Abstract

Monitoring the onset of erythema following external beam radiation therapy has the potential to offer a means of managing skin toxicities via biological targeted agents – prior to full progression. However, current skin toxicity scoring systems are subjective and provide at best a qualitative evaluation. Here, we investigate the potential of diffuse optical spectroscopy (DOS) to provide quantitative metrics for scoring skin toxicity. A DOS fiberoptic reflectance probe was used to collect white light spectra at two probing depths using two short fixed source-collector pairs with optical probing depths sensitive to the skin surface. The acquired spectra were fit to a diffusion theory model of light transport in tissue to extract optical biomarkers (hemoglobin concentration, oxygen saturation, scattering power and slope) from superficial skin layers of nude mice, which were subjected to erythema inducing doses of ionizing radiation. A statistically significant increase in oxygenated hemoglobin (p < 0.0016) was found in the skin post-irradiation – confirming previous reports. More interesting, we observed for the first time that the spectral scattering parameters, A (p = 0.026) and k (p = 0.011), were an indicator of erythema at day 6 and could potentially serve as an early detection optical biomarker of skin toxicity. Our data suggests that reflectance DOS may be employed to provide quantitative assessment of skin toxicities following curative doses of external beam radiation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Hall and A. J. Giaccia, Radiobiology for the Radiologist (J.B. Lippincott Company, Philadelphia, 2011)
  2. J. L. Ryan, “Ionizing Radiation: The Good, the Bad, and the Ugly,” J. Invest. Dermatol.132(3), 985–993 (2012).
    [CrossRef] [PubMed]
  3. J. O. Archambeau, R. Pezner, and T. Wasserman, “Pathophysiology of irradiated skin and breast,” In. J. Rad. Oncology Biol. Phys.31(5), 1171–1185 (1995).
    [CrossRef]
  4. D. Porock, L. Kristjanson, S. Nikoletti, F. Cameron, and P. Pedler, “Predicting the severity of radiation skin reactions in women with breast cancer,” Oncol. Nurs. Forum25(6), 1019–1029 (1998).
    [PubMed]
  5. R. Noble-Adams, “Radiation-induced skin reactions. 2: development of a measurement tool,” Br. J. Nurs.8(18), 1208–1211 (1999).
    [PubMed]
  6. C. Westbury, F. Hines, E. Hawkes, S. Ashley, and M. Brada, “Advice on hair and scalp care during cranial radiotherapy: a prospective randomized trial,” Radiother. Oncol.54(2), 109–116 (2000).
    [CrossRef] [PubMed]
  7. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today48(3), 34 (1995).
    [CrossRef]
  8. A. Amelink, A. P. van den Heuvel, W. J. de Wolf, D. J. Robinson, and H. J. Sterenborg, “Monitoring PDT by means of superficial reflectance spectroscopy,” J. Photochem. Photobiol. B79(3), 243–251 (2005).
    [CrossRef] [PubMed]
  9. Dj. Evers, B. Hendriks, G. Lucassen, and T. Ruers, “Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy,” Future Oncol.8(3), 307–320 (2012).
    [CrossRef] [PubMed]
  10. S. Balter, J. W. Hopewell, D. L. Miller, L. K. Wagner, and M. J. Zelefsky, “Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair,” Radiology254(2), 326–341 (2010).
    [CrossRef] [PubMed]
  11. N. Kollias, R. Gillies, J. A. Muccini, R. K. Uyeyama, S. B. Phillips, and L. A. Drake, “A single parameter, oxygenated hemoglobin, can be used to quantify experimental irritant-induced inflammation,” J. Invest. Dermatol.104(3), 421–424 (1995).
    [CrossRef] [PubMed]
  12. S. Smesny, S. Riemann, S. Riehemann, M. E. Bellemann, and H. Sauer, “[Quantitative measurement of induced skin reddening using optical reflection spectroscopy--methodology and clinical application],” Biomed. Tech. (Berl.)46(10), 280–286 (2001).
    [CrossRef] [PubMed]
  13. P. Simonen, C. Hamilton, S. Ferguson, P. Ostwald, M. O’Brien, P. O’Brien, M. Back, and J. Denham, “Do inflammatory processes contribute to radiation-induced erythema observed in the skin of humans?” Radiother. Oncol.46(1), 73–82 (1998).
    [CrossRef]
  14. M. S. Chin, B. B. Freniere, Y. C. Lo, J. H. Saleeby, S. P. Baker, H. M. Strom, R. A. Ignotz, J. F. Lalikos, and T. J. Fitzgerald, “Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin,” J. Biomed. Opt.17(2), 026010 (2012).
    [CrossRef] [PubMed]
  15. M. Woo and R. Nordal, “Commissioning and evaluation of a new commercial small rodent x-ray irradiator,” Biomed. Imaging Interv. J.2(1), e10 (2006).
    [CrossRef] [PubMed]
  16. V. Holler, V. Buard, M. H. Gaugler, O. Guipaud, C. Baudelin, A. Sache, M. R. Perez, C. Squiban, R. Tamarat, F. Milliat, and M. Benderitter, “Pravastatin limits radiation-induced vascular dysfunction in the skin,” J. Invest. Dermatol.129(5), 1280–1291 (2009).
    [CrossRef] [PubMed]
  17. L. Chin, W. M. Whelan, and I. A. Vitkin, “Optical Fiber Sensors for Biomedical Applications,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Springer SBM, 2011), pp. 661.
  18. A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express18(6), 5580–5594 (2010).
    [CrossRef] [PubMed]
  19. A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15(6), 067006 (2010).
    [CrossRef] [PubMed]
  20. P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
    [CrossRef] [PubMed]
  21. K. Bekelis, P. A. Valdés, K. Erkmen, F. Leblond, A. Kim, B. C. Wilson, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas,” Neurosurg. Focus30(5), E8 (2011).
    [PubMed]
  22. J. C. Finlay and T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,” Med. Phys.31(7), 1949–1959 (2004).
    [CrossRef] [PubMed]
  23. S. Prahl, “Tabulated Molar Extinction Coefficient for Hemoglobin in Water,” http://omlc.ogi.edu/spectra/hemoglobin/summary.html .
  24. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt.36(4), 949–957 (1997).
    [CrossRef] [PubMed]
  25. L. Chin, B. Lloyd, W. M. Whelan, and A. Vitkin, “Interstitial point radiance spectroscopy of turbid media,” J. Appl. Phys.105(10), 102025 (2009).
    [CrossRef]
  26. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett.28(23), 2339–2341 (2003).
    [CrossRef] [PubMed]
  27. A. Kim and B. C. Wilson, “Measurement of Ex Vivo and In Vivo Tissue Optical Properties,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Springer, 2010), pp. 267.
  28. J. D. Rogers, I. R. Capoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett.34(12), 1891–1893 (2009).
    [CrossRef] [PubMed]
  29. V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011).
    [CrossRef] [PubMed]
  30. K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
    [CrossRef] [PubMed]

