Abstract

To realize three-dimensional (3D) optical imaging of the internal structure of an animal body, we have developed a new technique to reconstruct optical computed tomography (optical CT) images from two-dimensional (2D) transillumination images. In transillumination imaging of an animal body using near-infrared light, the image is blurred because of the strong scattering in the tissue. To overcome this problem, we propose a novel technique to apply the point spread function (PSF) for a light source located inside the medium to the transilluminated image of light-absorbing structure. The problem of the depth-dependence of PSF was solved in the calculation of the projection image in the filtered back-projection method. The effectiveness of the proposed technique was assessed in the experiments with a model phantom and a mouse. These analyses verified the feasibility of the practical 3D imaging of the internal light-absorbing structure of a small animal.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bright, Diseases of the brain and nervous system vol. II (London: Longman, 1831).
  2. T. B. Curling, A practical treatise on the diseases of the testis and of the spermatic cord and scrotum (London: Samuel Highley, 1843).
  3. M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obstet.48, 721–728 (1929).
  4. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol.42(5), 825–840 (1997).
    [CrossRef] [PubMed]
  5. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
    [CrossRef] [PubMed]
  6. A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol.16(1), 79–88 (2005).
    [CrossRef] [PubMed]
  7. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
    [CrossRef] [PubMed]
  8. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng.8(1), 1–33 (2006).
    [CrossRef] [PubMed]
  9. A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos Trans A Math Phys Eng Sci367(1900), 3055–3072 (2009).
    [CrossRef] [PubMed]
  10. F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010).
    [CrossRef] [PubMed]
  11. B. D’Alessandro and A. P. Dhawan, “Transillumination imaging for blood oxygen saturation estimation of skin lesions,” IEEE Trans. Biomed. Eng.59(9), 2660–2667 (2012).
    [CrossRef] [PubMed]
  12. J. A. Guggenheim, H. R. A. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol.24(10), 105405 (2013).
    [CrossRef]
  13. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
    [CrossRef] [PubMed]
  14. M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination,” Med. Biol. Eng. Comput.26(3), 289–294 (1988).
    [CrossRef] [PubMed]
  15. G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
    [CrossRef] [PubMed]
  16. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt.36(1), 21–31 (1997).
    [CrossRef] [PubMed]
  17. F. F. Jobsis-Vandervliet, “Discovery of the near-infrared window into the body and the early development of near-infrared spectroscopy,” J. Biomed. Opt.4(4), 392–396 (1999).
    [CrossRef] [PubMed]
  18. Y. Taka, Y. Kato, and K. Shimizu, “Transillumination imaging of physiological functions by NIR light,” in Proceedings of IEEE Conference on 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2000), pp. 771–774.
    [CrossRef]
  19. H. Obrig and A. Villringer, “Beyond the visible--imaging the human brain with light,” J. Cereb. Blood Flow Metab.23(1), 1–18 (2003).
    [CrossRef] [PubMed]
  20. Y. Hoshi, “Functional near-infrared optical imaging: utility and limitations in human brain mapping,” Psychophysiology40(4), 511–520 (2003).
    [CrossRef] [PubMed]
  21. I. Nishidate, Y. Aizu, and H. Mishina, “Depth visualization of a local blood region in skin tissue by use of diffuse reflectance images,” Opt. Lett.30(16), 2128–2130 (2005).
    [CrossRef] [PubMed]
  22. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
    [CrossRef] [PubMed]
  23. T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt.12(6), 062105 (2007).
    [CrossRef] [PubMed]
  24. A. Y. Bluestone, G. Abdoulaev, C. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express9(6), 272–286 (2001).
    [CrossRef] [PubMed]
  25. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
    [CrossRef]
  26. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
    [CrossRef] [PubMed]
  27. A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers18(5-6), 313–337 (2002).
    [CrossRef] [PubMed]
  28. F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt.41(4), 778–791 (2002).
    [CrossRef] [PubMed]
  29. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
    [CrossRef] [PubMed]
  30. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42(1), 135–145 (2003).
    [CrossRef] [PubMed]
  31. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett.28(21), 2061–2063 (2003).
    [CrossRef] [PubMed]
  32. D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Opt. Lett.29(13), 1506–1508 (2004).
    [CrossRef] [PubMed]
  33. B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J. Biomed. Opt.11(3), 033001 (2006).
    [CrossRef] [PubMed]
  34. L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt.46(17), 3628–3638 (2007).
    [CrossRef] [PubMed]
  35. K. Shimizu, K. Tochio, and Y. Kato, “Improvement of transcutaneous fluorescent images with a depth-dependent point-spread function,” Appl. Opt.44(11), 2154–2161 (2005).
    [CrossRef] [PubMed]
  36. D. S. C. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt.36(8), 1766–1775 (1997).
    [CrossRef] [PubMed]
  37. R. J. Hanisch, R. L. White, and R. L. Gilliland, “Deconvolution of hubble space telescope images and spectra,” in Deconvolution of Images and Spectra, P.A. Jansson, ed. (Academic Press, Boston, MA, 1997).
  38. Science Council of Japan, Guidelines for proper conduct of animal experiments (2006).

