Abstract

The objective of this study was to evaluate the effects of blood glucose concentration (BGC) on in vivo human skin optical properties after oral intake of different sugars. In vivo optical properties of human skin were measured with a spectral domain optical coherence tomography (SD-OCT). Experimental results show that increase of BGC causes a decrease in the skin attenuation coefficient. And the maximum decrements in mean attenuation coefficient of skin tissue after drinking glucose, sucrose and fructose solution are 47.0%, 36.4% and 16.5% compared with that after drinking water, respectively (p < 0.05). The results also show that blood glucose levels of the forearm skin tissue are delayed compared with finger-stick blood glucose, and there are significant differences in the time delays after oral intake of different sugars. The time delay between mean attenuation coefficient and BGC after drinking glucose solution is evidently larger than that after drinking sucrose solution, and that after drinking sucrose solution is larger than that after drinking fructose solution. Our pilot studies indicate that OCT technique is capable of non-invasive, real-time, and sensitive monitoring of skin optical properties in human subjects during oral intake of different sugars.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. X. Guo, A. Mandelis, and B. Zinman, “Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry,” Biomed. Opt. Express3(11), 3012–3021 (2012).
    [CrossRef] [PubMed]
  2. S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care27(5), 1047–1053 (2004).
    [CrossRef] [PubMed]
  3. D. Daneman, “Type 1 diabetes,” Lancet367(9513), 847–858 (2006).
    [CrossRef] [PubMed]
  4. M. Stumvoll, B. J. Goldstein, and T. W. van Haeften, “Type 2 diabetes: principles of pathogenesis and therapy,” Lancet365(9467), 1333–1346 (2005).
    [CrossRef] [PubMed]
  5. J. Y. Qu and B. C. Wilson, “Monte Carlo modeling studies of the effect of physiological factors andother analytes on the determination of glucose concentration in vivoby near infrared optical absorption and scattering measurements,” J. Biomed. Opt.2(3), 319–325 (1997).
    [CrossRef] [PubMed]
  6. J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem.78(1), 215–223 (2006).
    [CrossRef] [PubMed]
  7. A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10(3), 031114 (2005).
    [CrossRef] [PubMed]
  8. J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem.82(20), 8382–8385 (2010).
    [CrossRef] [PubMed]
  9. N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
    [CrossRef] [PubMed]
  10. N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt.16(8), 087009 (2011).
    [CrossRef] [PubMed]
  11. Q. Wan, G. L. Coté, and J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt.10(2), 024029 (2005).
    [CrossRef] [PubMed]
  12. B. D. Cameron and Y. F. Li, “Polarization-based diffuse reflectance imaging for noninvasive measurement of glucose,” J. Diabetes Sci. Tech.1(6), 873–878 (2007).
    [CrossRef] [PubMed]
  13. G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: an in vivo study,” J. Diabetes Sci. Tech.5(2), 380–387 (2011).
    [CrossRef] [PubMed]
  14. R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther.9(1), 68–74 (2007).
    [CrossRef] [PubMed]
  15. H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
    [PubMed]
  16. A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Glucose content monitoring with time-of-flight technique in aqueous Intralipid solution imitating human skin: Monte Carlo simulation,” Proc. SPIE5862, 586214 (2005).
    [CrossRef]
  17. M. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, and A. V. Priezzhev, “Measurements of glucose content in scattering media with time-of-flight technique; comparison with Monte Carlo simulations,” Proc. SPIE5474, 181–191 (2004).
    [CrossRef]
  18. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett.26(13), 992–994 (2001).
    [CrossRef] [PubMed]
  19. R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE6007, 90–95 (2005).
    [CrossRef]
  20. R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol.51(16), 3885–3900 (2006).
    [CrossRef] [PubMed]
  21. K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects,” Diabetes Care25(12), 2263–2267 (2002).
    [CrossRef] [PubMed]
  22. R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt.17(10), 101513 (2012).
  23. K. V. Larin, T. Akkin, R. Esenaliev, M. Motamedi, and M. Milner, “Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentration,” Appl. Opt.43(17), 3408–3414 (2004).
  24. M. Kinnunen, R. Myllylä, T. Jokela, and S. Vainio, “In vitro studies toward noninvasive glucose monitoring with optical coherence tomography,” Appl. Opt.45(10), 2251–2260 (2006).
    [CrossRef] [PubMed]
  25. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett.19(24), 2062–2064 (1994).
    [CrossRef] [PubMed]
  26. M. Kohl, M. Cope, M. Essenpreis, and D. Böcker, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett.19(24), 2170–2172 (1994).
    [CrossRef] [PubMed]
  27. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, and D. Bãcker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett.22(3), 190–192 (1997).
    [CrossRef] [PubMed]
  28. L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther.2(2), 211–220 (2000).
    [CrossRef] [PubMed]
  29. R. Poddar, S. R. Sharma, J. Andrews, and P. Sen, “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Curr. Sci.95(3), 340–344 (2008).
  30. M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol.40(7), 1267–1287 (1995).
    [CrossRef] [PubMed]
  31. X. D. Wang, G. Yao, and L. V. Wang, “Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose,” Appl. Opt.41(4), 792–801 (2002).
    [CrossRef] [PubMed]
  32. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  33. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt.32(30), 6032–6042 (1993).
    [CrossRef] [PubMed]
  34. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt.42(16), 3027–3037 (2003).
    [CrossRef] [PubMed]
  35. P. Lee, W. R. Gao, and X. L. Zhang, “Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography,” Appl. Opt.49(18), 3538–3544 (2010).
    [CrossRef] [PubMed]
  36. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express12(19), 4353–4365 (2004).
    [CrossRef] [PubMed]
  37. Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
    [CrossRef] [PubMed]
  38. Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012).
    [CrossRef] [PubMed]
  39. Y. Yang, T. Wang, M. Brewer, and Q. Zhu, “Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography,” J. Biomed. Opt.17(9), 090530 (2012).
    [CrossRef] [PubMed]
  40. H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt.17(11), 116006 (2012).
    [CrossRef] [PubMed]
  41. R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech.1(4), 470–477 (2007).
    [CrossRef]
  42. D. A. Southgate, “Digestion and metabolism of sugars,” Am. J. Clin. Nutr.62(1Suppl), 203S–210S(1995).
    [PubMed]
  43. P. A. Mayes, “Intermediary metabolism of fructose,” Am. J. Clin. Nutr.58(5Suppl), 754S–765S (1993).
    [PubMed]
  44. F. Q. Nuttal, M. A. Khan, and M. C. Gannon, “Peripheral glucose appearance rate following fructose ingestion in normal subjects,” Metabolism49(12), 1565–1571 (2000).
    [CrossRef] [PubMed]
  45. J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med.309(1), 7–12 (1983).
    [CrossRef] [PubMed]
  46. K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol.48(10), 1371–1390 (2003).
    [CrossRef] [PubMed]
  47. V. M. Kodach, D. J. Faber, J. van Marle, T. G. van Leeuwen, and J. Kalkman, “Determination of the scattering anisotropy with optical coherence tomography,” Opt. Express19(7), 6131–6140 (2011).
    [CrossRef] [PubMed]
  48. D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express12(2), 249–259 (2004).
    [CrossRef] [PubMed]
  49. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresenel principle,” J. Opt. Soc. Am. A17(3), 484–490 (2000).
    [CrossRef]
  50. O. Zhernovaya, V. V. Tuchin, and M. J. Leahy, “Blood optical clearing studied by optical coherence tomography,” J. Biomed. Opt.18(2), 026014 (2013).
    [CrossRef] [PubMed]
  51. J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care22(1), 45–49 (1999).
    [CrossRef] [PubMed]
  52. G. McGarraugh, D. Price, S. Schwartz, and R. Weinstein, “Physiological influences on off-finger glucose testing,” Diabetes Technol. Ther.3(3), 367–376 (2001).
    [CrossRef] [PubMed]
  53. G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther.5(1), 27–31 (2003).
    [CrossRef] [PubMed]
  54. A. J. M. Schoonen and K. J. C. Wientjes, “A model for transport of glucose in adipose tissue to a microdialysis probe,” Diabetes Technol. Ther.5(4), 589–598 (2003).
    [CrossRef] [PubMed]
  55. K. Jungheim and T. Koschinsky, “Glucose Monitoring at the Arm: Risky delays of hypoglycemia and hyperglycemia detection,” Diabetes Care25(6), 956–960 (2002).
    [CrossRef] [PubMed]

