Abstract

Mechanical properties are important parameters that can be used to assess the physiologic conditions of biologic tissue. Measurements and mapping of tissue mechanical properties can aid in the diagnosis, characterisation and treatment of diseases. As a non-invasive, non-destructive and non-contact method, laser induced surface acoustic waves (SAWs) have potential to accurately characterise tissue elastic properties. However, challenge still exists when the laser is directly applied to the tissue because of potential heat generation due to laser energy deposition. This paper focuses on the thermal effect of the laser induced SAW on the tissue target and provides an alternate solution to facilitate its application in clinic environment. The solution proposed is to apply a thin agar membrane as surface shield to protect the tissue. Transient thermal analysis is developed and verified by experiments to study the effects of the high energy Nd:YAG laser pulse on the surface shield. The approach is then verified by measuring the mechanical property of skin in a Thiel mouse model. The results demonstrate a useful step toward the practical application of laser induced SAW method for measuring real elasticity of normal and diseased tissues in dermatology and other surface epithelia.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Tilleman, M. M. Tilleman, and M. H. Neumann, “The elastic properties of cancerous skin: Poisson’s ratio and Young’s modulus,” Isr. Med. Assoc. J.6(12), 753–755 (2004).
    [PubMed]
  2. X. Zhang, R. R. Kinnick, Pittelkow, and M. R. J. F. Greenleaf, 2008Skin viscoelasticity with surface wave method, 2008 IEEE International Ultrasonics Symposium Proceedings.
  3. Nakajima M., Kiyohara Y., Shimizu M. and Kobayashi M. 2007 “Clinical application of real-time tissue elastography on skin lesions”, MEDIX Suppl., 36–39.
  4. J. D. Krehbiel, J. Lambros, J. A. Viator, and N. R. Sottos, 2008 “Digital Image Correlation for Improved Detection of Basal Cell Carcinoma”, Proceedings of the XIth nternational Congress and Exposition.
  5. Melanoma skin cancer,” American Cancer Society, http://www.cancer.org/acs/groups/cid/documents/webcontent/003120-pdf , (2011)
  6. Skin cancer,” American Cancer Society, http://www.cancer.org/acs/groups/content/@nho/documents/document/skincancerpdf.pdf , (2007)
  7. P. Ciarletta, L. Foret, and M. Ben Amar, “The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis,” J. R. Soc. Interface8(56), 345–368 (2011).
    [CrossRef] [PubMed]
  8. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
    [CrossRef]
  9. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
    [CrossRef]
  10. C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011), doi:.
    [CrossRef] [PubMed]
  11. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
    [CrossRef] [PubMed]
  12. R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express12(19), 4558–4572 (2004).
    [CrossRef] [PubMed]
  13. J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004).
    [CrossRef] [PubMed]
  14. H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng.12(1), 63–73 (2006).
    [CrossRef] [PubMed]
  15. R. K. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
    [CrossRef]
  16. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006).
    [CrossRef] [PubMed]
  17. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express16(15), 11052–11065 (2008).
    [CrossRef] [PubMed]
  18. R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
    [CrossRef]
  19. B.F. Kennedy, K.M. Kennedy, and D.D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–17 (2014).
  20. R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: A preliminary study,” J. Biomed. Opt.15(5), 056005 (2010).
    [CrossRef] [PubMed]
  21. S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Imaging of tissue shear modulus by direct visualization of propagating acoustic waves with phase sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121509 (2013).
    [CrossRef] [PubMed]
  22. S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: Motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013).
    [CrossRef] [PubMed]
  23. T. M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt.19(1), 016013 (2014).
    [CrossRef] [PubMed]
  24. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009).
    [CrossRef] [PubMed]
  25. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011).
    [CrossRef] [PubMed]
  26. G. Guan, C. Li, Y. Ling, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,”J. Biomed. Opt.18(11), 111417 (2013).
  27. C. H. Li, Z. H. Huang, and R. K. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express19(11), 10153–10163 (2011).
    [CrossRef] [PubMed]
  28. C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012).
    [CrossRef] [PubMed]
  29. C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012).
    [CrossRef] [PubMed]
  30. C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
    [CrossRef] [PubMed]
  31. C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt.17(5), 057002 (2012).
    [CrossRef] [PubMed]
  32. C. B. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger Press, Bristol 1990).
  33. D. H. Hurley and J. B. Spicer, “Line source representation for laser-generated ultrasound in an elastic transversely isotropic half-space,” J. Acoust. Soc. Am.116(5), 2914–2922 (2004).
    [CrossRef]
  34. P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics34(1), 1–8 (1996).
    [CrossRef]
  35. S. Kenderian, B. B. Djordjevic, and R. E. Green., “Point and Line Source Laser Generation of Ultrasound for Inspection of Internal and Surface Flaws in Rail and Structural Materials,” Res. Nondestruct. Eval.13(4), 189–200 (2001).
    [CrossRef]
  36. American National Standard Institute, Safety of laser products – Part 1: Equipment classification, requirements and user's guide, IEC 60825–1, Edition 1.2 (2001–08).
  37. W. Sun, Y. Peng, and J. Xu, “A de-noising method for laser ultrasonic signal based on EMD,” J. Sandong Univ.38, 1–6 (2008).
  38. H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for non-destructive evaluation of human dental enamel,” Opt. Express17(15), 592– 607 (2009).
  39. K. D. Mohan and A. L. Oldenburg, “Elastography of soft materials and tissues by holographic imaging of surface acoustic waves,” Opt. Express20(17), 18887–18897 (2012).
    [CrossRef] [PubMed]
  40. D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films332(1-2), 157–163 (1998).
    [CrossRef]

