Abstract

We present the theoretical basis and experimental verification for cardiac output measurements using noninvasively measured hemodilution curves afforded with an indicator dilution technique and the emerging photoacoustic technology. A photoacoustic system noninvasively tracks a transient hemodilution effect induced by a bolus of isotonic saline as an indicator. As a result, a photoacoustic indicator dilution curve is obtained, which allows to estimate cardiac output from the developed algorithm. The experiments with a porcine blood circulatory phantom system demonstrated the feasibility of this technology towards the development of a noninvasive cardiac output measurement system for patient monitoring.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Hamilton, M. Cecconi, and A. Rhodes, “A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients,” Anesth. Analg.112(6), 1392–1402 (2011).
    [CrossRef] [PubMed]
  2. R. Pearse, D. Dawson, J. Fawcett, A. Rhodes, R. M. Grounds, and E. D. Bennett, “Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445],” Crit. Care9(6), R687–R693 (2005).
    [CrossRef] [PubMed]
  3. P. Meier and K. L. Zierler, “On the theory of the indicator dilution method for measurment of blood flow and volume,” J. Appl. Phys.6, 731–744 (1954).
  4. R. D. Weisel, R. L. Berger, and H. B. Hechtman, “Current concepts measurement of cardiac output by thermodilution,” N. Engl. J. Med.292(13), 682–684 (1975).
    [CrossRef] [PubMed]
  5. K. Zierler, “Indicator dilution methods for measuring blood flow, volume, and other properties of biological systems: a brief history and memoir,” Ann. Biomed. Eng.28(8), 836–848 (2000).
    [CrossRef] [PubMed]
  6. D. A. Reuter, C. Huang, T. Edrich, S. K. Shernan, and H. K. Eltzschig, “Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives,” Anesth. Analg.110(3), 799–811 (2010).
    [CrossRef] [PubMed]
  7. A. Genahr, and A. McLuckie, “Tramspulmonary thermodilution in the critically ill,” Brit. J. Inten. Care Spring, 6-10 (2004).
  8. K. Chatterjee, “The Swan-Ganz catheters: past, present, and future. A viewpoint,” Circulation119(1), 147–152 (2009).
    [CrossRef] [PubMed]
  9. S. Benington, P. Ferris, and M. Nirmalan, “Emerging trends in minimally invasive haemodynamic monitoring and optimization of fluid therapy,” Eur. J. Anaesthesiol.26(11), 893–905 (2009).
    [CrossRef] [PubMed]
  10. P. E. Marik, “Noninvasive cardiac output monitors: a state-of the-art review,” J. Cardiothorac. Vasc. Anesth.27(1), 121–134 (2013).
    [CrossRef] [PubMed]
  11. R. O. Esenaliev, Y. Y. Petrov, O. Hartrumpf, D. J. Deyo, and D. S. Prough, “Continuous, noninvasive monitoring of total hemoglobin concentration by an optoacoustic technique,” Appl. Opt.43(17), 3401–3407 (2004).
    [CrossRef] [PubMed]
  12. D. Graham-Rowe, “Sounding out photons,” Nat. Photonics3(3), 123–125 (2009).
    [CrossRef]
  13. M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
    [CrossRef] [PubMed]
  14. T. J. Allen, B. T. Cox, and P. C. Beard, “Generating photoacoustic signals using high-peak power pulsed laser diodes,” Proc. SPIE5696, 233–242 (2005).
    [CrossRef]
  15. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol.58(11), R37–R61 (2013).
    [CrossRef] [PubMed]
  16. B. Banerjee, S. Bagchi, R. M. Vasu, and D. Roy, “Quantitative photoacoustic tomography from boundary pressure measurements: noniterative recovery of optical absorption coefficient from the reconstructed absorbed energy map,” J. Opt. Soc. Am. A25(9), 2347–2356 (2008).
    [CrossRef] [PubMed]
  17. E. V. Newman, M. Merrell, A. Genecin, C. Monge, W. R. Milnor, and W. P. McKEEVER, “The dye dilution method for describing the central circulation. an analysis of factors shaping the time-concentration curves,” Circulation4(5), 735–746 (1951).
    [CrossRef] [PubMed]