2012 (3)

J. L. Ryan, “Ionizing Radiation: The Good, the Bad, and the Ugly,” J. Invest. Dermatol.132(3), 985–993 (2012).
[CrossRef] [PubMed]

Dj. Evers, B. Hendriks, G. Lucassen, and T. Ruers, “Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy,” Future Oncol.8(3), 307–320 (2012).
[CrossRef] [PubMed]

M. S. Chin, B. B. Freniere, Y. C. Lo, J. H. Saleeby, S. P. Baker, H. M. Strom, R. A. Ignotz, J. F. Lalikos, and T. J. Fitzgerald, “Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin,” J. Biomed. Opt.17(2), 026010 (2012).
[CrossRef] [PubMed]

2011 (3)

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

K. Bekelis, P. A. Valdés, K. Erkmen, F. Leblond, A. Kim, B. C. Wilson, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas,” Neurosurg. Focus30(5), E8 (2011).
[PubMed]

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011).
[CrossRef] [PubMed]

2010 (3)

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15(6), 067006 (2010).
[CrossRef] [PubMed]

A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express18(6), 5580–5594 (2010).
[CrossRef] [PubMed]

S. Balter, J. W. Hopewell, D. L. Miller, L. K. Wagner, and M. J. Zelefsky, “Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair,” Radiology254(2), 326–341 (2010).
[CrossRef] [PubMed]

2009 (4)

V. Holler, V. Buard, M. H. Gaugler, O. Guipaud, C. Baudelin, A. Sache, M. R. Perez, C. Squiban, R. Tamarat, F. Milliat, and M. Benderitter, “Pravastatin limits radiation-induced vascular dysfunction in the skin,” J. Invest. Dermatol.129(5), 1280–1291 (2009).
[CrossRef] [PubMed]

J. D. Rogers, I. R. Capoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett.34(12), 1891–1893 (2009).
[CrossRef] [PubMed]

L. Chin, B. Lloyd, W. M. Whelan, and A. Vitkin, “Interstitial point radiance spectroscopy of turbid media,” J. Appl. Phys.105(10), 102025 (2009).
[CrossRef]

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

2006 (1)

M. Woo and R. Nordal, “Commissioning and evaluation of a new commercial small rodent x-ray irradiator,” Biomed. Imaging Interv. J.2(1), e10 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Amelink, A. P. van den Heuvel, W. J. de Wolf, D. J. Robinson, and H. J. Sterenborg, “Monitoring PDT by means of superficial reflectance spectroscopy,” J. Photochem. Photobiol. B79(3), 243–251 (2005).
[CrossRef] [PubMed]

2004 (1)

J. C. Finlay and T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,” Med. Phys.31(7), 1949–1959 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

S. Smesny, S. Riemann, S. Riehemann, M. E. Bellemann, and H. Sauer, “[Quantitative measurement of induced skin reddening using optical reflection spectroscopy--methodology and clinical application],” Biomed. Tech. (Berl.)46(10), 280–286 (2001).
[CrossRef] [PubMed]

2000 (1)

C. Westbury, F. Hines, E. Hawkes, S. Ashley, and M. Brada, “Advice on hair and scalp care during cranial radiotherapy: a prospective randomized trial,” Radiother. Oncol.54(2), 109–116 (2000).
[CrossRef] [PubMed]

1999 (1)

R. Noble-Adams, “Radiation-induced skin reactions. 2: development of a measurement tool,” Br. J. Nurs.8(18), 1208–1211 (1999).
[PubMed]

1998 (2)

D. Porock, L. Kristjanson, S. Nikoletti, F. Cameron, and P. Pedler, “Predicting the severity of radiation skin reactions in women with breast cancer,” Oncol. Nurs. Forum25(6), 1019–1029 (1998).
[PubMed]

P. Simonen, C. Hamilton, S. Ferguson, P. Ostwald, M. O’Brien, P. O’Brien, M. Back, and J. Denham, “Do inflammatory processes contribute to radiation-induced erythema observed in the skin of humans?” Radiother. Oncol.46(1), 73–82 (1998).
[CrossRef]

1997 (1)

1995 (3)

J. O. Archambeau, R. Pezner, and T. Wasserman, “Pathophysiology of irradiated skin and breast,” In. J. Rad. Oncology Biol. Phys.31(5), 1171–1185 (1995).
[CrossRef]

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today48(3), 34 (1995).
[CrossRef]

N. Kollias, R. Gillies, J. A. Muccini, R. K. Uyeyama, S. B. Phillips, and L. A. Drake, “A single parameter, oxygenated hemoglobin, can be used to quantify experimental irritant-induced inflammation,” J. Invest. Dermatol.104(3), 421–424 (1995).
[CrossRef] [PubMed]

Amelink, A.