2014 (2)

B.F. Kennedy, K.M. Kennedy, and D.D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–17 (2014).

T. M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt.19(1), 016013 (2014).
[CrossRef] [PubMed]

2013 (3)

G. Guan, C. Li, Y. Ling, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,”J. Biomed. Opt.18(11), 111417 (2013).

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Imaging of tissue shear modulus by direct visualization of propagating acoustic waves with phase sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121509 (2013).
[CrossRef] [PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: Motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013).
[CrossRef] [PubMed]

2012 (5)

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt.17(5), 057002 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012).
[CrossRef] [PubMed]

K. D. Mohan and A. L. Oldenburg, “Elastography of soft materials and tissues by holographic imaging of surface acoustic waves,” Opt. Express20(17), 18887–18897 (2012).
[CrossRef] [PubMed]

2011 (4)

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011).
[CrossRef] [PubMed]

C. H. Li, Z. H. Huang, and R. K. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express19(11), 10153–10163 (2011).
[CrossRef] [PubMed]

P. Ciarletta, L. Foret, and M. Ben Amar, “The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis,” J. R. Soc. Interface8(56), 345–368 (2011).
[CrossRef] [PubMed]

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011), doi:.
[CrossRef] [PubMed]

2010 (1)

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: A preliminary study,” J. Biomed. Opt.15(5), 056005 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

2007 (1)

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

2006 (3)

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng.12(1), 63–73 (2006).
[CrossRef] [PubMed]

R. K. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

2005 (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

2004 (4)

T. R. Tilleman, M. M. Tilleman, and M. H. Neumann, “The elastic properties of cancerous skin: Poisson’s ratio and Young’s modulus,” Isr. Med. Assoc. J.6(12), 753–755 (2004).
[PubMed]

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004).
[CrossRef] [PubMed]

D. H. Hurley and J. B. Spicer, “Line source representation for laser-generated ultrasound in an elastic transversely isotropic half-space,” J. Acoust. Soc. Am.116(5), 2914–2922 (2004).
[CrossRef]

R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express12(19), 4558–4572 (2004).
[CrossRef] [PubMed]

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

2001 (1)

S. Kenderian, B. B. Djordjevic, and R. E. Green., “Point and Line Source Laser Generation of Ultrasound for Inspection of Internal and Surface Flaws in Rail and Structural Materials,” Res. Nondestruct. Eval.13(4), 189–200 (2001).
[CrossRef]

1998 (2)

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films332(1-2), 157–163 (1998).
[CrossRef]

J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
[CrossRef] [PubMed]

1996 (1)

P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics34(1), 1–8 (1996).
[CrossRef]

Adie, S. G.

Arnal, B.

T. M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt.19(1), 016013 (2014).
[CrossRef] [PubMed]

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Imaging of tissue shear modulus by direct visualization of propagating acoustic waves with phase sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121509 (2013).
[CrossRef] [PubMed]

Ben Amar, M.

P. Ciarletta, L. Foret, and M. Ben Amar, “The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis,” J. R. Soc. Interface8(56), 345–368 (2011).
[CrossRef] [PubMed]

Boppart, S. A.

Bouma, B. E.

Brezinski, M. E.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004).
[CrossRef] [PubMed]

Chan, R. C.

Chaney, E. J.

Chau, A. H.

Cheng, X.

Ciarletta, P.