2013

O. Zhernovaya, V. V. Tuchin, and M. J. Leahy, “Blood optical clearing studied by optical coherence tomography,” J. Biomed. Opt.18(2), 026014 (2013).
[CrossRef] [PubMed]

2012

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, M. Brewer, and Q. Zhu, “Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography,” J. Biomed. Opt.17(9), 090530 (2012).
[CrossRef] [PubMed]

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt.17(11), 116006 (2012).
[CrossRef] [PubMed]

X. X. Guo, A. Mandelis, and B. Zinman, “Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry,” Biomed. Opt. Express3(11), 3012–3021 (2012).
[CrossRef] [PubMed]

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt.17(10), 101513 (2012).

2011

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt.16(8), 087009 (2011).
[CrossRef] [PubMed]

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: an in vivo study,” J. Diabetes Sci. Tech.5(2), 380–387 (2011).
[CrossRef] [PubMed]

V. M. Kodach, D. J. Faber, J. van Marle, T. G. van Leeuwen, and J. Kalkman, “Determination of the scattering anisotropy with optical coherence tomography,” Opt. Express19(7), 6131–6140 (2011).
[CrossRef] [PubMed]

2010

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem.82(20), 8382–8385 (2010).
[CrossRef] [PubMed]

P. Lee, W. R. Gao, and X. L. Zhang, “Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography,” Appl. Opt.49(18), 3538–3544 (2010).
[CrossRef] [PubMed]

2008

R. Poddar, S. R. Sharma, J. Andrews, and P. Sen, “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Curr. Sci.95(3), 340–344 (2008).