A. Amelink, A. P. van den Heuvel, W. J. de Wolf, D. J. Robinson, and H. J. Sterenborg, “Monitoring PDT by means of superficial reflectance spectroscopy,” J. Photochem. Photobiol. B79(3), 243–251 (2005).
[CrossRef] [PubMed]

Archambeau, J. O.

J. O. Archambeau, R. Pezner, and T. Wasserman, “Pathophysiology of irradiated skin and breast,” In. J. Rad. Oncology Biol. Phys.31(5), 1171–1185 (1995).
[CrossRef]

Arridge, S. R.

Ashley, S.

C. Westbury, F. Hines, E. Hawkes, S. Ashley, and M. Brada, “Advice on hair and scalp care during cranial radiotherapy: a prospective randomized trial,” Radiother. Oncol.54(2), 109–116 (2000).
[CrossRef] [PubMed]

Back, M.

P. Simonen, C. Hamilton, S. Ferguson, P. Ostwald, M. O’Brien, P. O’Brien, M. Back, and J. Denham, “Do inflammatory processes contribute to radiation-induced erythema observed in the skin of humans?” Radiother. Oncol.46(1), 73–82 (1998).
[CrossRef]

Backman, V.

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011).
[CrossRef] [PubMed]

J. D. Rogers, I. R. Capoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett.34(12), 1891–1893 (2009).
[CrossRef] [PubMed]

Baker, S. P.

M. S. Chin, B. B. Freniere, Y. C. Lo, J. H. Saleeby, S. P. Baker, H. M. Strom, R. A. Ignotz, J. F. Lalikos, and T. J. Fitzgerald, “Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin,” J. Biomed. Opt.17(2), 026010 (2012).
[CrossRef] [PubMed]

Balter, S.

S. Balter, J. W. Hopewell, D. L. Miller, L. K. Wagner, and M. J. Zelefsky, “Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair,” Radiology254(2), 326–341 (2010).
[CrossRef] [PubMed]

Baudelin, C.

V. Holler, V. Buard, M. H. Gaugler, O. Guipaud, C. Baudelin, A. Sache, M. R. Perez, C. Squiban, R. Tamarat, F. Milliat, and M. Benderitter, “Pravastatin limits radiation-induced vascular dysfunction in the skin,” J. Invest. Dermatol.129(5), 1280–1291 (2009).
[CrossRef] [PubMed]

Bekelis, K.

K. Bekelis, P. A. Valdés, K. Erkmen, F. Leblond, A. Kim, B. C. Wilson, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas,” Neurosurg. Focus30(5), E8 (2011).
[PubMed]

Bellemann, M. E.

S. Smesny, S. Riemann, S. Riehemann, M. E. Bellemann, and H. Sauer, “[Quantitative measurement of induced skin reddening using optical reflection spectroscopy--methodology and clinical application],” Biomed. Tech. (Berl.)46(10), 280–286 (2001).
[CrossRef] [PubMed]

Benderitter, M.

V. Holler, V. Buard, M. H. Gaugler, O. Guipaud, C. Baudelin, A. Sache, M. R. Perez, C. Squiban, R. Tamarat, F. Milliat, and M. Benderitter, “Pravastatin limits radiation-induced vascular dysfunction in the skin,” J. Invest. Dermatol.129(5), 1280–1291 (2009).
[CrossRef] [PubMed]

Bigio, I. J.

Boyer, J.

Brada, M.

C. Westbury, F. Hines, E. Hawkes, S. Ashley, and M. Brada, “Advice on hair and scalp care during cranial radiotherapy: a prospective randomized trial,” Radiother. Oncol.54(2), 109–116 (2000).
[CrossRef] [PubMed]

Brantsch, M.

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

Buard, V.

V. Holler, V. Buard, M. H. Gaugler, O. Guipaud, C. Baudelin, A. Sache, M. R. Perez, C. Squiban, R. Tamarat, F. Milliat, and M. Benderitter, “Pravastatin limits radiation-induced vascular dysfunction in the skin,” J. Invest. Dermatol.129(5), 1280–1291 (2009).
[CrossRef] [PubMed]

Cameron, F.

D. Porock, L. Kristjanson, S. Nikoletti, F. Cameron, and P. Pedler, “Predicting the severity of radiation skin reactions in women with breast cancer,” Oncol. Nurs. Forum25(6), 1019–1029 (1998).
[PubMed]

Capoglu, I. R.

Chance, B.

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today48(3), 34 (1995).
[CrossRef]

Chang, K.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

Chin, L.

L. Chin, B. Lloyd, W. M. Whelan, and A. Vitkin, “Interstitial point radiance spectroscopy of turbid media,” J. Appl. Phys.105(10), 102025 (2009).
[CrossRef]

Chin, M. S.

M. S. Chin, B. B. Freniere, Y. C. Lo, J. H. Saleeby, S. P. Baker, H. M. Strom, R. A. Ignotz, J. F. Lalikos, and T. J. Fitzgerald, “Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin,” J. Biomed. Opt.17(2), 026010 (2012).
[CrossRef] [PubMed]

Choe, R.

Corlu, A.

Dadani, F.

de Wolf, W. J.

A. Amelink, A. P. van den Heuvel, W. J. de Wolf, D. J. Robinson, and H. J. Sterenborg, “Monitoring PDT by means of superficial reflectance spectroscopy,” J. Photochem. Photobiol. B79(3), 243–251 (2005).
[CrossRef] [PubMed]

Denham, J.

P. Simonen, C. Hamilton, S. Ferguson, P. Ostwald, M. O’Brien, P. O’Brien, M. Back, and J. Denham, “Do inflammatory processes contribute to radiation-induced erythema observed in the skin of humans?” Radiother. Oncol.46(1), 73–82 (1998).
[CrossRef]

Dewhirst, M. W.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

Drake, L. A.

