Abstract

The objective of this study was to evaluate the effects of blood glucose concentration (BGC) on in vivo human skin optical properties after oral intake of different sugars. In vivo optical properties of human skin were measured with a spectral domain optical coherence tomography (SD-OCT). Experimental results show that increase of BGC causes a decrease in the skin attenuation coefficient. And the maximum decrements in mean attenuation coefficient of skin tissue after drinking glucose, sucrose and fructose solution are 47.0%, 36.4% and 16.5% compared with that after drinking water, respectively (p < 0.05). The results also show that blood glucose levels of the forearm skin tissue are delayed compared with finger-stick blood glucose, and there are significant differences in the time delays after oral intake of different sugars. The time delay between mean attenuation coefficient and BGC after drinking glucose solution is evidently larger than that after drinking sucrose solution, and that after drinking sucrose solution is larger than that after drinking fructose solution. Our pilot studies indicate that OCT technique is capable of non-invasive, real-time, and sensitive monitoring of skin optical properties in human subjects during oral intake of different sugars.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. X. Guo, A. Mandelis, and B. Zinman, “Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry,” Biomed. Opt. Express 3(11), 3012–3021 (2012).
    [Crossref] [PubMed]
  2. S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).
    [Crossref] [PubMed]
  3. D. Daneman, “Type 1 diabetes,” Lancet 367(9513), 847–858 (2006).
    [Crossref] [PubMed]
  4. M. Stumvoll, B. J. Goldstein, and T. W. van Haeften, “Type 2 diabetes: principles of pathogenesis and therapy,” Lancet 365(9467), 1333–1346 (2005).
    [Crossref] [PubMed]
  5. J. Y. Qu and B. C. Wilson, “Monte Carlo modeling studies of the effect of physiological factors andother analytes on the determination of glucose concentration in vivoby near infrared optical absorption and scattering measurements,” J. Biomed. Opt. 2(3), 319–325 (1997).
    [Crossref] [PubMed]
  6. J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem. 78(1), 215–223 (2006).
    [Crossref] [PubMed]
  7. A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
    [Crossref] [PubMed]
  8. J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
    [Crossref] [PubMed]
  9. N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem. 400(9), 2871–2880 (2011).
    [Crossref] [PubMed]
  10. N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16(8), 087009 (2011).
    [Crossref] [PubMed]
  11. Q. Wan, G. L. Coté, and J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt. 10(2), 024029 (2005).
    [Crossref] [PubMed]
  12. B. D. Cameron and Y. F. Li, “Polarization-based diffuse reflectance imaging for noninvasive measurement of glucose,” J. Diabetes Sci. Tech. 1(6), 873–878 (2007).
    [Crossref] [PubMed]
  13. G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: an in vivo study,” J. Diabetes Sci. Tech. 5(2), 380–387 (2011).
    [Crossref] [PubMed]
  14. R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
    [Crossref] [PubMed]
  15. H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem. 45(9), 1587–1595 (1999).
    [PubMed]
  16. A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Glucose content monitoring with time-of-flight technique in aqueous Intralipid solution imitating human skin: Monte Carlo simulation,” Proc. SPIE 5862, 586214 (2005).
    [Crossref]
  17. M. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, and A. V. Priezzhev, “Measurements of glucose content in scattering media with time-of-flight technique; comparison with Monte Carlo simulations,” Proc. SPIE 5474, 181–191 (2004).
    [Crossref]
  18. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001).
    [Crossref] [PubMed]
  19. R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE 6007, 90–95 (2005).
    [Crossref]
  20. R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol. 51(16), 3885–3900 (2006).
    [Crossref] [PubMed]
  21. K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects,” Diabetes Care 25(12), 2263–2267 (2002).
    [Crossref] [PubMed]
  22. R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt. 17(10), 101513 (2012).
  23. K. V. Larin, T. Akkin, R. Esenaliev, M. Motamedi, and M. Milner, “Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentration,” Appl. Opt. 43(17), 3408–3414 (2004).
  24. M. Kinnunen, R. Myllylä, T. Jokela, and S. Vainio, “In vitro studies toward noninvasive glucose monitoring with optical coherence tomography,” Appl. Opt. 45(10), 2251–2260 (2006).
    [Crossref] [PubMed]
  25. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19(24), 2062–2064 (1994).
    [Crossref] [PubMed]
  26. M. Kohl, M. Cope, M. Essenpreis, and D. Böcker, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett. 19(24), 2170–2172 (1994).
    [Crossref] [PubMed]
  27. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, and D. Bãcker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22(3), 190–192 (1997).
    [Crossref] [PubMed]
  28. L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther. 2(2), 211–220 (2000).
    [Crossref] [PubMed]
  29. R. Poddar, S. R. Sharma, J. Andrews, and P. Sen, “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Curr. Sci. 95(3), 340–344 (2008).
  30. M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40(7), 1267–1287 (1995).
    [Crossref] [PubMed]
  31. X. D. Wang, G. Yao, and L. V. Wang, “Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose,” Appl. Opt. 41(4), 792–801 (2002).
    [Crossref] [PubMed]
  32. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  33. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32(30), 6032–6042 (1993).
    [Crossref] [PubMed]
  34. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42(16), 3027–3037 (2003).
    [Crossref] [PubMed]
  35. P. Lee, W. R. Gao, and X. L. Zhang, “Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography,” Appl. Opt. 49(18), 3538–3544 (2010).
    [Crossref] [PubMed]
  36. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
    [Crossref] [PubMed]
  37. Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
    [Crossref] [PubMed]
  38. Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express 3(7), 1548–1556 (2012).
    [Crossref] [PubMed]
  39. Y. Yang, T. Wang, M. Brewer, and Q. Zhu, “Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography,” J. Biomed. Opt. 17(9), 090530 (2012).
    [Crossref] [PubMed]
  40. H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt. 17(11), 116006 (2012).
    [Crossref] [PubMed]
  41. R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech. 1(4), 470–477 (2007).
    [Crossref]
  42. D. A. Southgate, “Digestion and metabolism of sugars,” Am. J. Clin. Nutr. 62(1Suppl), 203S–210S(1995).
    [PubMed]
  43. P. A. Mayes, “Intermediary metabolism of fructose,” Am. J. Clin. Nutr. 58(5Suppl), 754S–765S (1993).
    [PubMed]
  44. F. Q. Nuttal, M. A. Khan, and M. C. Gannon, “Peripheral glucose appearance rate following fructose ingestion in normal subjects,” Metabolism 49(12), 1565–1571 (2000).
    [Crossref] [PubMed]
  45. J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med. 309(1), 7–12 (1983).
    [Crossref] [PubMed]
  46. K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol. 48(10), 1371–1390 (2003).
    [Crossref] [PubMed]
  47. V. M. Kodach, D. J. Faber, J. van Marle, T. G. van Leeuwen, and J. Kalkman, “Determination of the scattering anisotropy with optical coherence tomography,” Opt. Express 19(7), 6131–6140 (2011).
    [Crossref] [PubMed]
  48. D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12(2), 249–259 (2004).
    [Crossref] [PubMed]
  49. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresenel principle,” J. Opt. Soc. Am. A 17(3), 484–490 (2000).
    [Crossref]
  50. O. Zhernovaya, V. V. Tuchin, and M. J. Leahy, “Blood optical clearing studied by optical coherence tomography,” J. Biomed. Opt. 18(2), 026014 (2013).
    [Crossref] [PubMed]
  51. J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care 22(1), 45–49 (1999).
    [Crossref] [PubMed]
  52. G. McGarraugh, D. Price, S. Schwartz, and R. Weinstein, “Physiological influences on off-finger glucose testing,” Diabetes Technol. Ther. 3(3), 367–376 (2001).
    [Crossref] [PubMed]
  53. G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther. 5(1), 27–31 (2003).
    [Crossref] [PubMed]
  54. A. J. M. Schoonen and K. J. C. Wientjes, “A model for transport of glucose in adipose tissue to a microdialysis probe,” Diabetes Technol. Ther. 5(4), 589–598 (2003).
    [Crossref] [PubMed]
  55. K. Jungheim and T. Koschinsky, “Glucose Monitoring at the Arm: Risky delays of hypoglycemia and hyperglycemia detection,” Diabetes Care 25(6), 956–960 (2002).
    [Crossref] [PubMed]