2007

B. D. Cameron and Y. F. Li, “Polarization-based diffuse reflectance imaging for noninvasive measurement of glucose,” J. Diabetes Sci. Tech.1(6), 873–878 (2007).
[CrossRef] [PubMed]

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther.9(1), 68–74 (2007).
[CrossRef] [PubMed]

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech.1(4), 470–477 (2007).
[CrossRef]

2006

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol.51(16), 3885–3900 (2006).
[CrossRef] [PubMed]

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem.78(1), 215–223 (2006).
[CrossRef] [PubMed]

D. Daneman, “Type 1 diabetes,” Lancet367(9513), 847–858 (2006).
[CrossRef] [PubMed]

M. Kinnunen, R. Myllylä, T. Jokela, and S. Vainio, “In vitro studies toward noninvasive glucose monitoring with optical coherence tomography,” Appl. Opt.45(10), 2251–2260 (2006).
[CrossRef] [PubMed]

2005

R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE6007, 90–95 (2005).
[CrossRef]

M. Stumvoll, B. J. Goldstein, and T. W. van Haeften, “Type 2 diabetes: principles of pathogenesis and therapy,” Lancet365(9467), 1333–1346 (2005).
[CrossRef] [PubMed]

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10(3), 031114 (2005).
[CrossRef] [PubMed]

Q. Wan, G. L. Coté, and J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt.10(2), 024029 (2005).
[CrossRef] [PubMed]

A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Glucose content monitoring with time-of-flight technique in aqueous Intralipid solution imitating human skin: Monte Carlo simulation,” Proc. SPIE5862, 586214 (2005).
[CrossRef]

2004

2003

K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol.48(10), 1371–1390 (2003).
[CrossRef] [PubMed]

G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther.5(1), 27–31 (2003).
[CrossRef] [PubMed]

A. J. M. Schoonen and K. J. C. Wientjes, “A model for transport of glucose in adipose tissue to a microdialysis probe,” Diabetes Technol. Ther.5(4), 589–598 (2003).
[CrossRef] [PubMed]

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt.42(16), 3027–3037 (2003).
[CrossRef] [PubMed]

2002

X. D. Wang, G. Yao, and L. V. Wang, “Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose,” Appl. Opt.41(4), 792–801 (2002).
[CrossRef] [PubMed]

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects,” Diabetes Care25(12), 2263–2267 (2002).
[CrossRef] [PubMed]

K. Jungheim and T. Koschinsky, “Glucose Monitoring at the Arm: Risky delays of hypoglycemia and hyperglycemia detection,” Diabetes Care25(6), 956–960 (2002).
[CrossRef] [PubMed]

2001

G. McGarraugh, D. Price, S. Schwartz, and R. Weinstein, “Physiological influences on off-finger glucose testing,” Diabetes Technol. Ther.3(3), 367–376 (2001).
[CrossRef] [PubMed]

R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett.26(13), 992–994 (2001).
[CrossRef] [PubMed]

2000

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther.2(2), 211–220 (2000).
[CrossRef] [PubMed]

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresenel principle,” J. Opt. Soc. Am. A17(3), 484–490 (2000).
[CrossRef]

F. Q. Nuttal, M. A. Khan, and M. C. Gannon, “Peripheral glucose appearance rate following fructose ingestion in normal subjects,” Metabolism49(12), 1565–1571 (2000).
[CrossRef] [PubMed]

1999

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care22(1), 45–49 (1999).
[CrossRef] [PubMed]

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

1997

J. Y. Qu and B. C. Wilson, “Monte Carlo modeling studies of the effect of physiological factors andother analytes on the determination of glucose concentration in vivoby near infrared optical absorption and scattering measurements,” J. Biomed. Opt.2(3), 319–325 (1997).
[CrossRef] [PubMed]

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, and D. Bãcker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett.22(3), 190–192 (1997).
[CrossRef] [PubMed]

1995

M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol.40(7), 1267–1287 (1995).
[CrossRef] [PubMed]

D. A. Southgate, “Digestion and metabolism of sugars,” Am. J. Clin. Nutr.62(1Suppl), 203S–210S(1995).
[PubMed]

1994

1993

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1983

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med.309(1), 7–12 (1983).
[CrossRef] [PubMed]

Aalders, M. C. G.

Aaser, E.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care22(1), 45–49 (1999).
[CrossRef] [PubMed]

Akkin, T.

Altrogge, D. M.

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: an in vivo study,” J. Diabetes Sci. Tech.5(2), 380–387 (2011).
[CrossRef] [PubMed]

Andersen, C.

Andersen, P.

Andersen, P. E.

Andersson-Engels, S.

Andrews, J.

R. Poddar, S. R. Sharma, J. Andrews, and P. Sen, “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Curr. Sci.95(3), 340–344 (2008).

Arnold, M. A.

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem.78(1), 215–223 (2006).
[CrossRef] [PubMed]

Ashitkov, T. V.

K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol.48(10), 1371–1390 (2003).
[CrossRef] [PubMed]

Ashton, H. S.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Bãcker, D.

Bantle, J. P.

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med.309(1), 7–12 (1983).
[CrossRef] [PubMed]

Barman, I.

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt.16(8), 087009 (2011).
[CrossRef] [PubMed]

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Berger, M.

Bernaba, B.