2013 (2)

P. E. Marik, “Noninvasive cardiac output monitors: a state-of the-art review,” J. Cardiothorac. Vasc. Anesth.27(1), 121–134 (2013).
[CrossRef] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol.58(11), R37–R61 (2013).
[CrossRef] [PubMed]

2011 (1)

M. A. Hamilton, M. Cecconi, and A. Rhodes, “A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients,” Anesth. Analg.112(6), 1392–1402 (2011).
[CrossRef] [PubMed]

2010 (1)

D. A. Reuter, C. Huang, T. Edrich, S. K. Shernan, and H. K. Eltzschig, “Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives,” Anesth. Analg.110(3), 799–811 (2010).
[CrossRef] [PubMed]

2009 (4)

K. Chatterjee, “The Swan-Ganz catheters: past, present, and future. A viewpoint,” Circulation119(1), 147–152 (2009).
[CrossRef] [PubMed]

S. Benington, P. Ferris, and M. Nirmalan, “Emerging trends in minimally invasive haemodynamic monitoring and optimization of fluid therapy,” Eur. J. Anaesthesiol.26(11), 893–905 (2009).
[CrossRef] [PubMed]

D. Graham-Rowe, “Sounding out photons,” Nat. Photonics3(3), 123–125 (2009).
[CrossRef]

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
[CrossRef] [PubMed]

2008 (1)

2005 (2)

T. J. Allen, B. T. Cox, and P. C. Beard, “Generating photoacoustic signals using high-peak power pulsed laser diodes,” Proc. SPIE5696, 233–242 (2005).
[CrossRef]

R. Pearse, D. Dawson, J. Fawcett, A. Rhodes, R. M. Grounds, and E. D. Bennett, “Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445],” Crit. Care9(6), R687–R693 (2005).
[CrossRef] [PubMed]

2004 (1)

2000 (1)

K. Zierler, “Indicator dilution methods for measuring blood flow, volume, and other properties of biological systems: a brief history and memoir,” Ann. Biomed. Eng.28(8), 836–848 (2000).
[CrossRef] [PubMed]

1975 (1)

R. D. Weisel, R. L. Berger, and H. B. Hechtman, “Current concepts measurement of cardiac output by thermodilution,” N. Engl. J. Med.292(13), 682–684 (1975).
[CrossRef] [PubMed]

1954 (1)

P. Meier and K. L. Zierler, “On the theory of the indicator dilution method for measurment of blood flow and volume,” J. Appl. Phys.6, 731–744 (1954).

1951 (1)

E. V. Newman, M. Merrell, A. Genecin, C. Monge, W. R. Milnor, and W. P. McKEEVER, “The dye dilution method for describing the central circulation. an analysis of factors shaping the time-concentration curves,” Circulation4(5), 735–746 (1951).
[CrossRef] [PubMed]

Allen, T. J.

T. J. Allen, B. T. Cox, and P. C. Beard, “Generating photoacoustic signals using high-peak power pulsed laser diodes,” Proc. SPIE5696, 233–242 (2005).
[CrossRef]

Bagchi, S.

Banerjee, B.

Beard, P. C.

T. J. Allen, B. T. Cox, and P. C. Beard, “Generating photoacoustic signals using high-peak power pulsed laser diodes,” Proc. SPIE5696, 233–242 (2005).
[CrossRef]

Benington, S.

S. Benington, P. Ferris, and M. Nirmalan, “Emerging trends in minimally invasive haemodynamic monitoring and optimization of fluid therapy,” Eur. J. Anaesthesiol.26(11), 893–905 (2009).
[CrossRef] [PubMed]

Bennett, E. D.

R. Pearse, D. Dawson, J. Fawcett, A. Rhodes, R. M. Grounds, and E. D. Bennett, “Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445],” Crit. Care9(6), R687–R693 (2005).
[CrossRef] [PubMed]

Berger, R. L.

R. D. Weisel, R. L. Berger, and H. B. Hechtman, “Current concepts measurement of cardiac output by thermodilution,” N. Engl. J. Med.292(13), 682–684 (1975).
[CrossRef] [PubMed]

Cecconi, M.

