Abstract

A novel tomographic method based on the laser speckle contrast, speckle contrast optical tomography (SCOT) is introduced that allows us to reconstruct three dimensional distribution of blood flow in deep tissues. This method is analogous to the diffuse optical tomography (DOT) but for deep tissue blood flow. We develop a reconstruction algorithm based on first Born approximation to generate three dimensional distribution of flow using the experimental data obtained from tissue simulating phantoms.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Devor, S. Sakadžić, V. Srinivasan, M. Yaseen, K. Nizar, P. Saisan, P. Tian, A. Dale, S. Vinogradov, M. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32, 1259–1276 (2012).
    [CrossRef] [PubMed]
  2. M. J. Leahy, J. G. Enfield, N. T. Clancy, J. ODoherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl.22, 105–126 (2007).
    [CrossRef]
  3. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
    [CrossRef]
  4. T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage85, 51–63 (2014).
    [CrossRef]
  5. C. Riva, B. Ross, and G. B. Benedek, “Laser doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. Visual Sci.11, 936–944 (1972).
  6. M. Stern, “In vivo evaluation of microcirculation by coherent light scattering.” Nature254, 56–58 (1975).
    [CrossRef] [PubMed]
  7. V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci.24, 269–283 (2009).
    [CrossRef]
  8. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37, 326–330 (1981).
    [CrossRef]
  9. A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40, 367–377 (2012).
    [CrossRef]
  10. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett.75, 1855–1858 (1995).
    [CrossRef] [PubMed]
  11. C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. J. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express14, 1125–1144 (2006).
    [CrossRef] [PubMed]
  12. D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. thesis, University of Pennsylvania (1996).
  13. H. M. Varma, A. K. Nandakumaran, and R. M. Vasu, “Study of turbid media with light: Recovery of mechanical and optical properties from boundary measurement of intensity autocorrelation of light,” J. Opt. Soc. Am. A26, 1472–1483 (2009).
    [CrossRef]
  14. H. M. Varma, B. Banerjee, D. Roy, A. K. Nandakumaran, and R. M. Vasu, “Convergence analysis of the newton algorithm and a pseudo-time marching scheme for diffuse correlation tomography,” J. Opt. Soc. Am. A27, 259–267 (2010).
    [CrossRef]
  15. N. Hyvönen, A. K. Nandakumaran, H. M. Varma, and R. M. Vasu, “Generalized eigenvalue decomposition of the field autocorrelation in correlation diffusion of photons in turbid media,” Math. Meth. Appl. Sci. (2012).
  16. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23, 911–924 (2003).
    [CrossRef] [PubMed]
  17. G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Appl. Opt.46, 8506–8514 (2007).
    [CrossRef] [PubMed]
  18. T. Binzoni, T. S. Leung, D. Boggett, and D. Delpy, “Non-invasive laser doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol.48, 2527 (2003).
    [CrossRef] [PubMed]
  19. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Problems25, 123010 (2009).
    [CrossRef]
  20. Y. Zhan, A. T. Eggebrecht, J. P. Culver, and H. Dehghani, “Image quality analysis of high-density diffuse optical tomography incorporating a subject-specific head model,” Front. Neuroenerg.4, 103389 (2012).
    [CrossRef]
  21. V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum.73, 2336–2344 (2002).
    [CrossRef]
  22. A. P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a ccd camera,” Rev. Sci. Instrum.64, 2547–2549 (1993).
    [CrossRef]
  23. J. D. McKinney, M. A. Webster, K. J. Webb, and A. M. Weiner, “Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source,” Opt. Lett.25, 4–6 (2000).
    [CrossRef]
  24. B. J. Ackerson, R. L. Dougherty, N. M. Reguigui, and U. Nobbmann, “Correlation transfer- application of radiative transfer solution methods to photon correlation problems,” J. Thermophys. Heat Transf.6, 577–588 (1992).
    [CrossRef]
  25. R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” J. Quant. Spectrosc. Radiat. Transfer52, 713–727 (1994).
    [CrossRef]
  26. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A14, 192–215 (1997).
    [CrossRef]
  27. S. A. Carp, N. Roche-Labarbe, M.-A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, diffuse correlation spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express2, 2047 (2011).
    [CrossRef] [PubMed]
  28. R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue,” Appl. Opt, 20, 2097–2107 (1981).
    [CrossRef] [PubMed]
  29. R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc., A369, 4390–4406 (2011).
    [CrossRef]
  30. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems15, R41 (1999).
    [CrossRef]
  31. C. Xu and Q. Zhu, “Light shadowing effect of large breast lesions imaged by optical tomography in reflection geometry,” J. Biomed. Opt.15, 036003 (2010).
    [CrossRef] [PubMed]
  32. J. D. Briers, “Laser doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Measurement22, R35 (2001).
    [CrossRef]
  33. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
    [CrossRef]
  34. M. v. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys.71, 313 (1999).
    [CrossRef]
  35. V. A. Markel and J. C. Schotland, “On the convergence of the born series in optical tomography with diffuse light,” Inverse Problems23, 1445 (2007).
    [CrossRef]
  36. B. C. White, “Developing high-density diffuse optical tomography for neuroimaging,” Ph.D. thesis, Washington University in St. Louis (2012).
  37. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett.28, 2061–2063 (2003).
    [CrossRef] [PubMed]
  38. S. Yuan, “Sensitivity, noise and quantitative model of laser speckle contrast imaging,” Ph.D. thesis, Tufts University (2008).
  39. M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. thesis, University of Pennsylvania (1996).
  40. H. He, Y. Tang, F. Zhou, J. Wang, Q. Luo, and P. Li, “Lateral laser speckle contrast analysis combined with line beam scanning illumination to improve the sampling depth of blood flow imaging,” Opt. Lett.37, 3774–3776 (2012).
    [CrossRef] [PubMed]
  41. J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med.43, 21–28 (2011).
    [CrossRef] [PubMed]
  42. A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, and B. J. T. B. Choi, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2, 1553–1563 (2011).
    [CrossRef] [PubMed]
  43. R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett.38, 1401–1403 (2013).
    [CrossRef] [PubMed]
  44. R. Bi, J. Dong, and K. Lee, “Multi-channel deep tissue flowmetry based on temporal diffuse speckle contrast analysis,” Opt. Express21, 22854–22861 (2013).
    [CrossRef] [PubMed]
  45. M. Heckmeier, S. E. Skipetrov, G. Maret, and R. Maynard, “Imaging of dynamic heterogeneities in multiple-scattering media,” J. Opt. Soc. Am. A14, 185–191 (1997).
    [CrossRef]