2013 (1)

O. Zhernovaya, V. V. Tuchin, and M. J. Leahy, “Blood optical clearing studied by optical coherence tomography,” J. Biomed. Opt. 18(2), 026014 (2013).
[Crossref] [PubMed]

2012 (5)

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express 3(7), 1548–1556 (2012).
[Crossref] [PubMed]

Y. Yang, T. Wang, M. Brewer, and Q. Zhu, “Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography,” J. Biomed. Opt. 17(9), 090530 (2012).
[Crossref] [PubMed]

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt. 17(11), 116006 (2012).
[Crossref] [PubMed]

X. X. Guo, A. Mandelis, and B. Zinman, “Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry,” Biomed. Opt. Express 3(11), 3012–3021 (2012).
[Crossref] [PubMed]

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt. 17(10), 101513 (2012).

2011 (5)

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[Crossref] [PubMed]

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem. 400(9), 2871–2880 (2011).
[Crossref] [PubMed]

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16(8), 087009 (2011).
[Crossref] [PubMed]

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: an in vivo study,” J. Diabetes Sci. Tech. 5(2), 380–387 (2011).
[Crossref] [PubMed]

V. M. Kodach, D. J. Faber, J. van Marle, T. G. van Leeuwen, and J. Kalkman, “Determination of the scattering anisotropy with optical coherence tomography,” Opt. Express 19(7), 6131–6140 (2011).
[Crossref] [PubMed]

2010 (2)

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

P. Lee, W. R. Gao, and X. L. Zhang, “Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography,” Appl. Opt. 49(18), 3538–3544 (2010).
[Crossref] [PubMed]

2008 (1)

R. Poddar, S. R. Sharma, J. Andrews, and P. Sen, “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Curr. Sci. 95(3), 340–344 (2008).