M. A. Hamilton, M. Cecconi, and A. Rhodes, “A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients,” Anesth. Analg.112(6), 1392–1402 (2011).
[CrossRef] [PubMed]

Chatterjee, K.

K. Chatterjee, “The Swan-Ganz catheters: past, present, and future. A viewpoint,” Circulation119(1), 147–152 (2009).
[CrossRef] [PubMed]

Cox, B. T.

T. J. Allen, B. T. Cox, and P. C. Beard, “Generating photoacoustic signals using high-peak power pulsed laser diodes,” Proc. SPIE5696, 233–242 (2005).
[CrossRef]

Dawson, D.

R. Pearse, D. Dawson, J. Fawcett, A. Rhodes, R. M. Grounds, and E. D. Bennett, “Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445],” Crit. Care9(6), R687–R693 (2005).
[CrossRef] [PubMed]

Deyo, D. J.

Edrich, T.

D. A. Reuter, C. Huang, T. Edrich, S. K. Shernan, and H. K. Eltzschig, “Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives,” Anesth. Analg.110(3), 799–811 (2010).
[CrossRef] [PubMed]

Eltzschig, H. K.

D. A. Reuter, C. Huang, T. Edrich, S. K. Shernan, and H. K. Eltzschig, “Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives,” Anesth. Analg.110(3), 799–811 (2010).
[CrossRef] [PubMed]

Esenaliev, R. O.

Fawcett, J.

R. Pearse, D. Dawson, J. Fawcett, A. Rhodes, R. M. Grounds, and E. D. Bennett, “Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445],” Crit. Care9(6), R687–R693 (2005).
[CrossRef] [PubMed]

Ferris, P.

S. Benington, P. Ferris, and M. Nirmalan, “Emerging trends in minimally invasive haemodynamic monitoring and optimization of fluid therapy,” Eur. J. Anaesthesiol.26(11), 893–905 (2009).
[CrossRef] [PubMed]

Genecin, A.

E. V. Newman, M. Merrell, A. Genecin, C. Monge, W. R. Milnor, and W. P. McKEEVER, “The dye dilution method for describing the central circulation. an analysis of factors shaping the time-concentration curves,” Circulation4(5), 735–746 (1951).
[CrossRef] [PubMed]

Graham-Rowe, D.

D. Graham-Rowe, “Sounding out photons,” Nat. Photonics3(3), 123–125 (2009).
[CrossRef]

Grounds, R. M.

R. Pearse, D. Dawson, J. Fawcett, A. Rhodes, R. M. Grounds, and E. D. Bennett, “Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445],” Crit. Care9(6), R687–R693 (2005).
[CrossRef] [PubMed]

Hamilton, M. A.

M. A. Hamilton, M. Cecconi, and A. Rhodes, “A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients,” Anesth. Analg.112(6), 1392–1402 (2011).
[CrossRef] [PubMed]

Hartrumpf, O.

Hechtman, H. B.

R. D. Weisel, R. L. Berger, and H. B. Hechtman, “Current concepts measurement of cardiac output by thermodilution,” N. Engl. J. Med.292(13), 682–684 (1975).
[CrossRef] [PubMed]

Huang, C.

D. A. Reuter, C. Huang, T. Edrich, S. K. Shernan, and H. K. Eltzschig, “Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives,” Anesth. Analg.110(3), 799–811 (2010).
[CrossRef] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol.58(11), R37–R61 (2013).
[CrossRef] [PubMed]

Marik, P. E.

P. E. Marik, “Noninvasive cardiac output monitors: a state-of the-art review,” J. Cardiothorac. Vasc. Anesth.27(1), 121–134 (2013).
[CrossRef] [PubMed]

McKEEVER, W. P.

E. V. Newman, M. Merrell, A. Genecin, C. Monge, W. R. Milnor, and W. P. McKEEVER, “The dye dilution method for describing the central circulation. an analysis of factors shaping the time-concentration curves,” Circulation4(5), 735–746 (1951).
[CrossRef] [PubMed]

Meier, P.