N. Kollias, R. Gillies, J. A. Muccini, R. K. Uyeyama, S. B. Phillips, and L. A. Drake, “A single parameter, oxygenated hemoglobin, can be used to quantify experimental irritant-induced inflammation,” J. Invest. Dermatol.104(3), 421–424 (1995).
[CrossRef] [PubMed]

Durduran, T.

Erkmen, K.

K. Bekelis, P. A. Valdés, K. Erkmen, F. Leblond, A. Kim, B. C. Wilson, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas,” Neurosurg. Focus30(5), E8 (2011).
[PubMed]

Evers, Dj.

Dj. Evers, B. Hendriks, G. Lucassen, and T. Ruers, “Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy,” Future Oncol.8(3), 307–320 (2012).
[CrossRef] [PubMed]

Ferguson, S.

P. Simonen, C. Hamilton, S. Ferguson, P. Ostwald, M. O’Brien, P. O’Brien, M. Back, and J. Denham, “Do inflammatory processes contribute to radiation-induced erythema observed in the skin of humans?” Radiother. Oncol.46(1), 73–82 (1998).
[CrossRef]

Finlay, J. C.

J. C. Finlay and T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,” Med. Phys.31(7), 1949–1959 (2004).
[CrossRef] [PubMed]

Fitzgerald, T. J.

M. S. Chin, B. B. Freniere, Y. C. Lo, J. H. Saleeby, S. P. Baker, H. M. Strom, R. A. Ignotz, J. F. Lalikos, and T. J. Fitzgerald, “Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin,” J. Biomed. Opt.17(2), 026010 (2012).
[CrossRef] [PubMed]

Foster, T. H.

J. C. Finlay and T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,” Med. Phys.31(7), 1949–1959 (2004).
[CrossRef] [PubMed]

Freniere, B. B.

M. S. Chin, B. B. Freniere, Y. C. Lo, J. H. Saleeby, S. P. Baker, H. M. Strom, R. A. Ignotz, J. F. Lalikos, and T. J. Fitzgerald, “Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin,” J. Biomed. Opt.17(2), 026010 (2012).
[CrossRef] [PubMed]

Fuselier, T.

Gaugler, M. H.

V. Holler, V. Buard, M. H. Gaugler, O. Guipaud, C. Baudelin, A. Sache, M. R. Perez, C. Squiban, R. Tamarat, F. Milliat, and M. Benderitter, “Pravastatin limits radiation-induced vascular dysfunction in the skin,” J. Invest. Dermatol.129(5), 1280–1291 (2009).
[CrossRef] [PubMed]

Gillies, R.

N. Kollias, R. Gillies, J. A. Muccini, R. K. Uyeyama, S. B. Phillips, and L. A. Drake, “A single parameter, oxygenated hemoglobin, can be used to quantify experimental irritant-induced inflammation,” J. Invest. Dermatol.104(3), 421–424 (1995).
[CrossRef] [PubMed]

Guipaud, O.

V. Holler, V. Buard, M. H. Gaugler, O. Guipaud, C. Baudelin, A. Sache, M. R. Perez, C. Squiban, R. Tamarat, F. Milliat, and M. Benderitter, “Pravastatin limits radiation-induced vascular dysfunction in the skin,” J. Invest. Dermatol.129(5), 1280–1291 (2009).
[CrossRef] [PubMed]

Hamilton, C.

P. Simonen, C. Hamilton, S. Ferguson, P. Ostwald, M. O’Brien, P. O’Brien, M. Back, and J. Denham, “Do inflammatory processes contribute to radiation-induced erythema observed in the skin of humans?” Radiother. Oncol.46(1), 73–82 (1998).
[CrossRef]

Harris, B. T.

K. Bekelis, P. A. Valdés, K. Erkmen, F. Leblond, A. Kim, B. C. Wilson, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas,” Neurosurg. Focus30(5), E8 (2011).
[PubMed]

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

Hawkes, E.

C. Westbury, F. Hines, E. Hawkes, S. Ashley, and M. Brada, “Advice on hair and scalp care during cranial radiotherapy: a prospective randomized trial,” Radiother. Oncol.54(2), 109–116 (2000).
[CrossRef] [PubMed]

Hendriks, B.

Dj. Evers, B. Hendriks, G. Lucassen, and T. Ruers, “Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy,” Future Oncol.8(3), 307–320 (2012).
[CrossRef] [PubMed]

Hillman, E. M.

Hines, F.

C. Westbury, F. Hines, E. Hawkes, S. Ashley, and M. Brada, “Advice on hair and scalp care during cranial radiotherapy: a prospective randomized trial,” Radiother. Oncol.54(2), 109–116 (2000).
[CrossRef] [PubMed]

Holler, V.

V. Holler, V. Buard, M. H. Gaugler, O. Guipaud, C. Baudelin, A. Sache, M. R. Perez, C. Squiban, R. Tamarat, F. Milliat, and M. Benderitter, “Pravastatin limits radiation-induced vascular dysfunction in the skin,” J. Invest. Dermatol.129(5), 1280–1291 (2009).
[CrossRef] [PubMed]

Hopewell, J. W.

S. Balter, J. W. Hopewell, D. L. Miller, L. K. Wagner, and M. J. Zelefsky, “Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair,” Radiology254(2), 326–341 (2010).
[CrossRef] [PubMed]

Ignotz, R. A.

M. S. Chin, B. B. Freniere, Y. C. Lo, J. H. Saleeby, S. P. Baker, H. M. Strom, R. A. Ignotz, J. F. Lalikos, and T. J. Fitzgerald, “Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin,” J. Biomed. Opt.17(2), 026010 (2012).
[CrossRef] [PubMed]

Johnson, T. M.

Khurana, M.