P. Ciarletta, L. Foret, and M. Ben Amar, “The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis,” J. R. Soc. Interface8(56), 345–368 (2011).
[CrossRef] [PubMed]

Crecea, V.

Djordjevic, B. B.

S. Kenderian, B. B. Djordjevic, and R. E. Green., “Point and Line Source Laser Generation of Ultrasound for Inspection of Internal and Surface Flaws in Rail and Structural Materials,” Res. Nondestruct. Eval.13(4), 189–200 (2001).
[CrossRef]

Doyle, P. A.

P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics34(1), 1–8 (1996).
[CrossRef]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Duncan, D. D.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Fleming, S.

Foret, L.

P. Ciarletta, L. Foret, and M. Ben Amar, “The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis,” J. R. Soc. Interface8(56), 345–368 (2011).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004).
[CrossRef] [PubMed]

Gerstmann, D. K.

Green, R. E.

S. Kenderian, B. B. Djordjevic, and R. E. Green., “Point and Line Source Laser Generation of Ultrasound for Inspection of Internal and Surface Flaws in Rail and Structural Materials,” Res. Nondestruct. Eval.13(4), 189–200 (2001).
[CrossRef]

Greenleaf, M. R. J. F.

X. Zhang, R. R. Kinnick, Pittelkow, and M. R. J. F. Greenleaf, 2008Skin viscoelasticity with surface wave method, 2008 IEEE International Ultrasonics Symposium Proceedings.

Griepentrog, M.

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films332(1-2), 157–163 (1998).
[CrossRef]

Guan, G.

G. Guan, C. Li, Y. Ling, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,”J. Biomed. Opt.18(11), 111417 (2013).

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt.17(5), 057002 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012).
[CrossRef] [PubMed]

Hillman, T. R.

Hinds, M.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Huang, Z.

T. M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt.19(1), 016013 (2014).
[CrossRef] [PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: Motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013).
[CrossRef] [PubMed]

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Imaging of tissue shear modulus by direct visualization of propagating acoustic waves with phase sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121509 (2013).
[CrossRef] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt.17(5), 057002 (2012).
[CrossRef] [PubMed]

Huang, Z. H.

G. Guan, C. Li, Y. Ling, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,”J. Biomed. Opt.18(11), 111417 (2013).

C. H. Li, Z. H. Huang, and R. K. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express19(11), 10153–10163 (2011).
[CrossRef] [PubMed]

Hurley, D. H.

D. H. Hurley and J. B. Spicer, “Line source representation for laser-generated ultrasound in an elastic transversely isotropic half-space,” J. Acoust. Soc. Am.116(5), 2914–2922 (2004).
[CrossRef]

Iftimia, N.

Johnstone, M.

Kaazempur-Mofrad, M. R.

Karl, W. C.

Keatch, R. P.

G. Guan, C. Li, Y. Ling, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,”J. Biomed. Opt.18(11), 111417 (2013).

Kenderian, S.

S. Kenderian, B. B. Djordjevic, and R. E. Green., “Point and Line Source Laser Generation of Ultrasound for Inspection of Internal and Surface Flaws in Rail and Structural Materials,” Res. Nondestruct. Eval.13(4), 189–200 (2001).
[CrossRef]

Kennedy, B. F.

Kennedy, B.F.

B.F. Kennedy, K.M. Kennedy, and D.D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–17 (2014).

Kennedy, K.M.

B.F. Kennedy, K.M. Kennedy, and D.D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–17 (2014).

Khalil, A. S.

Kinnick, R. R.

X. Zhang, R. R. Kinnick, Pittelkow, and M. R. J. F. Greenleaf, 2008Skin viscoelasticity with surface wave method, 2008 IEEE International Ultrasonics Symposium Proceedings.

Kirkpatrick, S.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

Kirkpatrick, S. J.

R. K. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

Ko, H. J.

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng.12(1), 63–73 (2006).
[CrossRef] [PubMed]

Krehbiel, J. D.

J. D. Krehbiel, J. Lambros, J. A. Viator, and N. R. Sottos, 2008 “Digital Image Correlation for Improved Detection of Basal Cell Carcinoma”, Proceedings of the XIth nternational Congress and Exposition.

Lambros, J.

J. D. Krehbiel, J. Lambros, J. A. Viator, and N. R. Sottos, 2008 “Digital Image Correlation for Improved Detection of Basal Cell Carcinoma”, Proceedings of the XIth nternational Congress and Exposition.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Law, S.

Lee, Y. C.