P. Meier and K. L. Zierler, “On the theory of the indicator dilution method for measurment of blood flow and volume,” J. Appl. Phys.6, 731–744 (1954).

Merrell, M.

E. V. Newman, M. Merrell, A. Genecin, C. Monge, W. R. Milnor, and W. P. McKEEVER, “The dye dilution method for describing the central circulation. an analysis of factors shaping the time-concentration curves,” Circulation4(5), 735–746 (1951).
[CrossRef] [PubMed]

Milnor, W. R.

E. V. Newman, M. Merrell, A. Genecin, C. Monge, W. R. Milnor, and W. P. McKEEVER, “The dye dilution method for describing the central circulation. an analysis of factors shaping the time-concentration curves,” Circulation4(5), 735–746 (1951).
[CrossRef] [PubMed]

Monge, C.

E. V. Newman, M. Merrell, A. Genecin, C. Monge, W. R. Milnor, and W. P. McKEEVER, “The dye dilution method for describing the central circulation. an analysis of factors shaping the time-concentration curves,” Circulation4(5), 735–746 (1951).
[CrossRef] [PubMed]

Newman, E. V.

E. V. Newman, M. Merrell, A. Genecin, C. Monge, W. R. Milnor, and W. P. McKEEVER, “The dye dilution method for describing the central circulation. an analysis of factors shaping the time-concentration curves,” Circulation4(5), 735–746 (1951).
[CrossRef] [PubMed]

Nirmalan, M.

S. Benington, P. Ferris, and M. Nirmalan, “Emerging trends in minimally invasive haemodynamic monitoring and optimization of fluid therapy,” Eur. J. Anaesthesiol.26(11), 893–905 (2009).
[CrossRef] [PubMed]

Pearse, R.

R. Pearse, D. Dawson, J. Fawcett, A. Rhodes, R. M. Grounds, and E. D. Bennett, “Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445],” Crit. Care9(6), R687–R693 (2005).
[CrossRef] [PubMed]

Petrov, Y. Y.

Pramanik, M.

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
[CrossRef] [PubMed]

Prough, D. S.

Reuter, D. A.

D. A. Reuter, C. Huang, T. Edrich, S. K. Shernan, and H. K. Eltzschig, “Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives,” Anesth. Analg.110(3), 799–811 (2010).
[CrossRef] [PubMed]

Rhodes, A.

M. A. Hamilton, M. Cecconi, and A. Rhodes, “A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients,” Anesth. Analg.112(6), 1392–1402 (2011).
[CrossRef] [PubMed]

R. Pearse, D. Dawson, J. Fawcett, A. Rhodes, R. M. Grounds, and E. D. Bennett, “Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445],” Crit. Care9(6), R687–R693 (2005).
[CrossRef] [PubMed]

Roy, D.

Shernan, S. K.

D. A. Reuter, C. Huang, T. Edrich, S. K. Shernan, and H. K. Eltzschig, “Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives,” Anesth. Analg.110(3), 799–811 (2010).
[CrossRef] [PubMed]

Vasu, R. M.

Wang, L. V.

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
[CrossRef] [PubMed]

Weisel, R. D.

R. D. Weisel, R. L. Berger, and H. B. Hechtman, “Current concepts measurement of cardiac output by thermodilution,” N. Engl. J. Med.292(13), 682–684 (1975).
[CrossRef] [PubMed]

Zierler, K.

K. Zierler, “Indicator dilution methods for measuring blood flow, volume, and other properties of biological systems: a brief history and memoir,” Ann. Biomed. Eng.28(8), 836–848 (2000).
[CrossRef] [PubMed]

Zierler, K. L.

P. Meier and K. L. Zierler, “On the theory of the indicator dilution method for measurment of blood flow and volume,” J. Appl. Phys.6, 731–744 (1954).