2013

J. A. Guggenheim, H. R. A. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol.24(10), 105405 (2013).
[CrossRef]

2012

B. D’Alessandro and A. P. Dhawan, “Transillumination imaging for blood oxygen saturation estimation of skin lesions,” IEEE Trans. Biomed. Eng.59(9), 2660–2667 (2012).
[CrossRef] [PubMed]

2010

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010).
[CrossRef] [PubMed]

2009

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos Trans A Math Phys Eng Sci367(1900), 3055–3072 (2009).
[CrossRef] [PubMed]

2007

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt.12(6), 062105 (2007).
[CrossRef] [PubMed]

L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt.46(17), 3628–3638 (2007).
[CrossRef] [PubMed]

2006

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J. Biomed. Opt.11(3), 033001 (2006).
[CrossRef] [PubMed]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng.8(1), 1–33 (2006).
[CrossRef] [PubMed]

2005

2004

2003

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42(1), 135–145 (2003).
[CrossRef] [PubMed]

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett.28(21), 2061–2063 (2003).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

H. Obrig and A. Villringer, “Beyond the visible--imaging the human brain with light,” J. Cereb. Blood Flow Metab.23(1), 1–18 (2003).
[CrossRef] [PubMed]

Y. Hoshi, “Functional near-infrared optical imaging: utility and limitations in human brain mapping,” Psychophysiology40(4), 511–520 (2003).
[CrossRef] [PubMed]

2002

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers18(5-6), 313–337 (2002).
[CrossRef] [PubMed]

F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt.41(4), 778–791 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

2001

A. Y. Bluestone, G. Abdoulaev, C. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express9(6), 272–286 (2001).
[CrossRef] [PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

1999

F. F. Jobsis-Vandervliet, “Discovery of the near-infrared window into the body and the early development of near-infrared spectroscopy,” J. Biomed. Opt.4(4), 392–396 (1999).
[CrossRef] [PubMed]

1997

1995

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
[CrossRef] [PubMed]

1988

M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination,” Med. Biol. Eng. Comput.26(3), 289–294 (1988).
[CrossRef] [PubMed]

1977

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
[CrossRef] [PubMed]

1929

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obstet.48, 721–728 (1929).

Abdoulaev, G.

Abdoulaev, G. S.

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers18(5-6), 313–337 (2002).
[CrossRef] [PubMed]

Aizu, Y.

Andrews, M.

Arridge, S. R.

L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt.46(17), 3628–3638 (2007).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol.42(5), 825–840 (1997).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt.36(1), 21–31 (1997).
[CrossRef] [PubMed]

Austin, T.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Barbour, R. L.

Baron, L.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

Basevi, H. R. A.

J. A. Guggenheim, H. R. A. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol.24(10), 105405 (2013).
[CrossRef]

Beuthan, J.

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers18(5-6), 313–337 (2002).
[CrossRef] [PubMed]

Biggs, D. S. C.

Bluestone, A. Y.

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers18(5-6), 313–337 (2002).
[CrossRef] [PubMed]

A. Y. Bluestone, G. Abdoulaev, C. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express9(6), 272–286 (2001).
[CrossRef] [PubMed]

Boas, D. A.

Brooks, D. H.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

Brooksby, B. A.

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J. Biomed. Opt.11(3), 033001 (2006).
[CrossRef] [PubMed]

Chance, B.

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt.12(6), 062105 (2007).
[CrossRef] [PubMed]

Chen, K.

Cho, E.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
[CrossRef] [PubMed]

Cope, M.

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt.36(1), 21–31 (1997).
[CrossRef] [PubMed]

M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination,” Med. Biol. Eng. Comput.26(3), 289–294 (1988).
[CrossRef] [PubMed]

Corballis, P. M.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
[CrossRef] [PubMed]

Culver, J. P.

Cutler, M.

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obstet.48, 721–728 (1929).

D’Alessandro, B.

