohajerani, and T. H. Murphy, “Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice,” Proc. Natl. Acad. Sci. U.S.A.106(28), 11759–11764 (2009).
[CrossRef] [PubMed]

Nance, P. R.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Effect of erythrocyte aggregation on velocity profiles in venules,” Am. J. Physiol. Heart Circ. Physiol.280(1), H222–H236 (2001).
[PubMed]

Nelson, J. S.

Nesbitt, W. S.

W. S. Nesbitt, E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson, “A shear gradient-dependent platelet aggregation mechanism drives thrombus formation,” Nat. Med.15(6), 665–673 (2009).
[CrossRef] [PubMed]

Nguyen, J.

J. Nguyen, N. Nishimura, R. N. Fetcho, C. Iadecola, and C. B. Schaffer, “Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries,” J. Cereb. Blood Flow Metab.31(11), 2243–2254 (2011).
[CrossRef] [PubMed]

Nishimura, N.

J. Nguyen, N. Nishimura, R. N. Fetcho, C. Iadecola, and C. B. Schaffer, “Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries,” J. Cereb. Blood Flow Metab.31(11), 2243–2254 (2011).
[CrossRef] [PubMed]

N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010).
[CrossRef] [PubMed]

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Ohshima, N.

M. Sato and N. Ohshima, “Flow-induced changes in shape and cytoskeletal structure of vascular endothelial cells,” Biorheology31(2), 143–153 (1994).
[PubMed]

Parthasarathy, A. B.

Parthasarthy, A. B.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
[CrossRef] [PubMed]

Paul, J. S.

J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage29(1), 38–45 (2006).
[CrossRef] [PubMed]

Petrig, B. L.

Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.52(7), 4151–4157 (2011).
[CrossRef] [PubMed]

Popel, A. S.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Effect of erythrocyte aggregation on velocity profiles in venules,” Am. J. Physiol. Heart Circ. Physiol.280(1), H222–H236 (2001).
[PubMed]

Prado, R.

B. D. Watson, R. Prado, A. Veloso, J. P. Brunschwig, and W. D. Dietrich, “Cerebral blood flow restoration and reperfusion injury after ultraviolet laser-facilitated middle cerebral artery recanalization in rat thrombotic stroke,” Stroke33(2), 428–434 (2002).
[CrossRef] [PubMed]

Rege, A.

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High Resolution Cerebral Blood Flow Imaging by Registered Laser Speckle Contrast Analysis,” IEEE Trans. Biomed. Eng.57(5), 1152–1157 (2010).
[CrossRef] [PubMed]

Reuter, U.

H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med.8(2), 136–142 (2002).
[CrossRef] [PubMed]

Risher, W. C.

W. C. Risher, D. Ard, J. Yuan, and S. A. Kirov, “Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra,” J. Neurosci.30(29), 9859–9868 (2010).
[CrossRef] [PubMed]

Rosidi, N. L.

N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010).
[CrossRef] [PubMed]

Sato, M.

M. Sato and N. Ohshima, “Flow-induced changes in shape and cytoskeletal structure of vascular endothelial cells,” Biorheology31(2), 143–153 (1994).
[PubMed]

Saxer, C.

Schaffer, C. B.

J. Nguyen, N. Nishimura, R. N. Fetcho, C. Iadecola, and C. B. Schaffer, “Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries,” J. Cereb. Blood Flow Metab.31(11), 2243–2254 (2011).
[CrossRef] [PubMed]

N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010).
[CrossRef] [PubMed]

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Schroeder, L. F.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Shen, Q.

Sheu, F. S.

J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage29(1), 38–45 (2006).
[CrossRef] [PubMed]

Shin, H. K.

H. K. Shin, A. K. Dunn, P. B. Jones, D. A. Boas, M. A. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” J. Cereb. Blood Flow Metab.26(8), 1018–1030 (2006).
[CrossRef] [PubMed]

Sigler, A.

A. Sigler, M. H. Mohajerani, and T. H. Murphy, “Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice,” Proc. Natl. Acad. Sci. U.S.A.106(28), 11759–11764 (2009).
[CrossRef] [PubMed]

Song, H.

Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.52(7), 4151–4157 (2011).
[CrossRef] [PubMed]

Song, N. E.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
[CrossRef] [PubMed]

Thakor, N. V.

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High Resolution Cerebral Blood Flow Imaging by Registered Laser Speckle Contrast Analysis,” IEEE Trans. Biomed. Eng.57(5), 1152–1157 (2010).
[CrossRef] [PubMed]

Tolouei, E.

W. S. Nesbitt, E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson, “A shear gradient-dependent platelet aggregation mechanism drives thrombus formation,” Nat. Med.15(6), 665–673 (2009).
[CrossRef] [PubMed]

Tong, S.

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High Resolution Cerebral Blood Flow Imaging by Registered Laser Speckle Contrast Analysis,” IEEE Trans. Biomed. Eng.57(5), 1152–1157 (2010).
[CrossRef] [PubMed]

Tovar-Lopez, F. J.