2014 (1)

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage85, 51–63 (2014).
[CrossRef]

2013 (2)

2012 (4)

H. He, Y. Tang, F. Zhou, J. Wang, Q. Luo, and P. Li, “Lateral laser speckle contrast analysis combined with line beam scanning illumination to improve the sampling depth of blood flow imaging,” Opt. Lett.37, 3774–3776 (2012).
[CrossRef] [PubMed]

A. Devor, S. Sakadžić, V. Srinivasan, M. Yaseen, K. Nizar, P. Saisan, P. Tian, A. Dale, S. Vinogradov, M. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32, 1259–1276 (2012).
[CrossRef] [PubMed]

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40, 367–377 (2012).
[CrossRef]

Y. Zhan, A. T. Eggebrecht, J. P. Culver, and H. Dehghani, “Image quality analysis of high-density diffuse optical tomography incorporating a subject-specific head model,” Front. Neuroenerg.4, 103389 (2012).
[CrossRef]

2011 (4)

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc., A369, 4390–4406 (2011).
[CrossRef]

J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med.43, 21–28 (2011).
[CrossRef] [PubMed]

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, and B. J. T. B. Choi, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2, 1553–1563 (2011).
[CrossRef] [PubMed]

S. A. Carp, N. Roche-Labarbe, M.-A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, diffuse correlation spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express2, 2047 (2011).
[CrossRef] [PubMed]

2010 (3)

H. M. Varma, B. Banerjee, D. Roy, A. K. Nandakumaran, and R. M. Vasu, “Convergence analysis of the newton algorithm and a pseudo-time marching scheme for diffuse correlation tomography,” J. Opt. Soc. Am. A27, 259–267 (2010).
[CrossRef]

C. Xu and Q. Zhu, “Light shadowing effect of large breast lesions imaged by optical tomography in reflection geometry,” J. Biomed. Opt.15, 036003 (2010).
[CrossRef] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

2009 (3)

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci.24, 269–283 (2009).
[CrossRef]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Problems25, 123010 (2009).
[CrossRef]

H. M. Varma, A. K. Nandakumaran, and R. M. Vasu, “Study of turbid media with light: Recovery of mechanical and optical properties from boundary measurement of intensity autocorrelation of light,” J. Opt. Soc. Am. A26, 1472–1483 (2009).
[CrossRef]

2007 (3)

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. ODoherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl.22, 105–126 (2007).
[CrossRef]