B. D’Alessandro and A. P. Dhawan, “Transillumination imaging for blood oxygen saturation estimation of skin lesions,” IEEE Trans. Biomed. Eng.59(9), 2660–2667 (2012).
[CrossRef] [PubMed]

Davis, S. C.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010).
[CrossRef] [PubMed]

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J. Biomed. Opt.11(3), 033001 (2006).
[CrossRef] [PubMed]

Dehghani, H.

J. A. Guggenheim, H. R. A. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol.24(10), 105405 (2013).
[CrossRef]

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos Trans A Math Phys Eng Sci367(1900), 3055–3072 (2009).
[CrossRef] [PubMed]

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J. Biomed. Opt.11(3), 033001 (2006).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42(1), 135–145 (2003).
[CrossRef] [PubMed]

Delpy, D. T.

L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt.46(17), 3628–3638 (2007).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol.42(5), 825–840 (1997).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt.36(1), 21–31 (1997).
[CrossRef] [PubMed]

M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination,” Med. Biol. Eng. Comput.26(3), 289–294 (1988).
[CrossRef] [PubMed]

Dhawan, A. P.

B. D’Alessandro and A. P. Dhawan, “Transillumination imaging for blood oxygen saturation estimation of skin lesions,” IEEE Trans. Biomed. Eng.59(9), 2660–2667 (2012).
[CrossRef] [PubMed]

DiMarzio, C. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

Douek, M.

Eggert, J.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

Enfield, L. C.

Everdell, N.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Everdell, N. L.

Fabiani, M.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
[CrossRef] [PubMed]

Fajardo, L.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

Ferrari, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Firbank, M.

Frampton, J.

J. A. Guggenheim, H. R. A. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol.24(10), 105405 (2013).
[CrossRef]

Franceschini, M. A.

Gao, F.

Gaudette, R. J.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

Gibson, A.

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos Trans A Math Phys Eng Sci367(1900), 3055–3072 (2009).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Gibson, A. P.

Gratton, G.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
[CrossRef] [PubMed]

Grebert, D.

Guggenheim, J. A.

J. A. Guggenheim, H. R. A. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol.24(10), 105405 (2013).
[CrossRef]

Hamaoka, T.

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt.12(6), 062105 (2007).
[CrossRef] [PubMed]

Hebden, J. C.

L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt.46(17), 3628–3638 (2007).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol.42(5), 825–840 (1997).
[CrossRef] [PubMed]

Hielscher, A. H.

A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol.16(1), 79–88 (2005).
[CrossRef] [PubMed]

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers18(5-6), 313–337 (2002).
[CrossRef] [PubMed]

A. Y. Bluestone, G. Abdoulaev, C. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express9(6), 272–286 (2001).
[CrossRef] [PubMed]

Hillman, E. M. C.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Hood, D. C.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
[CrossRef] [PubMed]

Hoshi, Y.

Y. Hoshi, “Functional near-infrared optical imaging: utility and limitations in human brain mapping,” Psychophysiology40(4), 511–520 (2003).
[CrossRef] [PubMed]

Iftimia, N.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

Jiang, H.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

Jöbsis, F. F.

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
[CrossRef] [PubMed]

Jobsis-Vandervliet, F. F.

F. F. Jobsis-Vandervliet, “Discovery of the near-infrared window into the body and the early development of near-infrared spectroscopy,” J. Biomed. Opt.4(4), 392–396 (1999).
[CrossRef] [PubMed]

Kato, Y.

Keshtgar, M.

Kilmer, M.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

Klose, A. D.

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers18(5-6), 313–337 (2002).
[CrossRef] [PubMed]

Klove, K.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

Lasker, J.

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers18(5-6), 313–337 (2002).
[CrossRef] [PubMed]

Leblond, F.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010).
[CrossRef] [PubMed]

McCully, K. K.

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt.12(6), 062105 (2007).
[CrossRef] [PubMed]

Meek, J. H.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Miller, E. L.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

Mishina, H.

Netz, U.

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers18(5-6), 313–337 (2002).
[CrossRef] [PubMed]

Nishidate, I.

Ntziachristos, V.

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng.8(1), 1–33 (2006).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

Obrig, H.

H. Obrig and A. Villringer, “Beyond the visible--imaging the human brain with light,” J. Cereb. Blood Flow Metab.23(1), 1–18 (2003).
[CrossRef] [PubMed]

Okada, E.

Paulsen, K. D.

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J. Biomed. Opt.11(3), 033001 (2006).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42(1), 135–145 (2003).
[CrossRef] [PubMed]

Pogue, B. W.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010).
[CrossRef] [PubMed]

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J. Biomed. Opt.11(3), 033001 (2006).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42(1), 135–145 (2003).
[CrossRef] [PubMed]

Poplack, S. P.