Li, C.

G. Guan, C. Li, Y. Ling, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,”J. Biomed. Opt.18(11), 111417 (2013).

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt.17(5), 057002 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012).
[CrossRef] [PubMed]

Li, C. H.

Li, S.

C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt.17(5), 057002 (2012).
[CrossRef] [PubMed]

Liang, X.

Ling, Y.

G. Guan, C. Li, Y. Ling, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,”J. Biomed. Opt.18(11), 111417 (2013).

Ma, Z. H.

R. K. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

McLaughlin, R. A.

Mohan, K. D.

Nadkarni, S.

Neumann, M. H.

T. R. Tilleman, M. M. Tilleman, and M. H. Neumann, “The elastic properties of cancerous skin: Poisson’s ratio and Young’s modulus,” Isr. Med. Assoc. J.6(12), 753–755 (2004).
[PubMed]

Nguyen, T. M.

T. M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt.19(1), 016013 (2014).
[CrossRef] [PubMed]

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Imaging of tissue shear modulus by direct visualization of propagating acoustic waves with phase sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121509 (2013).
[CrossRef] [PubMed]

Nuttall, A. L.

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: A preliminary study,” J. Biomed. Opt.15(5), 056005 (2010).
[CrossRef] [PubMed]

O’Donnell, M.

T. M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt.19(1), 016013 (2014).
[CrossRef] [PubMed]

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Imaging of tissue shear modulus by direct visualization of propagating acoustic waves with phase sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121509 (2013).
[CrossRef] [PubMed]

Oldenburg, A. L.

Patel, N. A.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004).
[CrossRef] [PubMed]

Peng, Y.

W. Sun, Y. Peng, and J. Xu, “A de-noising method for laser ultrasonic signal based on EMD,” J. Sandong Univ.38, 1–6 (2008).

Pittelkow,

X. Zhang, R. R. Kinnick, Pittelkow, and M. R. J. F. Greenleaf, 2008Skin viscoelasticity with surface wave method, 2008 IEEE International Ultrasonics Symposium Proceedings.

Quirk, B. C.

Reif, R.

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012).
[CrossRef] [PubMed]

Rogowska, J.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004).
[CrossRef] [PubMed]

Sampson, D. D.

Sampson, D.D.

B.F. Kennedy, K.M. Kennedy, and D.D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–17 (2014).

Scala, C. M.

P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics34(1), 1–8 (1996).
[CrossRef]

Scheibe, H. J.

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films332(1-2), 157–163 (1998).
[CrossRef]

Schmitt, J. M.

Schneider, D.

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films332(1-2), 157–163 (1998).
[CrossRef]

Schultrich, B.

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films332(1-2), 157–163 (1998).
[CrossRef]

Shishkov, M.

Song, S.

T. M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt.19(1), 016013 (2014).
[CrossRef] [PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: Motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013).
[CrossRef] [PubMed]

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Imaging of tissue shear modulus by direct visualization of propagating acoustic waves with phase sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121509 (2013).
[CrossRef] [PubMed]

Sottos, N. R.

J. D. Krehbiel, J. Lambros, J. A. Viator, and N. R. Sottos, 2008 “Digital Image Correlation for Improved Detection of Basal Cell Carcinoma”, Proceedings of the XIth nternational Congress and Exposition.

Spicer, J. B.

D. H. Hurley and J. B. Spicer, “Line source representation for laser-generated ultrasound in an elastic transversely isotropic half-space,” J. Acoust. Soc. Am.116(5), 2914–2922 (2004).
[CrossRef]

Stack, R.

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng.12(1), 63–73 (2006).
[CrossRef] [PubMed]

Standish, B.

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011), doi:.
[CrossRef] [PubMed]

Sun, C.

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011), doi:.
[CrossRef] [PubMed]

Sun, W.

W. Sun, Y. Peng, and J. Xu, “A de-noising method for laser ultrasonic signal based on EMD,” J. Sandong Univ.38, 1–6 (2008).

Swain, M.

Tan, W.

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng.12(1), 63–73 (2006).
[CrossRef] [PubMed]

Tearney, G. J.

Tilleman, M. M.

T. R. Tilleman, M. M. Tilleman, and M. H. Neumann, “The elastic properties of cancerous skin: Poisson’s ratio and Young’s modulus,” Isr. Med. Assoc. J.6(12), 753–755 (2004).
[PubMed]

Tilleman, T. R.