W. S. Nesbitt, E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson, “A shear gradient-dependent platelet aggregation mechanism drives thrombus formation,” Nat. Med.15(6), 665–673 (2009).
[CrossRef] [PubMed]

Tsai, P. S.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Valdueza, J. M.

J. M. Valdueza, B. Draganski, O. Hoffmann, U. Dirnagl, and K. M. Einhäupl, “Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings,” Stroke30(1), 81–86 (1999).
[CrossRef] [PubMed]

Veloso, A.

B. D. Watson, R. Prado, A. Veloso, J. P. Brunschwig, and W. D. Dietrich, “Cerebral blood flow restoration and reperfusion injury after ultraviolet laser-facilitated middle cerebral artery recanalization in rat thrombotic stroke,” Stroke33(2), 428–434 (2002).
[CrossRef] [PubMed]

Wachtel, M. S.

B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol.17(5), 497–504 (1985).
[CrossRef] [PubMed]

Watson, B. D.

B. D. Watson, R. Prado, A. Veloso, J. P. Brunschwig, and W. D. Dietrich, “Cerebral blood flow restoration and reperfusion injury after ultraviolet laser-facilitated middle cerebral artery recanalization in rat thrombotic stroke,” Stroke33(2), 428–434 (2002).
[CrossRef] [PubMed]

B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol.17(5), 497–504 (1985).
[CrossRef] [PubMed]

Westein, E.

W. S. Nesbitt, E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson, “A shear gradient-dependent platelet aggregation mechanism drives thrombus formation,” Nat. Med.15(6), 665–673 (2009).
[CrossRef] [PubMed]

Xiang, S.

Yew, E.

J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage29(1), 38–45 (2006).
[CrossRef] [PubMed]

Yodh, A. G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Yu, G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Yuan, J.

W. C. Risher, D. Ard, J. Yuan, and S. A. Kirov, “Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra,” J. Neurosci.30(29), 9859–9868 (2010).
[CrossRef] [PubMed]

Zhao, Y.

Zhong, Z.

Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.52(7), 4151–4157 (2011).
[CrossRef] [PubMed]

Zhou, C.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

ACM Comput. Surv.

L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv.24(4), 325–376 (1992).
[CrossRef]

Am. J. Physiol. Heart Circ. Physiol.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Effect of erythrocyte aggregation on velocity profiles in venules,” Am. J. Physiol. Heart Circ. Physiol.280(1), H222–H236 (2001).
[PubMed]

Ann. Biomed. Eng.

A. K. Dunn, “Laser Speckle Contrast Imaging of Cerebral Blood Flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
[CrossRef] [PubMed]

Ann. Neurol.

B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol.17(5), 497–504 (1985).
[CrossRef] [PubMed]

Atherosclerosis

A. Gnasso, C. Carallo, C. Irace, M. S. De Franceschi, P. L. Mattioli, C. Motti, and C. Cortese, “Association between wall shear stress and flow-mediated vasodilation in healthy men,” Atherosclerosis156(1), 171–176 (2001).
[CrossRef] [PubMed]

Biomed. Opt. Express

Biorheology

M. Sato and N. Ohshima, “Flow-induced changes in shape and cytoskeletal structure of vascular endothelial cells,” Biorheology31(2), 143–153 (1994).
[PubMed]

Cardiovasc. Res.

J. M. Cosemans, A. Angelillo-Scherrer, N. J. Mattheij, and J. W. Heemskerk, “The effects of arterial flow on platelet activation, thrombus growth, and stabilization,” Cardiovasc. Res.99(2), 342–352 (2013).
[CrossRef] [PubMed]

Circulation

A. Mailhac, J. J. Badimon, J. T. Fallon, A. Fernández-Ortiz, B. Meyer, J. H. Chesebro, V. Fuster, and L. Badimon, “Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets,” Circulation90(2), 988–996 (1994).
[CrossRef] [PubMed]

Exp. Transl. Stroke Med.

S. Braeuninger and C. Kleinschnitz, “Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems,” Exp. Transl. Stroke Med.1(1), 8 (2009).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng.

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High Resolution Cerebral Blood Flow Imaging by Registered Laser Speckle Contrast Analysis,” IEEE Trans. Biomed. Eng.57(5), 1152–1157 (2010).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.52(7), 4151–4157 (2011).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab.

N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010).
[CrossRef] [PubMed]

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013).
[CrossRef] [PubMed]

A. H. Hainsworth and H. S. Markus, “Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review,” J. Cereb. Blood Flow Metab.28(12), 1877–1891 (2008).
[CrossRef] [PubMed]

H. K. Shin, A. K. Dunn, P. B. Jones, D. A. Boas, M. A. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” J. Cereb. Blood Flow Metab.26(8), 1018–1030 (2006).
[CrossRef] [PubMed]

J. Nguyen, N. Nishimura, R. N. Fetcho, C. Iadecola, and C. B. Schaffer, “Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries,” J. Cereb. Blood Flow Metab.31(11), 2243–2254 (2011).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

J. Neurosci.

W. C. Risher, D. Ard, J. Yuan, and S. A. Kirov, “Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra,” J. Neurosci.30(29), 9859–9868 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Pharmacol. Toxicol. Methods

M. Boquillon, J. P. Boquillon, and J. Bralet, “Photochemically induced, graded cerebral infarction in the mouse by laser irradiation evolution of brain edema,” J. Pharmacol. Toxicol. Methods27(1), 1–6 (1992).
[CrossRef] [PubMed]

N. Engl. J. Med.

B. Furie and B. C. Furie, “Mechanisms of thrombus formation,” N. Engl. J. Med.359(9), 938–949 (2008).
[CrossRef] [PubMed]

Nat. Med.