2007 (3)

B. D. Cameron and Y. F. Li, “Polarization-based diffuse reflectance imaging for noninvasive measurement of glucose,” J. Diabetes Sci. Tech. 1(6), 873–878 (2007).
[Crossref] [PubMed]

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[Crossref] [PubMed]

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech. 1(4), 470–477 (2007).
[Crossref]

2006 (4)

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol. 51(16), 3885–3900 (2006).
[Crossref] [PubMed]

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem. 78(1), 215–223 (2006).
[Crossref] [PubMed]

D. Daneman, “Type 1 diabetes,” Lancet 367(9513), 847–858 (2006).
[Crossref] [PubMed]

M. Kinnunen, R. Myllylä, T. Jokela, and S. Vainio, “In vitro studies toward noninvasive glucose monitoring with optical coherence tomography,” Appl. Opt. 45(10), 2251–2260 (2006).
[Crossref] [PubMed]

2005 (5)

R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE 6007, 90–95 (2005).
[Crossref]

M. Stumvoll, B. J. Goldstein, and T. W. van Haeften, “Type 2 diabetes: principles of pathogenesis and therapy,” Lancet 365(9467), 1333–1346 (2005).
[Crossref] [PubMed]

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Q. Wan, G. L. Coté, and J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt. 10(2), 024029 (2005).
[Crossref] [PubMed]

A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Glucose content monitoring with time-of-flight technique in aqueous Intralipid solution imitating human skin: Monte Carlo simulation,” Proc. SPIE 5862, 586214 (2005).
[Crossref]

2004 (5)

2003 (4)

K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol. 48(10), 1371–1390 (2003).
[Crossref] [PubMed]

G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther. 5(1), 27–31 (2003).
[Crossref] [PubMed]

A. J. M. Schoonen and K. J. C. Wientjes, “A model for transport of glucose in adipose tissue to a microdialysis probe,” Diabetes Technol. Ther. 5(4), 589–598 (2003).
[Crossref] [PubMed]

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42(16), 3027–3037 (2003).
[Crossref] [PubMed]

2002 (3)

X. D. Wang, G. Yao, and L. V. Wang, “Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose,” Appl. Opt. 41(4), 792–801 (2002).
[Crossref] [PubMed]

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects,” Diabetes Care 25(12), 2263–2267 (2002).
[Crossref] [PubMed]

K. Jungheim and T. Koschinsky, “Glucose Monitoring at the Arm: Risky delays of hypoglycemia and hyperglycemia detection,” Diabetes Care 25(6), 956–960 (2002).
[Crossref] [PubMed]

2001 (2)

G. McGarraugh, D. Price, S. Schwartz, and R. Weinstein, “Physiological influences on off-finger glucose testing,” Diabetes Technol. Ther. 3(3), 367–376 (2001).
[Crossref] [PubMed]

R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001).
[Crossref] [PubMed]

2000 (3)

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther. 2(2), 211–220 (2000).
[Crossref] [PubMed]

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresenel principle,” J. Opt. Soc. Am. A 17(3), 484–490 (2000).
[Crossref]

F. Q. Nuttal, M. A. Khan, and M. C. Gannon, “Peripheral glucose appearance rate following fructose ingestion in normal subjects,” Metabolism 49(12), 1565–1571 (2000).
[Crossref] [PubMed]

1999 (2)

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care 22(1), 45–49 (1999).
[Crossref] [PubMed]

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem. 45(9), 1587–1595 (1999).
[PubMed]

1997 (2)

J. Y. Qu and B. C. Wilson, “Monte Carlo modeling studies of the effect of physiological factors andother analytes on the determination of glucose concentration in vivoby near infrared optical absorption and scattering measurements,” J. Biomed. Opt. 2(3), 319–325 (1997).
[Crossref] [PubMed]

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, and D. Bãcker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22(3), 190–192 (1997).
[Crossref] [PubMed]

1995 (2)

M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40(7), 1267–1287 (1995).
[Crossref] [PubMed]

D. A. Southgate, “Digestion and metabolism of sugars,” Am. J. Clin. Nutr. 62(1Suppl), 203S–210S(1995).
[PubMed]

1994 (2)

1993 (2)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1983 (1)

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med. 309(1), 7–12 (1983).
[Crossref] [PubMed]

Aalders, M. C. G.

Aaser, E.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care 22(1), 45–49 (1999).
[Crossref] [PubMed]

Akkin, T.

Altrogge, D. M.

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: an in vivo study,” J. Diabetes Sci. Tech. 5(2), 380–387 (2011).
[Crossref] [PubMed]

Andersen, C.

Andersen, P.

Andersen, P. E.

Andersson-Engels, S.

Andrews, J.

R. Poddar, S. R. Sharma, J. Andrews, and P. Sen, “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Curr. Sci. 95(3), 340–344 (2008).

Arnold, M. A.

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem. 78(1), 215–223 (2006).
[Crossref] [PubMed]

Ashitkov, T. V.

K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol. 48(10), 1371–1390 (2003).
[Crossref] [PubMed]

Ashton, H. S.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem. 45(9), 1587–1595 (1999).
[PubMed]

Bãcker, D.

Bantle, J. P.

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med. 309(1), 7–12 (1983).
[Crossref] [PubMed]

Barman, I.

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16(8), 087009 (2011).
[Crossref] [PubMed]

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem. 400(9), 2871–2880 (2011).
[Crossref] [PubMed]

Berger, M.

Bernaba, B.