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15(6), 067006 (2010).
[CrossRef] [PubMed]

Kim, A.

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

K. Bekelis, P. A. Valdés, K. Erkmen, F. Leblond, A. Kim, B. C. Wilson, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas,” Neurosurg. Focus30(5), E8 (2011).
[PubMed]

A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express18(6), 5580–5594 (2010).
[CrossRef] [PubMed]

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15(6), 067006 (2010).
[CrossRef] [PubMed]

Klein, D.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

Kollias, N.

N. Kollias, R. Gillies, J. A. Muccini, R. K. Uyeyama, S. B. Phillips, and L. A. Drake, “A single parameter, oxygenated hemoglobin, can be used to quantify experimental irritant-induced inflammation,” J. Invest. Dermatol.104(3), 421–424 (1995).
[CrossRef] [PubMed]

Kristjanson, L.

D. Porock, L. Kristjanson, S. Nikoletti, F. Cameron, and P. Pedler, “Predicting the severity of radiation skin reactions in women with breast cancer,” Oncol. Nurs. Forum25(6), 1019–1029 (1998).
[PubMed]

Lalikos, J. F.

M. S. Chin, B. B. Freniere, Y. C. Lo, J. H. Saleeby, S. P. Baker, H. M. Strom, R. A. Ignotz, J. F. Lalikos, and T. J. Fitzgerald, “Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin,” J. Biomed. Opt.17(2), 026010 (2012).
[CrossRef] [PubMed]

Leblond, F.

K. Bekelis, P. A. Valdés, K. Erkmen, F. Leblond, A. Kim, B. C. Wilson, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas,” Neurosurg. Focus30(5), E8 (2011).
[PubMed]

Lloyd, B.

L. Chin, B. Lloyd, W. M. Whelan, and A. Vitkin, “Interstitial point radiance spectroscopy of turbid media,” J. Appl. Phys.105(10), 102025 (2009).
[CrossRef]

Lo, Y. C.

M. S. Chin, B. B. Freniere, Y. C. Lo, J. H. Saleeby, S. P. Baker, H. M. Strom, R. A. Ignotz, J. F. Lalikos, and T. J. Fitzgerald, “Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin,” J. Biomed. Opt.17(2), 026010 (2012).
[CrossRef] [PubMed]

Lucassen, G.

Dj. Evers, B. Hendriks, G. Lucassen, and T. Ruers, “Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy,” Future Oncol.8(3), 307–320 (2012).
[CrossRef] [PubMed]

Miller, D. L.

S. Balter, J. W. Hopewell, D. L. Miller, L. K. Wagner, and M. J. Zelefsky, “Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair,” Radiology254(2), 326–341 (2010).
[CrossRef] [PubMed]

Milliat, F.

V. Holler, V. Buard, M. H. Gaugler, O. Guipaud, C. Baudelin, A. Sache, M. R. Perez, C. Squiban, R. Tamarat, F. Milliat, and M. Benderitter, “Pravastatin limits radiation-induced vascular dysfunction in the skin,” J. Invest. Dermatol.129(5), 1280–1291 (2009).
[CrossRef] [PubMed]

Moriyama, Y.

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15(6), 067006 (2010).
[CrossRef] [PubMed]

Moses, Z. B.

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

Mourant, J. R.

Muccini, J. A.

N. Kollias, R. Gillies, J. A. Muccini, R. K. Uyeyama, S. B. Phillips, and L. A. Drake, “A single parameter, oxygenated hemoglobin, can be used to quantify experimental irritant-induced inflammation,” J. Invest. Dermatol.104(3), 421–424 (1995).
[CrossRef] [PubMed]

Mutyal, N. N.

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011).
[CrossRef] [PubMed]

Nikoletti, S.

D. Porock, L. Kristjanson, S. Nikoletti, F. Cameron, and P. Pedler, “Predicting the severity of radiation skin reactions in women with breast cancer,” Oncol. Nurs. Forum25(6), 1019–1029 (1998).
[PubMed]

Niu, C.

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

Noble-Adams, R.

R. Noble-Adams, “Radiation-induced skin reactions. 2: development of a measurement tool,” Br. J. Nurs.8(18), 1208–1211 (1999).
[PubMed]

Nordal, R.

M. Woo and R. Nordal, “Commissioning and evaluation of a new commercial small rodent x-ray irradiator,” Biomed. Imaging Interv. J.2(1), e10 (2006).
[CrossRef] [PubMed]

O’Brien, M.

P. Simonen, C. Hamilton, S. Ferguson, P. Ostwald, M. O’Brien, P. O’Brien, M. Back, and J. Denham, “Do inflammatory processes contribute to radiation-induced erythema observed in the skin of humans?” Radiother. Oncol.46(1), 73–82 (1998).
[CrossRef]

O’Brien, P.

P. Simonen, C. Hamilton, S. Ferguson, P. Ostwald, M. O’Brien, P. O’Brien, M. Back, and J. Denham, “Do inflammatory processes contribute to radiation-induced erythema observed in the skin of humans?” Radiother. Oncol.46(1), 73–82 (1998).
[CrossRef]

Ostwald, P.

P. Simonen, C. Hamilton, S. Ferguson, P. Ostwald, M. O’Brien, P. O’Brien, M. Back, and J. Denham, “Do inflammatory processes contribute to radiation-induced erythema observed in the skin of humans?” Radiother. Oncol.46(1), 73–82 (1998).
[CrossRef]

Paulsen, K. D.

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

K. Bekelis, P. A. Valdés, K. Erkmen, F. Leblond, A. Kim, B. C. Wilson, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas,” Neurosurg. Focus30(5), E8 (2011).
[PubMed]

Pedler, P.

D. Porock, L. Kristjanson, S. Nikoletti, F. Cameron, and P. Pedler, “Predicting the severity of radiation skin reactions in women with breast cancer,” Oncol. Nurs. Forum25(6), 1019–1029 (1998).
[PubMed]

Perez, M. R.