Anesth. Analg. (2)

M. A. Hamilton, M. Cecconi, and A. Rhodes, “A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients,” Anesth. Analg.112(6), 1392–1402 (2011).
[CrossRef] [PubMed]

D. A. Reuter, C. Huang, T. Edrich, S. K. Shernan, and H. K. Eltzschig, “Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives,” Anesth. Analg.110(3), 799–811 (2010).
[CrossRef] [PubMed]

Ann. Biomed. Eng. (1)

K. Zierler, “Indicator dilution methods for measuring blood flow, volume, and other properties of biological systems: a brief history and memoir,” Ann. Biomed. Eng.28(8), 836–848 (2000).
[CrossRef] [PubMed]

Appl. Opt. (1)

Circulation (2)

E. V. Newman, M. Merrell, A. Genecin, C. Monge, W. R. Milnor, and W. P. McKEEVER, “The dye dilution method for describing the central circulation. an analysis of factors shaping the time-concentration curves,” Circulation4(5), 735–746 (1951).
[CrossRef] [PubMed]

K. Chatterjee, “The Swan-Ganz catheters: past, present, and future. A viewpoint,” Circulation119(1), 147–152 (2009).
[CrossRef] [PubMed]

Crit. Care (1)

R. Pearse, D. Dawson, J. Fawcett, A. Rhodes, R. M. Grounds, and E. D. Bennett, “Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445],” Crit. Care9(6), R687–R693 (2005).
[CrossRef] [PubMed]

Eur. J. Anaesthesiol. (1)

S. Benington, P. Ferris, and M. Nirmalan, “Emerging trends in minimally invasive haemodynamic monitoring and optimization of fluid therapy,” Eur. J. Anaesthesiol.26(11), 893–905 (2009).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

P. Meier and K. L. Zierler, “On the theory of the indicator dilution method for measurment of blood flow and volume,” J. Appl. Phys.6, 731–744 (1954).

J. Biomed. Opt. (1)

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
[CrossRef] [PubMed]

J. Cardiothorac. Vasc. Anesth. (1)

P. E. Marik, “Noninvasive cardiac output monitors: a state-of the-art review,” J. Cardiothorac. Vasc. Anesth.27(1), 121–134 (2013).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

N. Engl. J. Med. (1)

R. D. Weisel, R. L. Berger, and H. B. Hechtman, “Current concepts measurement of cardiac output by thermodilution,” N. Engl. J. Med.292(13), 682–684 (1975).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. Graham-Rowe, “Sounding out photons,” Nat. Photonics3(3), 123–125 (2009).
[CrossRef]

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol.58(11), R37–R61 (2013).
[CrossRef] [PubMed]

Proc. SPIE (1)

T. J. Allen, B. T. Cox, and P. C. Beard, “Generating photoacoustic signals using high-peak power pulsed laser diodes,” Proc. SPIE5696, 233–242 (2005).
[CrossRef]

Other (1)

A. Genahr, and A. McLuckie, “Tramspulmonary thermodilution in the critically ill,” Brit. J. Inten. Care Spring, 6-10 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup for the photoacoustic system to measure the flow rate.

Fig. 2
Fig. 2

Calibrated flow rates of the pumped circulating pig blood in the bench-top experimental system.

Fig. 3
Fig. 3

(a) one example of photoacoustic signals from the pig blood tube in the experimental setup. (b) A normalized indicator dilution curves extracted from consecutively measured photoacoustic signals.

Fig. 4
Fig. 4

The red curve indicates the smoothed dilution signal after applying an averaging filter. The exponential method estimates the tail of the dilution curve that is shown as the blue curve. The integration in the denominator of Eq. (8) indicates the area under the scaled dilution curve.

Fig. 5
Fig. 5

Estimated flow rates from the theory of photoacoustic indicator dilution.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

CO= V I 0 Δ V I ΔV dt ,
P A b =Κ tH b b Δ V b +P A 0 ,
PA( t )=Κ tH b m ( t ) Δ V m ( t )+Δ V I ( t ) +P A 0 ,
tH b b Δ V b = tH b m ( t ) Δ V m ( t ) .
PA( t )=Κ [ ΔVΔ V I ( t ) ]tH b b ΔVΔ V b +P A 0 .
PA( t )=P A b [ 1α Δ V I ( t ) ΔV ],
α= [ P A b P A 0 ] / P A b .
CO= α V I 0 [ 1 PA( t ) P A b ]dt .

Metrics