G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther. 5(1), 27–31 (2003).
[Crossref] [PubMed]

Biswal, N. C.

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[Crossref] [PubMed]

Bjørnholt, J. V.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care 22(1), 45–49 (1999).
[Crossref] [PubMed]

Böcker, D.

Bonner, R. F.

Brewer, M.

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express 3(7), 1548–1556 (2012).
[Crossref] [PubMed]

Y. Yang, T. Wang, M. Brewer, and Q. Zhu, “Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography,” J. Biomed. Opt. 17(9), 090530 (2012).
[Crossref] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[Crossref] [PubMed]

Bruulsema, J. T.

Cai, T.

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt. 17(10), 101513 (2012).

Cameron, B. D.

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: an in vivo study,” J. Diabetes Sci. Tech. 5(2), 380–387 (2011).
[Crossref] [PubMed]

B. D. Cameron and Y. F. Li, “Polarization-based diffuse reflectance imaging for noninvasive measurement of glucose,” J. Diabetes Sci. Tech. 1(6), 873–878 (2007).
[Crossref] [PubMed]

Castle, G. W.

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med. 309(1), 7–12 (1983).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cicenaite, I.

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech. 1(4), 470–477 (2007).
[Crossref]

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol. 51(16), 3885–3900 (2006).
[Crossref] [PubMed]

R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE 6007, 90–95 (2005).
[Crossref]

Cope, M.

M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40(7), 1267–1287 (1995).
[Crossref] [PubMed]

M. Kohl, M. Cope, M. Essenpreis, and D. Böcker, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett. 19(24), 2170–2172 (1994).
[Crossref] [PubMed]

Coté, G. L.

Q. Wan, G. L. Coté, and J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt. 10(2), 024029 (2005).
[Crossref] [PubMed]

Daneman, D.

D. Daneman, “Type 1 diabetes,” Lancet 367(9513), 847–858 (2006).
[Crossref] [PubMed]

Dasari, R. R.

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16(8), 087009 (2011).
[Crossref] [PubMed]

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem. 400(9), 2871–2880 (2011).
[Crossref] [PubMed]

Dingari, N. C.

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16(8), 087009 (2011).
[Crossref] [PubMed]

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem. 400(9), 2871–2880 (2011).
[Crossref] [PubMed]

Dixon, J. B.

Q. Wan, G. L. Coté, and J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt. 10(2), 024029 (2005).
[Crossref] [PubMed]

Eledrisi, M. S.

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects,” Diabetes Care 25(12), 2263–2267 (2002).
[Crossref] [PubMed]

Enejder, A. M.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Erikssen, G.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care 22(1), 45–49 (1999).
[Crossref] [PubMed]

Erikssen, J.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care 22(1), 45–49 (1999).
[Crossref] [PubMed]

Esenaliev, R.

R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE 6007, 90–95 (2005).
[Crossref]

K. V. Larin, T. Akkin, R. Esenaliev, M. Motamedi, and M. Milner, “Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentration,” Appl. Opt. 43(17), 3408–3414 (2004).

Esenaliev, R. O.

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech. 1(4), 470–477 (2007).
[Crossref]

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol. 51(16), 3885–3900 (2006).
[Crossref] [PubMed]

K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol. 48(10), 1371–1390 (2003).
[Crossref] [PubMed]

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42(16), 3027–3037 (2003).
[Crossref] [PubMed]

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects,” Diabetes Care 25(12), 2263–2267 (2002).
[Crossref] [PubMed]

R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001).
[Crossref] [PubMed]

Essenpreis, M.

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Faber, D. J.

Fantini, S.

Farrell, T. J.

Feld, M. S.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem. 400(9), 2871–2880 (2011).
[Crossref] [PubMed]

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16(8), 087009 (2011).
[Crossref] [PubMed]

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Franceschini, M. A.

Freeborn, S. S.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem. 45(9), 1587–1595 (1999).
[PubMed]

Frosz, M.

Gannon, M. C.

F. Q. Nuttal, M. A. Khan, and M. C. Gannon, “Peripheral glucose appearance rate following fructose ingestion in normal subjects,” Metabolism 49(12), 1565–1571 (2000).
[Crossref] [PubMed]

Gao, W. R.

Glucksberg, M. R.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

Goetz, F. C.

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med. 309(1), 7–12 (1983).
[Crossref] [PubMed]

Goldstein, B. J.

M. Stumvoll, B. J. Goldstein, and T. W. van Haeften, “Type 2 diabetes: principles of pathogenesis and therapy,” Lancet 365(9467), 1333–1346 (2005).
[Crossref] [PubMed]

Gratton, E.

Green, A.

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gu, H. M.

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt. 17(10), 101513 (2012).

Guo, X.

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt. 17(10), 101513 (2012).

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt. 17(11), 116006 (2012).
[Crossref] [PubMed]

Guo, X. X.

Guo, Z.

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt. 17(11), 116006 (2012).
[Crossref] [PubMed]

Hannigan, J.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem. 45(9), 1587–1595 (1999).
[PubMed]

Hansen, P.

Hayward, J. E.

He, R. Y.

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt. 17(10), 101513 (2012).

He, Y.

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt. 17(11), 116006 (2012).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hein, M.