V. Holler, V. Buard, M. H. Gaugler, O. Guipaud, C. Baudelin, A. Sache, M. R. Perez, C. Squiban, R. Tamarat, F. Milliat, and M. Benderitter, “Pravastatin limits radiation-induced vascular dysfunction in the skin,” J. Invest. Dermatol.129(5), 1280–1291 (2009).
[CrossRef] [PubMed]

Pezner, R.

J. O. Archambeau, R. Pezner, and T. Wasserman, “Pathophysiology of irradiated skin and breast,” In. J. Rad. Oncology Biol. Phys.31(5), 1171–1185 (1995).
[CrossRef]

Phillips, S. B.

N. Kollias, R. Gillies, J. A. Muccini, R. K. Uyeyama, S. B. Phillips, and L. A. Drake, “A single parameter, oxygenated hemoglobin, can be used to quantify experimental irritant-induced inflammation,” J. Invest. Dermatol.104(3), 421–424 (1995).
[CrossRef] [PubMed]

Porock, D.

D. Porock, L. Kristjanson, S. Nikoletti, F. Cameron, and P. Pedler, “Predicting the severity of radiation skin reactions in women with breast cancer,” Oncol. Nurs. Forum25(6), 1019–1029 (1998).
[PubMed]

Radosevich, A. J.

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011).
[CrossRef] [PubMed]

Ramanujam, N.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

Riehemann, S.

S. Smesny, S. Riemann, S. Riehemann, M. E. Bellemann, and H. Sauer, “[Quantitative measurement of induced skin reddening using optical reflection spectroscopy--methodology and clinical application],” Biomed. Tech. (Berl.)46(10), 280–286 (2001).
[CrossRef] [PubMed]

Riemann, S.

S. Smesny, S. Riemann, S. Riehemann, M. E. Bellemann, and H. Sauer, “[Quantitative measurement of induced skin reddening using optical reflection spectroscopy--methodology and clinical application],” Biomed. Tech. (Berl.)46(10), 280–286 (2001).
[CrossRef] [PubMed]

Roberts, D. W.

K. Bekelis, P. A. Valdés, K. Erkmen, F. Leblond, A. Kim, B. C. Wilson, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas,” Neurosurg. Focus30(5), E8 (2011).
[PubMed]

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

Robinson, D. J.

A. Amelink, A. P. van den Heuvel, W. J. de Wolf, D. J. Robinson, and H. J. Sterenborg, “Monitoring PDT by means of superficial reflectance spectroscopy,” J. Photochem. Photobiol. B79(3), 243–251 (2005).
[CrossRef] [PubMed]

Rogers, J. D.

Roy, M.

Ruers, T.

Dj. Evers, B. Hendriks, G. Lucassen, and T. Ruers, “Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy,” Future Oncol.8(3), 307–320 (2012).
[CrossRef] [PubMed]

Ryan, J. L.

J. L. Ryan, “Ionizing Radiation: The Good, the Bad, and the Ugly,” J. Invest. Dermatol.132(3), 985–993 (2012).
[CrossRef] [PubMed]

Sache, A.

V. Holler, V. Buard, M. H. Gaugler, O. Guipaud, C. Baudelin, A. Sache, M. R. Perez, C. Squiban, R. Tamarat, F. Milliat, and M. Benderitter, “Pravastatin limits radiation-induced vascular dysfunction in the skin,” J. Invest. Dermatol.129(5), 1280–1291 (2009).
[CrossRef] [PubMed]

Saleeby, J. H.

M. S. Chin, B. B. Freniere, Y. C. Lo, J. H. Saleeby, S. P. Baker, H. M. Strom, R. A. Ignotz, J. F. Lalikos, and T. J. Fitzgerald, “Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin,” J. Biomed. Opt.17(2), 026010 (2012).
[CrossRef] [PubMed]

Sauer, H.

S. Smesny, S. Riemann, S. Riehemann, M. E. Bellemann, and H. Sauer, “[Quantitative measurement of induced skin reddening using optical reflection spectroscopy--methodology and clinical application],” Biomed. Tech. (Berl.)46(10), 280–286 (2001).
[CrossRef] [PubMed]

Schroeder, T.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

Schweiger, M.

Simonen, P.

P. Simonen, C. Hamilton, S. Ferguson, P. Ostwald, M. O’Brien, P. O’Brien, M. Back, and J. Denham, “Do inflammatory processes contribute to radiation-induced erythema observed in the skin of humans?” Radiother. Oncol.46(1), 73–82 (1998).
[CrossRef]

Smesny, S.

S. Smesny, S. Riemann, S. Riehemann, M. E. Bellemann, and H. Sauer, “[Quantitative measurement of induced skin reddening using optical reflection spectroscopy--methodology and clinical application],” Biomed. Tech. (Berl.)46(10), 280–286 (2001).
[CrossRef] [PubMed]

Squiban, C.

V. Holler, V. Buard, M. H. Gaugler, O. Guipaud, C. Baudelin, A. Sache, M. R. Perez, C. Squiban, R. Tamarat, F. Milliat, and M. Benderitter, “Pravastatin limits radiation-induced vascular dysfunction in the skin,” J. Invest. Dermatol.129(5), 1280–1291 (2009).
[CrossRef] [PubMed]

Sterenborg, H. J.

A. Amelink, A. P. van den Heuvel, W. J. de Wolf, D. J. Robinson, and H. J. Sterenborg, “Monitoring PDT by means of superficial reflectance spectroscopy,” J. Photochem. Photobiol. B79(3), 243–251 (2005).
[CrossRef] [PubMed]

Strom, H. M.