T. R. Tilleman, M. M. Tilleman, and M. H. Neumann, “The elastic properties of cancerous skin: Poisson’s ratio and Young’s modulus,” Isr. Med. Assoc. J.6(12), 753–755 (2004).
[PubMed]

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Viator, J. A.

J. D. Krehbiel, J. Lambros, J. A. Viator, and N. R. Sottos, 2008 “Digital Image Correlation for Improved Detection of Basal Cell Carcinoma”, Proceedings of the XIth nternational Congress and Exposition.

Vorstius, J. B.

G. Guan, C. Li, Y. Ling, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,”J. Biomed. Opt.18(11), 111417 (2013).

Wang, H. C.

Wang, R. K.

T. M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt.19(1), 016013 (2014).
[CrossRef] [PubMed]

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Imaging of tissue shear modulus by direct visualization of propagating acoustic waves with phase sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121509 (2013).
[CrossRef] [PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: Motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013).
[CrossRef] [PubMed]

G. Guan, C. Li, Y. Ling, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,”J. Biomed. Opt.18(11), 111417 (2013).

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt.17(5), 057002 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012).
[CrossRef] [PubMed]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: A preliminary study,” J. Biomed. Opt.15(5), 056005 (2010).
[CrossRef] [PubMed]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Wang, R. K. K.

C. H. Li, Z. H. Huang, and R. K. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express19(11), 10153–10163 (2011).
[CrossRef] [PubMed]

R. K. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

Wong, E. Y.

T. M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt.19(1), 016013 (2014).
[CrossRef] [PubMed]

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Imaging of tissue shear modulus by direct visualization of propagating acoustic waves with phase sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121509 (2013).
[CrossRef] [PubMed]

Xu, J.

W. Sun, Y. Peng, and J. Xu, “A de-noising method for laser ultrasonic signal based on EMD,” J. Sandong Univ.38, 1–6 (2008).

Xue, J.

Yang, V. X.

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011), doi:.
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, R. R. Kinnick, Pittelkow, and M. R. J. F. Greenleaf, 2008Skin viscoelasticity with surface wave method, 2008 IEEE International Ultrasonics Symposium Proceedings.

Ziegele, H.

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films332(1-2), 157–163 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

R. K. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

Heart (1)

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

B.F. Kennedy, K.M. Kennedy, and D.D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–17 (2014).

Isr. Med. Assoc. J. (1)

T. R. Tilleman, M. M. Tilleman, and M. H. Neumann, “The elastic properties of cancerous skin: Poisson’s ratio and Young’s modulus,” Isr. Med. Assoc. J.6(12), 753–755 (2004).
[PubMed]

J. Acoust. Soc. Am. (1)

D. H. Hurley and J. B. Spicer, “Line source representation for laser-generated ultrasound in an elastic transversely isotropic half-space,” J. Acoust. Soc. Am.116(5), 2914–2922 (2004).
[CrossRef]

J. Biomed. Opt. (7)

C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt.17(5), 057002 (2012).
[CrossRef] [PubMed]

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011), doi:.
[CrossRef] [PubMed]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: A preliminary study,” J. Biomed. Opt.15(5), 056005 (2010).
[CrossRef] [PubMed]

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Imaging of tissue shear modulus by direct visualization of propagating acoustic waves with phase sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121509 (2013).
[CrossRef] [PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: Motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013).
[CrossRef] [PubMed]

T. M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt.19(1), 016013 (2014).
[CrossRef] [PubMed]

G. Guan, C. Li, Y. Ling, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,”J. Biomed. Opt.18(11), 111417 (2013).

J. Phys. D Appl. Phys. (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

J. R. Soc. Interface (2)

P. Ciarletta, L. Foret, and M. Ben Amar, “The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis,” J. R. Soc. Interface8(56), 345–368 (2011).
[CrossRef] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012).
[CrossRef] [PubMed]

J. Sandong Univ. (1)

W. Sun, Y. Peng, and J. Xu, “A de-noising method for laser ultrasonic signal based on EMD,” J. Sandong Univ.38, 1–6 (2008).

Opt. Express (9)

J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
[CrossRef] [PubMed]

R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express12(19), 4558–4572 (2004).
[CrossRef] [PubMed]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express16(15), 11052–11065 (2008).
[CrossRef] [PubMed]

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for non-destructive evaluation of human dental enamel,” Opt. Express17(15), 592– 607 (2009).