G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther.5(1), 27–31 (2003).
[CrossRef] [PubMed]

Biswal, N. C.

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

Bjørnholt, J. V.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care22(1), 45–49 (1999).
[CrossRef] [PubMed]

Böcker, D.

Bonner, R. F.

Brewer, M.

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, M. Brewer, and Q. Zhu, “Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography,” J. Biomed. Opt.17(9), 090530 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

Bruulsema, J. T.

Cai, T.

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt.17(10), 101513 (2012).

Cameron, B. D.

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: an in vivo study,” J. Diabetes Sci. Tech.5(2), 380–387 (2011).
[CrossRef] [PubMed]

B. D. Cameron and Y. F. Li, “Polarization-based diffuse reflectance imaging for noninvasive measurement of glucose,” J. Diabetes Sci. Tech.1(6), 873–878 (2007).
[CrossRef] [PubMed]

Castle, G. W.

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med.309(1), 7–12 (1983).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Cicenaite, I.

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech.1(4), 470–477 (2007).
[CrossRef]

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol.51(16), 3885–3900 (2006).
[CrossRef] [PubMed]

R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE6007, 90–95 (2005).
[CrossRef]

Cope, M.

M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol.40(7), 1267–1287 (1995).
[CrossRef] [PubMed]

M. Kohl, M. Cope, M. Essenpreis, and D. Böcker, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett.19(24), 2170–2172 (1994).
[CrossRef] [PubMed]

Coté, G. L.

Q. Wan, G. L. Coté, and J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt.10(2), 024029 (2005).
[CrossRef] [PubMed]

Daneman, D.

D. Daneman, “Type 1 diabetes,” Lancet367(9513), 847–858 (2006).
[CrossRef] [PubMed]

Dasari, R. R.

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt.16(8), 087009 (2011).
[CrossRef] [PubMed]

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Dingari, N. C.

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt.16(8), 087009 (2011).
[CrossRef] [PubMed]

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Dixon, J. B.

Q. Wan, G. L. Coté, and J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt.10(2), 024029 (2005).
[CrossRef] [PubMed]

Eledrisi, M. S.

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects,” Diabetes Care25(12), 2263–2267 (2002).
[CrossRef] [PubMed]

Enejder, A. M.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10(3), 031114 (2005).
[CrossRef] [PubMed]

Erikssen, G.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care22(1), 45–49 (1999).
[CrossRef] [PubMed]

Erikssen, J.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care22(1), 45–49 (1999).
[CrossRef] [PubMed]

Esenaliev, R.

R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE6007, 90–95 (2005).
[CrossRef]

K. V. Larin, T. Akkin, R. Esenaliev, M. Motamedi, and M. Milner, “Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentration,” Appl. Opt.43(17), 3408–3414 (2004).

Esenaliev, R. O.

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech.1(4), 470–477 (2007).
[CrossRef]

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol.51(16), 3885–3900 (2006).
[CrossRef] [PubMed]

K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol.48(10), 1371–1390 (2003).
[CrossRef] [PubMed]

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt.42(16), 3027–3037 (2003).
[CrossRef] [PubMed]

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects,” Diabetes Care25(12), 2263–2267 (2002).
[CrossRef] [PubMed]

R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett.26(13), 992–994 (2001).
[CrossRef] [PubMed]

Essenpreis, M.

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Faber, D. J.

Fantini, S.

Farrell, T. J.

Feld, M. S.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt.16(8), 087009 (2011).
[CrossRef] [PubMed]

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10(3), 031114 (2005).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Franceschini, M. A.

Freeborn, S. S.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Frosz, M.

Gannon, M. C.

F. Q. Nuttal, M. A. Khan, and M. C. Gannon, “Peripheral glucose appearance rate following fructose ingestion in normal subjects,” Metabolism49(12), 1565–1571 (2000).
[CrossRef] [PubMed]

Gao, W. R.

Glucksberg, M. R.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem.82(20), 8382–8385 (2010).
[CrossRef] [PubMed]

Goetz, F. C.

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med.309(1), 7–12 (1983).
[CrossRef] [PubMed]

Goldstein, B. J.

M. Stumvoll, B. J. Goldstein, and T. W. van Haeften, “Type 2 diabetes: principles of pathogenesis and therapy,” Lancet365(9467), 1333–1346 (2005).
[CrossRef] [PubMed]

Gratton, E.

Green, A.

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care27(5), 1047–1053 (2004).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gu, H. M.

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt.17(10), 101513 (2012).

Guo, X.

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt.17(10), 101513 (2012).

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt.17(11), 116006 (2012).
[CrossRef] [PubMed]

Guo, X. X.

Guo, Z.

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt.17(11), 116006 (2012).
[CrossRef] [PubMed]

Hannigan, J.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Hansen, P.

Hayward, J. E.

He, R. Y.

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt.17(10), 101513 (2012).

He, Y.

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt.17(11), 116006 (2012).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hein, M.

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther.2(2), 211–220 (2000).
[CrossRef] [PubMed]

Heinemann, L.

Heise, T.

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther.2(2), 211–220 (2000).
[CrossRef] [PubMed]

Hermann, M.