M. S. Chin, B. B. Freniere, Y. C. Lo, J. H. Saleeby, S. P. Baker, H. M. Strom, R. A. Ignotz, J. F. Lalikos, and T. J. Fitzgerald, “Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin,” J. Biomed. Opt.17(2), 026010 (2012).
[CrossRef] [PubMed]

Tamarat, R.

V. Holler, V. Buard, M. H. Gaugler, O. Guipaud, C. Baudelin, A. Sache, M. R. Perez, C. Squiban, R. Tamarat, F. Milliat, and M. Benderitter, “Pravastatin limits radiation-induced vascular dysfunction in the skin,” J. Invest. Dermatol.129(5), 1280–1291 (2009).
[CrossRef] [PubMed]

Tosteson, T. D.

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

Turzhitsky, V.

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011).
[CrossRef] [PubMed]

Uyeyama, R. K.

N. Kollias, R. Gillies, J. A. Muccini, R. K. Uyeyama, S. B. Phillips, and L. A. Drake, “A single parameter, oxygenated hemoglobin, can be used to quantify experimental irritant-induced inflammation,” J. Invest. Dermatol.104(3), 421–424 (1995).
[CrossRef] [PubMed]

Valdés, P. A.

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

K. Bekelis, P. A. Valdés, K. Erkmen, F. Leblond, A. Kim, B. C. Wilson, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas,” Neurosurg. Focus30(5), E8 (2011).
[PubMed]

van den Heuvel, A. P.

A. Amelink, A. P. van den Heuvel, W. J. de Wolf, D. J. Robinson, and H. J. Sterenborg, “Monitoring PDT by means of superficial reflectance spectroscopy,” J. Photochem. Photobiol. B79(3), 243–251 (2005).
[CrossRef] [PubMed]

Vishwanath, K.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

Vitkin, A.

L. Chin, B. Lloyd, W. M. Whelan, and A. Vitkin, “Interstitial point radiance spectroscopy of turbid media,” J. Appl. Phys.105(10), 102025 (2009).
[CrossRef]

Wagner, L. K.

S. Balter, J. W. Hopewell, D. L. Miller, L. K. Wagner, and M. J. Zelefsky, “Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair,” Radiology254(2), 326–341 (2010).
[CrossRef] [PubMed]

Wasserman, T.

J. O. Archambeau, R. Pezner, and T. Wasserman, “Pathophysiology of irradiated skin and breast,” In. J. Rad. Oncology Biol. Phys.31(5), 1171–1185 (1995).
[CrossRef]

Westbury, C.

C. Westbury, F. Hines, E. Hawkes, S. Ashley, and M. Brada, “Advice on hair and scalp care during cranial radiotherapy: a prospective randomized trial,” Radiother. Oncol.54(2), 109–116 (2000).
[CrossRef] [PubMed]

Whelan, W. M.

L. Chin, B. Lloyd, W. M. Whelan, and A. Vitkin, “Interstitial point radiance spectroscopy of turbid media,” J. Appl. Phys.105(10), 102025 (2009).
[CrossRef]

Wilson, B. C.

K. Bekelis, P. A. Valdés, K. Erkmen, F. Leblond, A. Kim, B. C. Wilson, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas,” Neurosurg. Focus30(5), E8 (2011).
[PubMed]

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15(6), 067006 (2010).
[CrossRef] [PubMed]

A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express18(6), 5580–5594 (2010).
[CrossRef] [PubMed]

Woo, M.

M. Woo and R. Nordal, “Commissioning and evaluation of a new commercial small rodent x-ray irradiator,” Biomed. Imaging Interv. J.2(1), e10 (2006).
[CrossRef] [PubMed]

Yodh, A.

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today48(3), 34 (1995).
[CrossRef]

Yodh, A. G.

Zelefsky, M. J.

S. Balter, J. W. Hopewell, D. L. Miller, L. K. Wagner, and M. J. Zelefsky, “Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair,” Radiology254(2), 326–341 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomed. Imaging Interv. J. (1)

M. Woo and R. Nordal, “Commissioning and evaluation of a new commercial small rodent x-ray irradiator,” Biomed. Imaging Interv. J.2(1), e10 (2006).
[CrossRef] [PubMed]

Biomed. Tech. (Berl.) (1)

S. Smesny, S. Riemann, S. Riehemann, M. E. Bellemann, and H. Sauer, “[Quantitative measurement of induced skin reddening using optical reflection spectroscopy--methodology and clinical application],” Biomed. Tech. (Berl.)46(10), 280–286 (2001).
[CrossRef] [PubMed]

Br. J. Nurs. (1)

R. Noble-Adams, “Radiation-induced skin reactions. 2: development of a measurement tool,” Br. J. Nurs.8(18), 1208–1211 (1999).
[PubMed]

Future Oncol. (1)

Dj. Evers, B. Hendriks, G. Lucassen, and T. Ruers, “Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy,” Future Oncol.8(3), 307–320 (2012).
[CrossRef] [PubMed]

In. J. Rad. Oncology Biol. Phys. (1)

J. O. Archambeau, R. Pezner, and T. Wasserman, “Pathophysiology of irradiated skin and breast,” In. J. Rad. Oncology Biol. Phys.31(5), 1171–1185 (1995).
[CrossRef]

J. Appl. Phys. (1)

L. Chin, B. Lloyd, W. M. Whelan, and A. Vitkin, “Interstitial point radiance spectroscopy of turbid media,” J. Appl. Phys.105(10), 102025 (2009).
[CrossRef]

J. Biomed. Opt. (4)

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011).
[CrossRef] [PubMed]

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15(6), 067006 (2010).
[CrossRef] [PubMed]

M. S. Chin, B. B. Freniere, Y. C. Lo, J. H. Saleeby, S. P. Baker, H. M. Strom, R. A. Ignotz, J. F. Lalikos, and T. J. Fitzgerald, “Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin,” J. Biomed. Opt.17(2), 026010 (2012).
[CrossRef] [PubMed]