Quaresima, V.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt.12(6), 062105 (2007).
[CrossRef] [PubMed]

Richardson, C.

Schmitz, C.

Schweiger, M.

Shimizu, K.

Siegel, A. M.

Song, X.

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J. Biomed. Opt.11(3), 033001 (2006).
[CrossRef] [PubMed]

Stewart, M.

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers18(5-6), 313–337 (2002).
[CrossRef] [PubMed]

Stott, J. J.

Styles, I. B.

J. A. Guggenheim, H. R. A. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol.24(10), 105405 (2013).
[CrossRef]

Tochio, K.

Valdés, P. A.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010).
[CrossRef] [PubMed]

Villringer, A.

H. Obrig and A. Villringer, “Beyond the visible--imaging the human brain with light,” J. Cereb. Blood Flow Metab.23(1), 1–18 (2003).
[CrossRef] [PubMed]

Weissleder, R.

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

Wolf, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Wyatt, J. S.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Xu, Y.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

Yamada, Y.

Yamamoto, K.

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt.12(6), 062105 (2007).
[CrossRef] [PubMed]

Yusof, R. M.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Zhang, Q.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

Zhao, H.

Annu. Rev. Biomed. Eng.

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng.8(1), 1–33 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Curr. Opin. Biotechnol.

A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol.16(1), 79–88 (2005).
[CrossRef] [PubMed]

Dis. Markers

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers18(5-6), 313–337 (2002).
[CrossRef] [PubMed]

IEEE Signal Process. Mag.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

IEEE Trans. Biomed. Eng.

B. D’Alessandro and A. P. Dhawan, “Transillumination imaging for blood oxygen saturation estimation of skin lesions,” IEEE Trans. Biomed. Eng.59(9), 2660–2667 (2012).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

J. Biomed. Opt.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt.12(6), 062105 (2007).
[CrossRef] [PubMed]

F. F. Jobsis-Vandervliet, “Discovery of the near-infrared window into the body and the early development of near-infrared spectroscopy,” J. Biomed. Opt.4(4), 392–396 (1999).
[CrossRef] [PubMed]

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J. Biomed. Opt.11(3), 033001 (2006).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab.

H. Obrig and A. Villringer, “Beyond the visible--imaging the human brain with light,” J. Cereb. Blood Flow Metab.23(1), 1–18 (2003).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010).
[CrossRef] [PubMed]

Meas. Sci. Technol.

J. A. Guggenheim, H. R. A. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol.24(10), 105405 (2013).
[CrossRef]

Med. Biol. Eng. Comput.

M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination,” Med. Biol. Eng. Comput.26(3), 289–294 (1988).
[CrossRef] [PubMed]

Nat. Med.

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Philos Trans A Math Phys Eng Sci

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos Trans A Math Phys Eng Sci367(1900), 3055–3072 (2009).
[CrossRef] [PubMed]

Phys. Med. Biol.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol.42(5), 825–840 (1997).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Psychophysiology

Y. Hoshi, “Functional near-infrared optical imaging: utility and limitations in human brain mapping,” Psychophysiology40(4), 511–520 (2003).
[CrossRef] [PubMed]

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995).
[CrossRef] [PubMed]

Science

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
[CrossRef] [PubMed]

Surg. Gynecol. Obstet.

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obstet.48, 721–728 (1929).

Other

R. Bright, Diseases of the brain and nervous system vol. II (London: Longman, 1831).

T. B. Curling, A practical treatise on the diseases of the testis and of the spermatic cord and scrotum (London: Samuel Highley, 1843).

Y. Taka, Y. Kato, and K. Shimizu, “Transillumination imaging of physiological functions by NIR light,” in Proceedings of IEEE Conference on 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2000), pp. 771–774.
[CrossRef]

R. J. Hanisch, R. L. White, and R. L. Gilliland, “Deconvolution of hubble space telescope images and spectra,” in Deconvolution of Images and Spectra, P.A. Jansson, ed. (Academic Press, Boston, MA, 1997).

Science Council of Japan, Guidelines for proper conduct of animal experiments (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (26)

Fig. 1
Fig. 1

Geometry for PSF as light distribution observed at the scattering medium surface.

Fig. 2
Fig. 2

Experimental setup for transillumination imaging: d = 4.00–14.0 mm.

Fig. 3
Fig. 3

Comparison of point spread function at depth d = 8.00 mm: (a) fs(x, y), (b) fo(x, y), (c) PSFabs(x, y) from Eq. (2), (d) PSF from Eq. (1).