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther.2(2), 211–220 (2000).
[CrossRef] [PubMed]

Hoogwerf, B. J.

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med.309(1), 7–12 (1983).
[CrossRef] [PubMed]

Horowitz, G. L.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10(3), 031114 (2005).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hunter, M.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10(3), 031114 (2005).
[CrossRef] [PubMed]

Jervell, J.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care22(1), 45–49 (1999).
[CrossRef] [PubMed]

Jokela, T.

Jungheim, K.

K. Jungheim and T. Koschinsky, “Glucose Monitoring at the Arm: Risky delays of hypoglycemia and hyperglycemia detection,” Diabetes Care25(6), 956–960 (2002).
[CrossRef] [PubMed]

Kalkman, J.

Kang, J. W.

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt.16(8), 087009 (2011).
[CrossRef] [PubMed]

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Khan, M. A.

F. Q. Nuttal, M. A. Khan, and M. C. Gannon, “Peripheral glucose appearance rate following fructose ingestion in normal subjects,” Metabolism49(12), 1565–1571 (2000).
[CrossRef] [PubMed]

Kholodnykh, A. I.

King, H.

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care27(5), 1047–1053 (2004).
[CrossRef] [PubMed]

Kinnunen, M.

M. Kinnunen, R. Myllylä, T. Jokela, and S. Vainio, “In vitro studies toward noninvasive glucose monitoring with optical coherence tomography,” Appl. Opt.45(10), 2251–2260 (2006).
[CrossRef] [PubMed]

M. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, and A. V. Priezzhev, “Measurements of glucose content in scattering media with time-of-flight technique; comparison with Monte Carlo simulations,” Proc. SPIE5474, 181–191 (2004).
[CrossRef]

Klötzer, H.-M.

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther.2(2), 211–220 (2000).
[CrossRef] [PubMed]

Knüttel, A.

Kodach, V. M.

Kohl, M.

M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol.40(7), 1267–1287 (1995).
[CrossRef] [PubMed]

M. Kohl, M. Cope, M. Essenpreis, and D. Böcker, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett.19(24), 2170–2172 (1994).
[CrossRef] [PubMed]

Kong, C. R.

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt.16(8), 087009 (2011).
[CrossRef] [PubMed]

Koschinsky, T.

Krämer, U.

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther.2(2), 211–220 (2000).
[CrossRef] [PubMed]

Kuranov, R.

R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE6007, 90–95 (2005).
[CrossRef]

Kuranov, R. V.

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech.1(4), 470–477 (2007).
[CrossRef]

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol.51(16), 3885–3900 (2006).
[CrossRef] [PubMed]

Laine, D. C.

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med.309(1), 7–12 (1983).
[CrossRef] [PubMed]

Larin, K. V.

Larina, I. V.

Leahy, M. J.

O. Zhernovaya, V. V. Tuchin, and M. J. Leahy, “Blood optical clearing studied by optical coherence tomography,” J. Biomed. Opt.18(2), 026014 (2013).
[CrossRef] [PubMed]

Lee, P.

Levitz, D.

Li, Y. F.

B. D. Cameron and Y. F. Li, “Polarization-based diffuse reflectance imaging for noninvasive measurement of glucose,” J. Diabetes Sci. Tech.1(6), 873–878 (2007).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lindberg, J.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Liu, L.

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem.78(1), 215–223 (2006).
[CrossRef] [PubMed]

MacKenzie, H. A.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Maier, J. S.

Mandelis, A.

Mastrototaro, J.

G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther.5(1), 27–31 (2003).
[CrossRef] [PubMed]

Mayes, P. A.

P. A. Mayes, “Intermediary metabolism of fructose,” Am. J. Clin. Nutr.58(5Suppl), 754S–765S (1993).
[PubMed]

McGarraugh, G.

G. McGarraugh, D. Price, S. Schwartz, and R. Weinstein, “Physiological influences on off-finger glucose testing,” Diabetes Technol. Ther.3(3), 367–376 (2001).
[CrossRef] [PubMed]

Milner, M.

Motamedi, M.

Myllyla, R. A.

M. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, and A. V. Priezzhev, “Measurements of glucose content in scattering media with time-of-flight technique; comparison with Monte Carlo simulations,” Proc. SPIE5474, 181–191 (2004).
[CrossRef]

Myllylä, R.

M. Kinnunen, R. Myllylä, T. Jokela, and S. Vainio, “In vitro studies toward noninvasive glucose monitoring with optical coherence tomography,” Appl. Opt.45(10), 2251–2260 (2006).
[CrossRef] [PubMed]

A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Glucose content monitoring with time-of-flight technique in aqueous Intralipid solution imitating human skin: Monte Carlo simulation,” Proc. SPIE5862, 586214 (2005).
[CrossRef]

Nitter-Hauge, S.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care22(1), 45–49 (1999).
[CrossRef] [PubMed]

Nuttal, F. Q.

F. Q. Nuttal, M. A. Khan, and M. C. Gannon, “Peripheral glucose appearance rate following fructose ingestion in normal subjects,” Metabolism49(12), 1565–1571 (2000).
[CrossRef] [PubMed]

Oh, J.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10(3), 031114 (2005).
[CrossRef] [PubMed]

Olesberg, J. T.