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther. 2(2), 211–220 (2000).
[Crossref] [PubMed]

Heinemann, L.

Heise, T.

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther. 2(2), 211–220 (2000).
[Crossref] [PubMed]

Hermann, M.

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther. 2(2), 211–220 (2000).
[Crossref] [PubMed]

Hoogwerf, B. J.

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med. 309(1), 7–12 (1983).
[Crossref] [PubMed]

Horowitz, G. L.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hunter, M.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Jervell, J.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care 22(1), 45–49 (1999).
[Crossref] [PubMed]

Jokela, T.

Jungheim, K.

K. Jungheim and T. Koschinsky, “Glucose Monitoring at the Arm: Risky delays of hypoglycemia and hyperglycemia detection,” Diabetes Care 25(6), 956–960 (2002).
[Crossref] [PubMed]

Kalkman, J.

Kang, J. W.

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16(8), 087009 (2011).
[Crossref] [PubMed]

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem. 400(9), 2871–2880 (2011).
[Crossref] [PubMed]

Khan, M. A.

F. Q. Nuttal, M. A. Khan, and M. C. Gannon, “Peripheral glucose appearance rate following fructose ingestion in normal subjects,” Metabolism 49(12), 1565–1571 (2000).
[Crossref] [PubMed]

Kholodnykh, A. I.

King, H.

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).
[Crossref] [PubMed]

Kinnunen, M.

M. Kinnunen, R. Myllylä, T. Jokela, and S. Vainio, “In vitro studies toward noninvasive glucose monitoring with optical coherence tomography,” Appl. Opt. 45(10), 2251–2260 (2006).
[Crossref] [PubMed]

M. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, and A. V. Priezzhev, “Measurements of glucose content in scattering media with time-of-flight technique; comparison with Monte Carlo simulations,” Proc. SPIE 5474, 181–191 (2004).
[Crossref]

Klötzer, H.-M.

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther. 2(2), 211–220 (2000).
[Crossref] [PubMed]

Knüttel, A.

Kodach, V. M.

Kohl, M.

M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40(7), 1267–1287 (1995).
[Crossref] [PubMed]

M. Kohl, M. Cope, M. Essenpreis, and D. Böcker, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett. 19(24), 2170–2172 (1994).
[Crossref] [PubMed]

Kong, C. R.

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16(8), 087009 (2011).
[Crossref] [PubMed]

Koschinsky, T.

Krämer, U.

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther. 2(2), 211–220 (2000).
[Crossref] [PubMed]

Kuranov, R.

R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE 6007, 90–95 (2005).
[Crossref]

Kuranov, R. V.

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech. 1(4), 470–477 (2007).
[Crossref]

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol. 51(16), 3885–3900 (2006).
[Crossref] [PubMed]

Laine, D. C.

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med. 309(1), 7–12 (1983).
[Crossref] [PubMed]

Larin, K. V.

Larina, I. V.

Leahy, M. J.

O. Zhernovaya, V. V. Tuchin, and M. J. Leahy, “Blood optical clearing studied by optical coherence tomography,” J. Biomed. Opt. 18(2), 026014 (2013).
[Crossref] [PubMed]

Lee, P.

Levitz, D.

Li, Y. F.

B. D. Cameron and Y. F. Li, “Polarization-based diffuse reflectance imaging for noninvasive measurement of glucose,” J. Diabetes Sci. Tech. 1(6), 873–878 (2007).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lindberg, J.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem. 45(9), 1587–1595 (1999).
[PubMed]

Liu, L.

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem. 78(1), 215–223 (2006).
[Crossref] [PubMed]

MacKenzie, H. A.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem. 45(9), 1587–1595 (1999).
[PubMed]

Maier, J. S.

Mandelis, A.

Mastrototaro, J.

G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther. 5(1), 27–31 (2003).
[Crossref] [PubMed]

Mayes, P. A.

P. A. Mayes, “Intermediary metabolism of fructose,” Am. J. Clin. Nutr. 58(5Suppl), 754S–765S (1993).
[PubMed]

McGarraugh, G.

G. McGarraugh, D. Price, S. Schwartz, and R. Weinstein, “Physiological influences on off-finger glucose testing,” Diabetes Technol. Ther. 3(3), 367–376 (2001).
[Crossref] [PubMed]

Milner, M.

Motamedi, M.

Myllyla, R. A.

M. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, and A. V. Priezzhev, “Measurements of glucose content in scattering media with time-of-flight technique; comparison with Monte Carlo simulations,” Proc. SPIE 5474, 181–191 (2004).
[Crossref]

Myllylä, R.

M. Kinnunen, R. Myllylä, T. Jokela, and S. Vainio, “In vitro studies toward noninvasive glucose monitoring with optical coherence tomography,” Appl. Opt. 45(10), 2251–2260 (2006).
[Crossref] [PubMed]

A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Glucose content monitoring with time-of-flight technique in aqueous Intralipid solution imitating human skin: Monte Carlo simulation,” Proc. SPIE 5862, 586214 (2005).
[Crossref]

Nitter-Hauge, S.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care 22(1), 45–49 (1999).
[Crossref] [PubMed]

Nuttal, F. Q.