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009).
[CrossRef] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011).
[CrossRef] [PubMed]

C. H. Li, Z. H. Huang, and R. K. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express19(11), 10153–10163 (2011).
[CrossRef] [PubMed]

K. D. Mohan and A. L. Oldenburg, “Elastography of soft materials and tissues by holographic imaging of surface acoustic waves,” Opt. Express20(17), 18887–18897 (2012).
[CrossRef] [PubMed]

Opt. Lett. (2)

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Res. Nondestruct. Eval. (1)

S. Kenderian, B. B. Djordjevic, and R. E. Green., “Point and Line Source Laser Generation of Ultrasound for Inspection of Internal and Surface Flaws in Rail and Structural Materials,” Res. Nondestruct. Eval.13(4), 189–200 (2001).
[CrossRef]

Thin Solid Films (1)

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films332(1-2), 157–163 (1998).
[CrossRef]

Tissue Eng. (1)

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng.12(1), 63–73 (2006).
[CrossRef] [PubMed]

Ultrasonics (1)

P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics34(1), 1–8 (1996).
[CrossRef]

Other (7)

C. B. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger Press, Bristol 1990).

American National Standard Institute, Safety of laser products – Part 1: Equipment classification, requirements and user's guide, IEC 60825–1, Edition 1.2 (2001–08).

X. Zhang, R. R. Kinnick, Pittelkow, and M. R. J. F. Greenleaf, 2008Skin viscoelasticity with surface wave method, 2008 IEEE International Ultrasonics Symposium Proceedings.

Nakajima M., Kiyohara Y., Shimizu M. and Kobayashi M. 2007 “Clinical application of real-time tissue elastography on skin lesions”, MEDIX Suppl., 36–39.

J. D. Krehbiel, J. Lambros, J. A. Viator, and N. R. Sottos, 2008 “Digital Image Correlation for Improved Detection of Basal Cell Carcinoma”, Proceedings of the XIth nternational Congress and Exposition.

Melanoma skin cancer,” American Cancer Society, http://www.cancer.org/acs/groups/cid/documents/webcontent/003120-pdf , (2011)

Skin cancer,” American Cancer Society, http://www.cancer.org/acs/groups/content/@nho/documents/document/skincancerpdf.pdf , (2007)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of system setup consisting of laser SAW generation and PhS-OCT detection parts with a surface shield on tissue sample.

Fig. 2
Fig. 2

Diagram of experimental thermal analysis

Fig. 3
Fig. 3

Typical depth-resolved thermal distribution of 1% black agar phantom under the laser pulse energy of (a) 34mJ, (b) 28mJ, (c) 20mJ, (d) 14mJ, (e) 5mJ and (f) 2mJ with maximum increased temperature, the unit of color bar is K.

Fig. 4
Fig. 4

(a) Laser pulse induced heating and cooling procedures in 1% agar phantom under different laser energy; (b) the relationship between laser energy and maximum raised temperature.

Fig. 5
Fig. 5

Typical OCT image of Thiel mouse cadaver applied with 1% black agar membrane.

Fig. 6
Fig. 6

SAW signal measured when it travels along mouse cadaver covered with agar membrane. The signal was measured initially at 2 mm position away from the excitation (bottom curve), and then sequentially stepped with 0.5 mm step size until 4.5 mm away from the excitation (top curve).

Fig. 7
Fig. 7

Frequency spectrum of SAWs tested from of the same Thiel cadaver mouse with (a) and without (b) agar membrane

Fig. 8
Fig. 8

Phase velocity dispersion curves of the same Thiel cadaver mouse with (a) and without (b) agar membrane.

Fig. 9
Fig. 9

Average Young’s modulus from six Thiel mouse cadaver skin dermis and subcutaneous fat. The error bars denote standard deviation.

Tables (1)

Tables Icon

Table 1 Thermal and mechanical effect of agar phantom to different energy of laser pulse

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I ( x, y, z, t )= I 0 (x, y,t)exp [γz]
q(x,y,z,t)=γI(x,y,z,t)=γ I 0 (x,y,t)exp(γz)
k C th 2 2 T t 2 +ρC T t =k 2 T+q
C R = 0.87+1.12v 1+v E 2ρ(1+v)
zλ= C R f
y 1 F Y 1 (f)= A 1 (f) e i φ 1 (f)
y 2 F Y 2 (f)= A 2 (f) e i φ 2 (f)
Y 12 (f)= Y 1 (f) Y 2 (f) ¯ = A 1 A 2 e i( φ 2 φ 1 )
Δφ= φ 2 φ 1
Δφ/2π=ΔX/λ
λ=ΔX2π/Δφ
C R =λf
C R =ΔX2πf/Δφ

Metrics