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem.78(1), 215–223 (2006).
[CrossRef] [PubMed]

Orskov, H.

Patterson, M. S.

Petrova, I. Y.

Plucinski, J.

M. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, and A. V. Priezzhev, “Measurements of glucose content in scattering media with time-of-flight technique; comparison with Monte Carlo simulations,” Proc. SPIE5474, 181–191 (2004).
[CrossRef]

Poddar, R.

R. Poddar, S. R. Sharma, J. Andrews, and P. Sen, “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Curr. Sci.95(3), 340–344 (2008).

Popov, A. P.

A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Glucose content monitoring with time-of-flight technique in aqueous Intralipid solution imitating human skin: Monte Carlo simulation,” Proc. SPIE5862, 586214 (2005).
[CrossRef]

M. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, and A. V. Priezzhev, “Measurements of glucose content in scattering media with time-of-flight technique; comparison with Monte Carlo simulations,” Proc. SPIE5474, 181–191 (2004).
[CrossRef]

Price, D.

G. McGarraugh, D. Price, S. Schwartz, and R. Weinstein, “Physiological influences on off-finger glucose testing,” Diabetes Technol. Ther.3(3), 367–376 (2001).
[CrossRef] [PubMed]

Priezzhev, A. V.

A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Glucose content monitoring with time-of-flight technique in aqueous Intralipid solution imitating human skin: Monte Carlo simulation,” Proc. SPIE5862, 586214 (2005).
[CrossRef]

M. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, and A. V. Priezzhev, “Measurements of glucose content in scattering media with time-of-flight technique; comparison with Monte Carlo simulations,” Proc. SPIE5474, 181–191 (2004).
[CrossRef]

Prough, D.

R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE6007, 90–95 (2005).
[CrossRef]

Prough, D. S.

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech.1(4), 470–477 (2007).
[CrossRef]

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol.51(16), 3885–3900 (2006).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Purvinis, G.

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: an in vivo study,” J. Diabetes Sci. Tech.5(2), 380–387 (2011).
[CrossRef] [PubMed]

Qu, J. Y.

J. Y. Qu and B. C. Wilson, “Monte Carlo modeling studies of the effect of physiological factors andother analytes on the determination of glucose concentration in vivoby near infrared optical absorption and scattering measurements,” J. Biomed. Opt.2(3), 319–325 (1997).
[CrossRef] [PubMed]

Rae, P.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Rave, K.

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther.2(2), 211–220 (2000).
[CrossRef] [PubMed]

Raz, I.

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther.9(1), 68–74 (2007).
[CrossRef] [PubMed]

Rebrin, K.

G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther.5(1), 27–31 (2003).
[CrossRef] [PubMed]

Roglic, G.

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care27(5), 1047–1053 (2004).
[CrossRef] [PubMed]

Saad, M. F.

G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther.5(1), 27–31 (2003).
[CrossRef] [PubMed]

Sandahl-Christiansen, J.

Sanders, M.

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

Sandvik, L.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care22(1), 45–49 (1999).
[CrossRef] [PubMed]

Sapozhnikova, V.

R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE6007, 90–95 (2005).
[CrossRef]

Sapozhnikova, V. V.

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech.1(4), 470–477 (2007).
[CrossRef]

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol.51(16), 3885–3900 (2006).
[CrossRef] [PubMed]

Sasic, S.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10(3), 031114 (2005).
[CrossRef] [PubMed]

Scecina, T. G.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10(3), 031114 (2005).
[CrossRef] [PubMed]

Schmelzeisen-Redeker, G.

Schmitt, J. M.

Schoonen, A. J. M.

A. J. M. Schoonen and K. J. C. Wientjes, “A model for transport of glucose in adipose tissue to a microdialysis probe,” Diabetes Technol. Ther.5(4), 589–598 (2003).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Schwartz, S.

G. McGarraugh, D. Price, S. Schwartz, and R. Weinstein, “Physiological influences on off-finger glucose testing,” Diabetes Technol. Ther.3(3), 367–376 (2001).
[CrossRef] [PubMed]

Sen, P.

R. Poddar, S. R. Sharma, J. Andrews, and P. Sen, “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Curr. Sci.95(3), 340–344 (2008).

Shah, N. C.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem.82(20), 8382–8385 (2010).
[CrossRef] [PubMed]

Sharma, S. R.

R. Poddar, S. R. Sharma, J. Andrews, and P. Sen, “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Curr. Sci.95(3), 340–344 (2008).

Shen, Y.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Shih, W. C.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10(3), 031114 (2005).
[CrossRef] [PubMed]

Shusterman, A.

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther.9(1), 68–74 (2007).
[CrossRef] [PubMed]

Sicree, R.

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care27(5), 1047–1053 (2004).
[CrossRef] [PubMed]

Singh, G. P.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Southgate, D. A.

D. A. Southgate, “Digestion and metabolism of sugars,” Am. J. Clin. Nutr.62(1Suppl), 203S–210S(1995).
[PubMed]

Spiers, S.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Steil, G. M.