F. Q. Nuttal, M. A. Khan, and M. C. Gannon, “Peripheral glucose appearance rate following fructose ingestion in normal subjects,” Metabolism 49(12), 1565–1571 (2000).
[Crossref] [PubMed]

Oh, J.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Olesberg, J. T.

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem. 78(1), 215–223 (2006).
[Crossref] [PubMed]

Orskov, H.

Patterson, M. S.

Petrova, I. Y.

Plucinski, J.

M. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, and A. V. Priezzhev, “Measurements of glucose content in scattering media with time-of-flight technique; comparison with Monte Carlo simulations,” Proc. SPIE 5474, 181–191 (2004).
[Crossref]

Poddar, R.

R. Poddar, S. R. Sharma, J. Andrews, and P. Sen, “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Curr. Sci. 95(3), 340–344 (2008).

Popov, A. P.

A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Glucose content monitoring with time-of-flight technique in aqueous Intralipid solution imitating human skin: Monte Carlo simulation,” Proc. SPIE 5862, 586214 (2005).
[Crossref]

M. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, and A. V. Priezzhev, “Measurements of glucose content in scattering media with time-of-flight technique; comparison with Monte Carlo simulations,” Proc. SPIE 5474, 181–191 (2004).
[Crossref]

Price, D.

G. McGarraugh, D. Price, S. Schwartz, and R. Weinstein, “Physiological influences on off-finger glucose testing,” Diabetes Technol. Ther. 3(3), 367–376 (2001).
[Crossref] [PubMed]

Priezzhev, A. V.

A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Glucose content monitoring with time-of-flight technique in aqueous Intralipid solution imitating human skin: Monte Carlo simulation,” Proc. SPIE 5862, 586214 (2005).
[Crossref]

M. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, and A. V. Priezzhev, “Measurements of glucose content in scattering media with time-of-flight technique; comparison with Monte Carlo simulations,” Proc. SPIE 5474, 181–191 (2004).
[Crossref]

Prough, D.

R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE 6007, 90–95 (2005).
[Crossref]

Prough, D. S.

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech. 1(4), 470–477 (2007).
[Crossref]

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol. 51(16), 3885–3900 (2006).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Purvinis, G.

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: an in vivo study,” J. Diabetes Sci. Tech. 5(2), 380–387 (2011).
[Crossref] [PubMed]

Qu, J. Y.

J. Y. Qu and B. C. Wilson, “Monte Carlo modeling studies of the effect of physiological factors andother analytes on the determination of glucose concentration in vivoby near infrared optical absorption and scattering measurements,” J. Biomed. Opt. 2(3), 319–325 (1997).
[Crossref] [PubMed]

Rae, P.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem. 45(9), 1587–1595 (1999).
[PubMed]

Rave, K.

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther. 2(2), 211–220 (2000).
[Crossref] [PubMed]

Raz, I.

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[Crossref] [PubMed]

Rebrin, K.

G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther. 5(1), 27–31 (2003).
[Crossref] [PubMed]

Roglic, G.

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).
[Crossref] [PubMed]

Saad, M. F.

G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther. 5(1), 27–31 (2003).
[Crossref] [PubMed]

Sandahl-Christiansen, J.

Sanders, M.

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express 3(7), 1548–1556 (2012).
[Crossref] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[Crossref] [PubMed]

Sandvik, L.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care 22(1), 45–49 (1999).
[Crossref] [PubMed]

Sapozhnikova, V.

R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE 6007, 90–95 (2005).
[Crossref]

Sapozhnikova, V. V.

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech. 1(4), 470–477 (2007).
[Crossref]

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol. 51(16), 3885–3900 (2006).
[Crossref] [PubMed]

Sasic, S.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Scecina, T. G.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Schmelzeisen-Redeker, G.

Schmitt, J. M.

Schoonen, A. J. M.

A. J. M. Schoonen and K. J. C. Wientjes, “A model for transport of glucose in adipose tissue to a microdialysis probe,” Diabetes Technol. Ther. 5(4), 589–598 (2003).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schwartz, S.

G. McGarraugh, D. Price, S. Schwartz, and R. Weinstein, “Physiological influences on off-finger glucose testing,” Diabetes Technol. Ther. 3(3), 367–376 (2001).
[Crossref] [PubMed]

Sen, P.

R. Poddar, S. R. Sharma, J. Andrews, and P. Sen, “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Curr. Sci. 95(3), 340–344 (2008).

Shah, N. C.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

Sharma, S. R.

R. Poddar, S. R. Sharma, J. Andrews, and P. Sen, “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Curr. Sci. 95(3), 340–344 (2008).

Shen, Y.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem. 45(9), 1587–1595 (1999).
[PubMed]

Shih, W. C.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Shusterman, A.

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[Crossref] [PubMed]

Sicree, R.

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).
[Crossref] [PubMed]

Singh, G. P.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem. 400(9), 2871–2880 (2011).
[Crossref] [PubMed]

Southgate, D. A.

D. A. Southgate, “Digestion and metabolism of sugars,” Am. J. Clin. Nutr. 62(1Suppl), 203S–210S(1995).
[PubMed]

Spiers, S.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem. 45(9), 1587–1595 (1999).
[PubMed]

Steil, G. M.