S. P. Jackson, “Arterial thrombosis--insidious, unpredictable and deadly,” Nat. Med.17(11), 1423–1436 (2011).
[CrossRef] [PubMed]

W. S. Nesbitt, E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson, “A shear gradient-dependent platelet aggregation mechanism drives thrombus formation,” Nat. Med.15(6), 665–673 (2009).
[CrossRef] [PubMed]

H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med.8(2), 136–142 (2002).
[CrossRef] [PubMed]

Neuroimage

J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage29(1), 38–45 (2006).
[CrossRef] [PubMed]

Opt. Lett.

PLoS Biol.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

A. Sigler, M. H. Mohajerani, and T. H. Murphy, “Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice,” Proc. Natl. Acad. Sci. U.S.A.106(28), 11759–11764 (2009).
[CrossRef] [PubMed]

Stroke

M. D. Ginsberg and R. Busto, “Rodent models of cerebral ischemia,” Stroke20(12), 1627–1642 (1989).
[CrossRef] [PubMed]

J. M. Valdueza, B. Draganski, O. Hoffmann, U. Dirnagl, and K. M. Einhäupl, “Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings,” Stroke30(1), 81–86 (1999).
[CrossRef] [PubMed]

B. D. Watson, R. Prado, A. Veloso, J. P. Brunschwig, and W. D. Dietrich, “Cerebral blood flow restoration and reperfusion injury after ultraviolet laser-facilitated middle cerebral artery recanalization in rat thrombotic stroke,” Stroke33(2), 428–434 (2002).
[CrossRef] [PubMed]

Other

A. Rege, K. Murari, N. Li, and N. Thakor, “Imaging microvascular flow characteristics using laser speckle contrast imaging,” in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, (IEEE, 2010), 1978–1981.
[CrossRef]

Supplementary Material (2)

» Media 1: MP4 (3431 KB)     
» Media 2: MP4 (2932 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the imaging system.

Fig. 2
Fig. 2

Raw speckle image and laser speckle contrast images in microscopic view. (a) Raw speckle image in microscopic view. The white area within the red square is the acupuncture needle tip, which was used as a reference for registration. (b) LSI image calculated without registration. (c) LSI image after registration. The green dashed circle indicates the focus of photothrombosis. It is clear that registration successfully removes motion artifacts and improves spatial resolution.

Fig. 3
Fig. 3

LSI images and the corresponding BVPs. (a), (c), (e) and (g) are LSI images at different time points in the photothrombosis process (t1 = 0 min, t2 = 6 min, t3 = 9 min, t4 = 10 min). The corresponding BVPs along the selected cross session C1 are shown in (b), (d), (f) and (h), respectively. The BVPs are fitted with parabolic curves. A cross section C2 (blue) far from the focus is selected for further comparison with C1 (red) in aspects of vessel diameter and centerline velocity.

Fig. 4
Fig. 4

CBF changes at a single point during the photothrombosis process. (a), (b) Two selected points close to the vessel wall (point A) and centerline (point B) at the baseline along the cross section C1 were selected to demonstrate the changes in CBF during the thrombus formation. (c) Blood velocity changes of point A and point B, represented by V A and V B , are plotted during the photothrombosis process.

Fig. 5
Fig. 5

Changes in cerebral vessel diameter and the centerline velocity during the photothrombosis process at different locations. (a) Illustration of the definition of vessel diameter D and centerline velocity V C on BVP. (b) Vessel diameter changes at cross sections C1 and C2, denoted as D C1 and D C2 . (c) The centerline velocity, i.e. V C1 and V C2 , on cross sections C1 and C2.

Fig. 6
Fig. 6

The change of CBF standard deviation σ t in the process of thrombus formation. (a) Seven ROIs (40 × 25 pixels each) along the blood vessels were selected (coded by colors and labeled from S1 to S7) to analyze the temporal change of σ t . (b) σ t curves for each ROI. σ t curves show four distinct stages of photothrombotic stroke model.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

K= σ 20 (i,j) μ 20 (i,j)
K 2 =β[ τ c T + τ c 2 2 T 2 ( e 2T τ c 1 ) ]
F(x)={ Y( x 1 ), x< x 1 P(x), x 1 x x 2 Y( x 2 ), x> x 2
{ x 1 , x 2 }=arg min 1 x 1 < x 2 L x=1 L ( F(x)Y(x) ) 2 , x 1 , x 2

Metrics