G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther.5(1), 27–31 (2003).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stumvoll, M.

M. Stumvoll, B. J. Goldstein, and T. W. van Haeften, “Type 2 diabetes: principles of pathogenesis and therapy,” Lancet365(9467), 1333–1346 (2005).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swartling, J.

Thaulow, E.

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care22(1), 45–49 (1999).
[CrossRef] [PubMed]

Thomas, J. W.

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med.309(1), 7–12 (1983).
[CrossRef] [PubMed]

Thrane, L.

Tuchin, V. V.

O. Zhernovaya, V. V. Tuchin, and M. J. Leahy, “Blood optical clearing studied by optical coherence tomography,” J. Biomed. Opt.18(2), 026014 (2013).
[CrossRef] [PubMed]

Vainio, S.

Valanciunaite, J.

van der Meer, F. J.

Van Duyne, R. P.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem.82(20), 8382–8385 (2010).
[CrossRef] [PubMed]

van Haeften, T. W.

M. Stumvoll, B. J. Goldstein, and T. W. van Haeften, “Type 2 diabetes: principles of pathogenesis and therapy,” Lancet365(9467), 1333–1346 (2005).
[CrossRef] [PubMed]

van Leeuwen, T.

van Leeuwen, T. G.

van Marle, J.

Van Zee, V.

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem.78(1), 215–223 (2006).
[CrossRef] [PubMed]

Volz, D.

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther.2(2), 211–220 (2000).
[CrossRef] [PubMed]

Walker, S. A.

Walsh, J. T.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem.82(20), 8382–8385 (2010).
[CrossRef] [PubMed]

Wan, Q.

Q. Wan, G. L. Coté, and J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt.10(2), 024029 (2005).
[CrossRef] [PubMed]

Wang, L. V.

Wang, T.

Y. Yang, T. Wang, M. Brewer, and Q. Zhu, “Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography,” J. Biomed. Opt.17(9), 090530 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

Wang, X.

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

Wang, X. D.

Wei, H. J.

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt.17(10), 101513 (2012).

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt.17(11), 116006 (2012).
[CrossRef] [PubMed]

Weinstein, R.

G. McGarraugh, D. Price, S. Schwartz, and R. Weinstein, “Physiological influences on off-finger glucose testing,” Diabetes Technol. Ther.3(3), 367–376 (2001).
[CrossRef] [PubMed]

Weiss, R.

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther.9(1), 68–74 (2007).
[CrossRef] [PubMed]

Wientjes, K. J. C.

A. J. M. Schoonen and K. J. C. Wientjes, “A model for transport of glucose in adipose tissue to a microdialysis probe,” Diabetes Technol. Ther.5(4), 589–598 (2003).
[CrossRef] [PubMed]

Wild, S.

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care27(5), 1047–1053 (2004).
[CrossRef] [PubMed]

Wilson, B. C.

J. Y. Qu and B. C. Wilson, “Monte Carlo modeling studies of the effect of physiological factors andother analytes on the determination of glucose concentration in vivoby near infrared optical absorption and scattering measurements,” J. Biomed. Opt.2(3), 319–325 (1997).
[CrossRef] [PubMed]

Wu, G.

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt.17(11), 116006 (2012).
[CrossRef] [PubMed]

Xie, S.

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt.17(11), 116006 (2012).
[CrossRef] [PubMed]

Yang, H.

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt.17(11), 116006 (2012).
[CrossRef] [PubMed]

Yang, Y.

Y. Yang, T. Wang, M. Brewer, and Q. Zhu, “Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography,” J. Biomed. Opt.17(9), 090530 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

Yao, G.

Yegorchikov, Y.

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther.9(1), 68–74 (2007).
[CrossRef] [PubMed]

Yuen, J. M.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem.82(20), 8382–8385 (2010).
[CrossRef] [PubMed]

Yura, H. T.

Zhang, X. L.

Zhang, Y. Q.

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt.17(10), 101513 (2012).

Zhernovaya, O.

O. Zhernovaya, V. V. Tuchin, and M. J. Leahy, “Blood optical clearing studied by optical coherence tomography,” J. Biomed. Opt.18(2), 026014 (2013).
[CrossRef] [PubMed]

Zhu, Q.

Y. Yang, T. Wang, M. Brewer, and Q. Zhu, “Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography,” J. Biomed. Opt.17(9), 090530 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

Zhu, Z. G.

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt.17(10), 101513 (2012).

Zinman, B.

Am. J. Clin. Nutr.

D. A. Southgate, “Digestion and metabolism of sugars,” Am. J. Clin. Nutr.62(1Suppl), 203S–210S(1995).
[PubMed]

P. A. Mayes, “Intermediary metabolism of fructose,” Am. J. Clin. Nutr.58(5Suppl), 754S–765S (1993).
[PubMed]

Anal. Bioanal. Chem.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Anal. Chem.

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem.78(1), 215–223 (2006).
[CrossRef] [PubMed]

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem.82(20), 8382–8385 (2010).
[CrossRef] [PubMed]

Appl. Opt.

Biomed. Opt. Express

Clin. Chem.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Curr. Sci.