J. Invest. Dermatol. (3)

N. Kollias, R. Gillies, J. A. Muccini, R. K. Uyeyama, S. B. Phillips, and L. A. Drake, “A single parameter, oxygenated hemoglobin, can be used to quantify experimental irritant-induced inflammation,” J. Invest. Dermatol.104(3), 421–424 (1995).
[CrossRef] [PubMed]

V. Holler, V. Buard, M. H. Gaugler, O. Guipaud, C. Baudelin, A. Sache, M. R. Perez, C. Squiban, R. Tamarat, F. Milliat, and M. Benderitter, “Pravastatin limits radiation-induced vascular dysfunction in the skin,” J. Invest. Dermatol.129(5), 1280–1291 (2009).
[CrossRef] [PubMed]

J. L. Ryan, “Ionizing Radiation: The Good, the Bad, and the Ugly,” J. Invest. Dermatol.132(3), 985–993 (2012).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B (1)

A. Amelink, A. P. van den Heuvel, W. J. de Wolf, D. J. Robinson, and H. J. Sterenborg, “Monitoring PDT by means of superficial reflectance spectroscopy,” J. Photochem. Photobiol. B79(3), 243–251 (2005).
[CrossRef] [PubMed]

Med. Phys. (1)

J. C. Finlay and T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,” Med. Phys.31(7), 1949–1959 (2004).
[CrossRef] [PubMed]

Neuro-oncol. (1)

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

Neurosurg. Focus (1)

K. Bekelis, P. A. Valdés, K. Erkmen, F. Leblond, A. Kim, B. C. Wilson, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas,” Neurosurg. Focus30(5), E8 (2011).
[PubMed]

Oncol. Nurs. Forum (1)

D. Porock, L. Kristjanson, S. Nikoletti, F. Cameron, and P. Pedler, “Predicting the severity of radiation skin reactions in women with breast cancer,” Oncol. Nurs. Forum25(6), 1019–1029 (1998).
[PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Today (1)

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today48(3), 34 (1995).
[CrossRef]

Radiology (1)

S. Balter, J. W. Hopewell, D. L. Miller, L. K. Wagner, and M. J. Zelefsky, “Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair,” Radiology254(2), 326–341 (2010).
[CrossRef] [PubMed]

Radiother. Oncol. (2)

P. Simonen, C. Hamilton, S. Ferguson, P. Ostwald, M. O’Brien, P. O’Brien, M. Back, and J. Denham, “Do inflammatory processes contribute to radiation-induced erythema observed in the skin of humans?” Radiother. Oncol.46(1), 73–82 (1998).
[CrossRef]

C. Westbury, F. Hines, E. Hawkes, S. Ashley, and M. Brada, “Advice on hair and scalp care during cranial radiotherapy: a prospective randomized trial,” Radiother. Oncol.54(2), 109–116 (2000).
[CrossRef] [PubMed]

Other (4)

E. J. Hall and A. J. Giaccia, Radiobiology for the Radiologist (J.B. Lippincott Company, Philadelphia, 2011)

L. Chin, W. M. Whelan, and I. A. Vitkin, “Optical Fiber Sensors for Biomedical Applications,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Springer SBM, 2011), pp. 661.

S. Prahl, “Tabulated Molar Extinction Coefficient for Hemoglobin in Water,” http://omlc.ogi.edu/spectra/hemoglobin/summary.html .

A. Kim and B. C. Wilson, “Measurement of Ex Vivo and In Vivo Tissue Optical Properties,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Springer, 2010), pp. 267.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Photograph of irradiated mice 12 days receiving 40 Gy of 120 kvP x-rays. Varying degrees of skin toxicities (erythema, scabs, scar tissue) were observed.

Fig. 2
Fig. 2

An operational schematic of the fiberoptic probe employed. Broadband light is used to illuminate the tissue (via an optical fiber) and diffuse reflectance spectra are collected at a fixed distance from the source via a collection fiber.

Fig. 3
Fig. 3

Optical probing depth relative to relevant skin sections. Source-detector separations were chosen to optimize sensitivity to the epidermal layer (~1-2 mm).

Fig. 4
Fig. 4

Typical white light reflectance spectra of non-irradiated (top) and irradiated (bottom) mouse skin 6 days post irradiation. Thin blue lines are the measured data while solid green lines are the respective fits. Excellent agreement between measurement and fits were typically observed. Two key differences were seen between the two groups: 1) an overall increase in absolute reflectance and 2) a distinct change in spectral shape between 550 – 600 nm.

Fig. 5
Fig. 5

Change in the oxygenation fraction for the non-irradiated group (top) and irradiated group (bottom). Individual mouse points are shown along with the average (black bar) and error bars depicting standard deviation. The baseline-normalized mean difference between the two groups (per mouse) is significant for Days 6-12 as shown in Table 2.

Fig. 6
Fig. 6

Top and bottom left show the relative time-resolved changes in A and k for the control group. Top and bottom right depict the same for the irradiated group. The change in A and k on Day 6 was found to be significant (p < 0.026).

Tables (3)

Tables Icon

Table 1 Qualitative scores [16] for skin reaction for irradiated mouse group.

Tables Icon

Table 2 Average relative change in hemolobin (ΔHb), oxygenation fraction (ΔStO2), A (ΔA) and k (Δk) for the 260 μm source-collector pair on day 6, 9 and 12 for irradiated mice relative to day 0.

Tables Icon

Table 3 Average percent relative change in hemolobin, oxygenation fraction, A and k for the 520 μm source-collector pair on day 6, 9 and 12 for irradiated mice relative to day 0.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

μ s ' (λ)=A ( λ λ o ) k
μ a ( λ )= H b [ StO 2 μ a oxyHb ( λ )+( 1 StO 2 ) μ a deoxyHb ( λ ) ]

Metrics