G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther. 5(1), 27–31 (2003).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Stumvoll, M.

M. Stumvoll, B. J. Goldstein, and T. W. van Haeften, “Type 2 diabetes: principles of pathogenesis and therapy,” Lancet 365(9467), 1333–1346 (2005).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swartling, J.

Thaulow, E.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care 22(1), 45–49 (1999).
[Crossref] [PubMed]

Thomas, J. W.

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med. 309(1), 7–12 (1983).
[Crossref] [PubMed]

Thrane, L.

Tuchin, V. V.

O. Zhernovaya, V. V. Tuchin, and M. J. Leahy, “Blood optical clearing studied by optical coherence tomography,” J. Biomed. Opt. 18(2), 026014 (2013).
[Crossref] [PubMed]

Vainio, S.

Valanciunaite, J.

van der Meer, F. J.

Van Duyne, R. P.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

van Haeften, T. W.

M. Stumvoll, B. J. Goldstein, and T. W. van Haeften, “Type 2 diabetes: principles of pathogenesis and therapy,” Lancet 365(9467), 1333–1346 (2005).
[Crossref] [PubMed]

van Leeuwen, T.

van Leeuwen, T. G.

van Marle, J.

Van Zee, V.

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem. 78(1), 215–223 (2006).
[Crossref] [PubMed]

Volz, D.

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther. 2(2), 211–220 (2000).
[Crossref] [PubMed]

Walker, S. A.

Walsh, J. T.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

Wan, Q.

Q. Wan, G. L. Coté, and J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt. 10(2), 024029 (2005).
[Crossref] [PubMed]

Wang, L. V.

Wang, T.

Y. Yang, T. Wang, M. Brewer, and Q. Zhu, “Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography,” J. Biomed. Opt. 17(9), 090530 (2012).
[Crossref] [PubMed]

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express 3(7), 1548–1556 (2012).
[Crossref] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[Crossref] [PubMed]

Wang, X.

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express 3(7), 1548–1556 (2012).
[Crossref] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[Crossref] [PubMed]

Wang, X. D.

Wei, H. J.

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt. 17(10), 101513 (2012).

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt. 17(11), 116006 (2012).
[Crossref] [PubMed]

Weinstein, R.

G. McGarraugh, D. Price, S. Schwartz, and R. Weinstein, “Physiological influences on off-finger glucose testing,” Diabetes Technol. Ther. 3(3), 367–376 (2001).
[Crossref] [PubMed]

Weiss, R.

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[Crossref] [PubMed]

Wientjes, K. J. C.

A. J. M. Schoonen and K. J. C. Wientjes, “A model for transport of glucose in adipose tissue to a microdialysis probe,” Diabetes Technol. Ther. 5(4), 589–598 (2003).
[Crossref] [PubMed]

Wild, S.

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).
[Crossref] [PubMed]

Wilson, B. C.

J. Y. Qu and B. C. Wilson, “Monte Carlo modeling studies of the effect of physiological factors andother analytes on the determination of glucose concentration in vivoby near infrared optical absorption and scattering measurements,” J. Biomed. Opt. 2(3), 319–325 (1997).
[Crossref] [PubMed]

Wu, G.

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt. 17(11), 116006 (2012).
[Crossref] [PubMed]

Xie, S.

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt. 17(11), 116006 (2012).
[Crossref] [PubMed]

Yang, H.

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt. 17(11), 116006 (2012).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, T. Wang, M. Brewer, and Q. Zhu, “Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography,” J. Biomed. Opt. 17(9), 090530 (2012).
[Crossref] [PubMed]

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express 3(7), 1548–1556 (2012).
[Crossref] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[Crossref] [PubMed]

Yao, G.

Yegorchikov, Y.

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[Crossref] [PubMed]

Yuen, J. M.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

Yura, H. T.

Zhang, X. L.

Zhang, Y. Q.

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt. 17(10), 101513 (2012).

Zhernovaya, O.

O. Zhernovaya, V. V. Tuchin, and M. J. Leahy, “Blood optical clearing studied by optical coherence tomography,” J. Biomed. Opt. 18(2), 026014 (2013).
[Crossref] [PubMed]

Zhu, Q.

Y. Yang, T. Wang, M. Brewer, and Q. Zhu, “Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography,” J. Biomed. Opt. 17(9), 090530 (2012).
[Crossref] [PubMed]

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express 3(7), 1548–1556 (2012).
[Crossref] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[Crossref] [PubMed]

Zhu, Z. G.

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt. 17(10), 101513 (2012).

Zinman, B.

Am. J. Clin. Nutr. (2)

D. A. Southgate, “Digestion and metabolism of sugars,” Am. J. Clin. Nutr. 62(1Suppl), 203S–210S(1995).
[PubMed]

P. A. Mayes, “Intermediary metabolism of fructose,” Am. J. Clin. Nutr. 58(5Suppl), 754S–765S (1993).
[PubMed]

Anal. Bioanal. Chem. (1)

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem. 400(9), 2871–2880 (2011).
[Crossref] [PubMed]

Anal. Chem. (2)

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem. 78(1), 215–223 (2006).
[Crossref] [PubMed]

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

Appl. Opt. (6)

Biomed. Opt. Express (2)

Clin. Chem. (1)

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem. 45(9), 1587–1595 (1999).
[PubMed]

Curr. Sci. (1)

R. Poddar, S. R. Sharma, J. Andrews, and P. Sen, “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Curr. Sci. 95(3), 340–344 (2008).