R. Poddar, S. R. Sharma, J. Andrews, and P. Sen, “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Curr. Sci.95(3), 340–344 (2008).

Diabetes Care

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects,” Diabetes Care25(12), 2263–2267 (2002).
[CrossRef] [PubMed]

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care27(5), 1047–1053 (2004).
[CrossRef] [PubMed]

J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care22(1), 45–49 (1999).
[CrossRef] [PubMed]

K. Jungheim and T. Koschinsky, “Glucose Monitoring at the Arm: Risky delays of hypoglycemia and hyperglycemia detection,” Diabetes Care25(6), 956–960 (2002).
[CrossRef] [PubMed]

Diabetes Technol. Ther.

G. McGarraugh, D. Price, S. Schwartz, and R. Weinstein, “Physiological influences on off-finger glucose testing,” Diabetes Technol. Ther.3(3), 367–376 (2001).
[CrossRef] [PubMed]

G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther.5(1), 27–31 (2003).
[CrossRef] [PubMed]

A. J. M. Schoonen and K. J. C. Wientjes, “A model for transport of glucose in adipose tissue to a microdialysis probe,” Diabetes Technol. Ther.5(4), 589–598 (2003).
[CrossRef] [PubMed]

L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther.2(2), 211–220 (2000).
[CrossRef] [PubMed]

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther.9(1), 68–74 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt.

R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt.17(10), 101513 (2012).

J. Y. Qu and B. C. Wilson, “Monte Carlo modeling studies of the effect of physiological factors andother analytes on the determination of glucose concentration in vivoby near infrared optical absorption and scattering measurements,” J. Biomed. Opt.2(3), 319–325 (1997).
[CrossRef] [PubMed]

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10(3), 031114 (2005).
[CrossRef] [PubMed]

N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt.16(8), 087009 (2011).
[CrossRef] [PubMed]

Q. Wan, G. L. Coté, and J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt.10(2), 024029 (2005).
[CrossRef] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

Y. Yang, T. Wang, M. Brewer, and Q. Zhu, “Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography,” J. Biomed. Opt.17(9), 090530 (2012).
[CrossRef] [PubMed]

H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt.17(11), 116006 (2012).
[CrossRef] [PubMed]

O. Zhernovaya, V. V. Tuchin, and M. J. Leahy, “Blood optical clearing studied by optical coherence tomography,” J. Biomed. Opt.18(2), 026014 (2013).
[CrossRef] [PubMed]

J. Diabetes Sci. Tech.

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech.1(4), 470–477 (2007).
[CrossRef]

B. D. Cameron and Y. F. Li, “Polarization-based diffuse reflectance imaging for noninvasive measurement of glucose,” J. Diabetes Sci. Tech.1(6), 873–878 (2007).
[CrossRef] [PubMed]

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: an in vivo study,” J. Diabetes Sci. Tech.5(2), 380–387 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Lancet

D. Daneman, “Type 1 diabetes,” Lancet367(9513), 847–858 (2006).
[CrossRef] [PubMed]

M. Stumvoll, B. J. Goldstein, and T. W. van Haeften, “Type 2 diabetes: principles of pathogenesis and therapy,” Lancet365(9467), 1333–1346 (2005).
[CrossRef] [PubMed]

Metabolism

F. Q. Nuttal, M. A. Khan, and M. C. Gannon, “Peripheral glucose appearance rate following fructose ingestion in normal subjects,” Metabolism49(12), 1565–1571 (2000).
[CrossRef] [PubMed]

N. Engl. J. Med.

J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med.309(1), 7–12 (1983).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol.51(16), 3885–3900 (2006).
[CrossRef] [PubMed]

M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol.40(7), 1267–1287 (1995).
[CrossRef] [PubMed]

K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol.48(10), 1371–1390 (2003).
[CrossRef] [PubMed]

Proc. SPIE

R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE6007, 90–95 (2005).
[CrossRef]

A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Glucose content monitoring with time-of-flight technique in aqueous Intralipid solution imitating human skin: Monte Carlo simulation,” Proc. SPIE5862, 586214 (2005).
[CrossRef]

M. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, and A. V. Priezzhev, “Measurements of glucose content in scattering media with time-of-flight technique; comparison with Monte Carlo simulations,” Proc. SPIE5474, 181–191 (2004).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Example of an OCT image of skin tissue and the averaged OCT signal profile versus depth extracted from the selected region in OCT image.

Fig. 2
Fig. 2

OCT signal intensity versus depth profiles recorded from the human skin in vivo after oral intake of glucose solution (group B), sucrose solution (group C), fructose solution (group D) and water (control group, group A) at 50 min, respectively.

Fig. 3
Fig. 3

Averaged attenuation coefficients of skin tissue and corresponding BGCs of the volunteers after they oral intake of different sugar solutions and water, respectively. (a) control group, (b) glucose solution, (c) sucrose solution, (d) fructose solution

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ i 2 ( z ) ] 1/2 ( i 2 0 ) 1/2 [ exp( 2 μ t z ) ] 1/2 .
R( z )= I 0 a( z )exp( μ t z ).
μ t = 1 Δz ln[ R( z 1 ) R( z 2 ) ].

Metrics