Fig. 4
Fig. 4

Comparison between theoretical PSF for light source and measured PSF for absorber.

Fig. 5
Fig. 5

Transillumination image: (a) original object, (b) observed image, (c) deconvoluted image.

Fig. 6
Fig. 6

Intensity profiles along the dashed line in Fig. 5.

Fig. 7
Fig. 7

Experimental setup.

Fig. 8
Fig. 8

Side view and top view of phantom model.

Fig. 9
Fig. 9

Observed and deconvoluted images of absorber: (a) observed image (contrast and sharpness are 0.10 and 0.020), (b) deconvoluted image (contrast and sharpness are 0.90 and 0.71).

Fig. 10
Fig. 10

CT image at the top of the absorber: (a) from observed images, (b) from deconvoluted images. Depth of estimated absorber center ( d ^ ) was 9.35 mm for true depth 9.08 mm.

Fig. 11
Fig. 11

CT image at the bottom of the absorber: (a) from observed images, (b) from deconvoluted images. Depth of estimated absorber center ( d ^ ) was 12.1 mm for true depth 12.2 mm.

Fig. 12
Fig. 12

3D Reconstruction of absorber in turbid medium: (a) from observed images, (b) from deconvoluted images, (c) result of thresholding on image (b) with a single threshold value.

Fig. 13
Fig. 13

Observed and deconvoluted images of absorber at 0-deg orientation: (a) observed image (b) result using the proposed technique.

Fig. 14
Fig. 14

3D Reconstruction of absorber in animal tissue: (a) from observed images, (b) from deconvoluted images, (c) result of thresholding on image (b) with a single threshold value.

Fig. 15
Fig. 15

Two absorbing objects in turbid medium: (a) top view of observing condition, (b) observed transillumination image and absorption profile along the dashed line.

Fig. 16
Fig. 16

Absorption profiles before and after the deconvolution with PSFs at different depths. The projection is obtained as a sum of the deconvoluted data with the PSFs at different depths. Profile of projection for cross-sectional reconstruction is shown in upper right corner. denotes the deconvolution operation.

Fig. 17
Fig. 17

Principle to suppress erroneous absorption distribution. Erroneous parts are suppressed by multiplying erasing templates obtained from the original cross-sectional image. New projection image is constructed as a sum of the corrected images. * denotes the multiplication operation.

Fig. 18
Fig. 18

Result of proposed technique in simulation: (a) simulation model (μ's = 1.00 /mm, μa = 0.00536 /mm), (b) cross-sectional image of two objects in scattering medium, (c) result from projection of Eq. (3), (d) result from projection of Eq. (4).

Fig. 19
Fig. 19

Experimental setup with phantom.

Fig. 20
Fig. 20

Scattering suppression in transillumination imaging at 0-deg orientation: (a) observed image in clear medium, (b) observed image in scattering medium, (c) result using the proposed technique.

Fig. 21
Fig. 21

Scattering suppression in transillumination imaging at 90-deg orientation: (a) observed image in clear medium, (b) observed image in scattering medium, (c) result using the proposed technique.

Fig. 22
Fig. 22

3D images reconstructed from transillumination images: (a) from observed image in clear medium, (b) from observed image in scattering medium, (c) result using the proposed technique.

Fig. 23
Fig. 23

Setup for experiment with living animal.

Fig. 24
Fig. 24

Suppression of body-surface illumination caused by light-guide effect in cylindrical container: (a) without light trap, (b) with light trap, (c) light trap structure.

Fig. 25
Fig. 25

Transillumination images of mouse abdomen: (a) observed image, (b) deconvoluted image with PSF (μ's = 1.5 /mm, μa = 0.02 /mm).

Fig. 26
Fig. 26

3D images reconstructed from transillumination images of mouse: (a) from observed images, (b) result using the proposed technique.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

PSF(ρ)= 3 P 0 (4π) 2 { (μ ' s + μ a )+ [ κ d + 1 ( ρ 2 + d 2 ) 1/2 ] d ( ρ 2 + d 2 ) 1/2 } exp [ κ d ( ρ 2 + d 2 ) 1/2 ] ( ρ 2 + d 2 ) 1/2 ,
PS F abs (x,y)= f s (x,y) f o (x,y),
P(x,z|θ)= i=1 n A(x,y,z|θ)dy PSF(x,z| d i ),
P new (x,z|θ)= i=1 n [ A(x,y,z|θ)dy PSF(x,z| d i ) ]E(x,z|θ, d i ) ,

Metrics