Diabetes Care (4)

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects,” Diabetes Care 25(12), 2263–2267 (2002).
[Crossref] [PubMed]

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).
[Crossref] [PubMed]

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care 22(1), 45–49 (1999).
[Crossref] [PubMed]

K. Jungheim and T. Koschinsky, “Glucose Monitoring at the Arm: Risky delays of hypoglycemia and hyperglycemia detection,” Diabetes Care 25(6), 956–960 (2002).
[Crossref] [PubMed]

Diabetes Technol. Ther. (5)

G. McGarraugh, D. Price, S. Schwartz, and R. Weinstein, “Physiological influences on off-finger glucose testing,” Diabetes Technol. Ther. 3(3), 367–376 (2001).
[Crossref] [PubMed]

G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther. 5(1), 27–31 (2003).
[Crossref] [PubMed]

A. J. M. Schoonen and K. J. C. Wientjes, “A model for transport of glucose in adipose tissue to a microdialysis probe,” Diabetes Technol. Ther. 5(4), 589–598 (2003).
[Crossref] [PubMed]

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther. 2(2), 211–220 (2000).
[Crossref] [PubMed]

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (9)

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt. 17(10), 101513 (2012).

J. Y. Qu and B. C. Wilson, “Monte Carlo modeling studies of the effect of physiological factors andother analytes on the determination of glucose concentration in vivoby near infrared optical absorption and scattering measurements,” J. Biomed. Opt. 2(3), 319–325 (1997).
[Crossref] [PubMed]

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16(8), 087009 (2011).
[Crossref] [PubMed]

Q. Wan, G. L. Coté, and J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt. 10(2), 024029 (2005).
[Crossref] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[Crossref] [PubMed]

Y. Yang, T. Wang, M. Brewer, and Q. Zhu, “Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography,” J. Biomed. Opt. 17(9), 090530 (2012).
[Crossref] [PubMed]

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt. 17(11), 116006 (2012).
[Crossref] [PubMed]

O. Zhernovaya, V. V. Tuchin, and M. J. Leahy, “Blood optical clearing studied by optical coherence tomography,” J. Biomed. Opt. 18(2), 026014 (2013).
[Crossref] [PubMed]

J. Diabetes Sci. Tech. (3)

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech. 1(4), 470–477 (2007).
[Crossref]

B. D. Cameron and Y. F. Li, “Polarization-based diffuse reflectance imaging for noninvasive measurement of glucose,” J. Diabetes Sci. Tech. 1(6), 873–878 (2007).
[Crossref] [PubMed]

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: an in vivo study,” J. Diabetes Sci. Tech. 5(2), 380–387 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Lancet (2)

D. Daneman, “Type 1 diabetes,” Lancet 367(9513), 847–858 (2006).
[Crossref] [PubMed]

M. Stumvoll, B. J. Goldstein, and T. W. van Haeften, “Type 2 diabetes: principles of pathogenesis and therapy,” Lancet 365(9467), 1333–1346 (2005).
[Crossref] [PubMed]

Metabolism (1)

F. Q. Nuttal, M. A. Khan, and M. C. Gannon, “Peripheral glucose appearance rate following fructose ingestion in normal subjects,” Metabolism 49(12), 1565–1571 (2000).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med. 309(1), 7–12 (1983).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Phys. Med. Biol. (3)

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol. 51(16), 3885–3900 (2006).
[Crossref] [PubMed]

M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40(7), 1267–1287 (1995).
[Crossref] [PubMed]

K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol. 48(10), 1371–1390 (2003).
[Crossref] [PubMed]

Proc. SPIE (3)

R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE 6007, 90–95 (2005).
[Crossref]

A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Glucose content monitoring with time-of-flight technique in aqueous Intralipid solution imitating human skin: Monte Carlo simulation,” Proc. SPIE 5862, 586214 (2005).
[Crossref]

M. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, and A. V. Priezzhev, “Measurements of glucose content in scattering media with time-of-flight technique; comparison with Monte Carlo simulations,” Proc. SPIE 5474, 181–191 (2004).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Example of an OCT image of skin tissue and the averaged OCT signal profile versus depth extracted from the selected region in OCT image.

Fig. 2
Fig. 2

OCT signal intensity versus depth profiles recorded from the human skin in vivo after oral intake of glucose solution (group B), sucrose solution (group C), fructose solution (group D) and water (control group, group A) at 50 min, respectively.

Fig. 3
Fig. 3

Averaged attenuation coefficients of skin tissue and corresponding BGCs of the volunteers after they oral intake of different sugar solutions and water, respectively. (a) control group, (b) glucose solution, (c) sucrose solution, (d) fructose solution

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ i 2 ( z ) ] 1/2 ( i 2 0 ) 1/2 [ exp( 2 μ t z ) ] 1/2 .
R( z )= I 0 a( z )exp( μ t z ).
μ t = 1 Δz ln[ R( z 1 ) R( z 2 ) ].

Metrics