V. A. Markel and J. C. Schotland, “On the convergence of the born series in optical tomography with diffuse light,” Inverse Problems23, 1445 (2007).
[CrossRef]

G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Appl. Opt.46, 8506–8514 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

2003 (3)

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett.28, 2061–2063 (2003).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23, 911–924 (2003).
[CrossRef] [PubMed]

T. Binzoni, T. S. Leung, D. Boggett, and D. Delpy, “Non-invasive laser doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol.48, 2527 (2003).
[CrossRef] [PubMed]

2002 (1)

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum.73, 2336–2344 (2002).
[CrossRef]

2001 (1)

J. D. Briers, “Laser doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Measurement22, R35 (2001).
[CrossRef]

2000 (1)

1999 (2)

M. v. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys.71, 313 (1999).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems15, R41 (1999).
[CrossRef]

1997 (2)

1995 (1)

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett.75, 1855–1858 (1995).
[CrossRef] [PubMed]

1994 (1)

R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” J. Quant. Spectrosc. Radiat. Transfer52, 713–727 (1994).
[CrossRef]

1993 (1)

A. P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a ccd camera,” Rev. Sci. Instrum.64, 2547–2549 (1993).
[CrossRef]

1992 (1)

B. J. Ackerson, R. L. Dougherty, N. M. Reguigui, and U. Nobbmann, “Correlation transfer- application of radiative transfer solution methods to photon correlation problems,” J. Thermophys. Heat Transf.6, 577–588 (1992).
[CrossRef]

1981 (2)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37, 326–330 (1981).
[CrossRef]

R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue,” Appl. Opt, 20, 2097–2107 (1981).
[CrossRef] [PubMed]

1975 (1)

M. Stern, “In vivo evaluation of microcirculation by coherent light scattering.” Nature254, 56–58 (1975).
[CrossRef] [PubMed]

1972 (1)

C. Riva, B. Ross, and G. B. Benedek, “Laser doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. Visual Sci.11, 936–944 (1972).

Ackerson, B. J.

R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” J. Quant. Spectrosc. Radiat. Transfer52, 713–727 (1994).
[CrossRef]

B. J. Ackerson, R. L. Dougherty, N. M. Reguigui, and U. Nobbmann, “Correlation transfer- application of radiative transfer solution methods to photon correlation problems,” J. Thermophys. Heat Transf.6, 577–588 (1992).
[CrossRef]

Arridge, S. R.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Problems25, 123010 (2009).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems15, R41 (1999).
[CrossRef]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Banerjee, B.

Benedek, G. B.

C. Riva, B. Ross, and G. B. Benedek, “Laser doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. Visual Sci.11, 936–944 (1972).

Bi, R.

Binzoni, T.

T. Binzoni, T. S. Leung, D. Boggett, and D. Delpy, “Non-invasive laser doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol.48, 2527 (2003).
[CrossRef] [PubMed]

Boas, D. A.

A. Devor, S. Sakadžić, V. Srinivasan, M. Yaseen, K. Nizar, P. Saisan, P. Tian, A. Dale, S. Vinogradov, M. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32, 1259–1276 (2012).
[CrossRef] [PubMed]

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, and B. J. T. B. Choi, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2, 1553–1563 (2011).
[CrossRef] [PubMed]

S. A. Carp, N. Roche-Labarbe, M.-A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, diffuse correlation spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express2, 2047 (2011).
[CrossRef] [PubMed]

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett.28, 2061–2063 (2003).
[CrossRef] [PubMed]

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A14, 192–215 (1997).
[CrossRef]

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett.75, 1855–1858 (1995).
[CrossRef] [PubMed]

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. thesis, University of Pennsylvania (1996).

Boggett, D.

T. Binzoni, T. S. Leung, D. Boggett, and D. Delpy, “Non-invasive laser doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol.48, 2527 (2003).
[CrossRef] [PubMed]

Bonner, R.

R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue,” Appl. Opt, 20, 2097–2107 (1981).
[CrossRef] [PubMed]

Bray, R. C.

J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med.43, 21–28 (2011).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers, “Laser doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Measurement22, R35 (2001).
[CrossRef]

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37, 326–330 (1981).
[CrossRef]

Buckley, E. M.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc., A369, 4390–4406 (2011).
[CrossRef]

Campbell, L. E.

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett.75, 1855–1858 (1995).
[CrossRef] [PubMed]

Carp, S. A.

Cheung, C.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23, 911–924 (2003).
[CrossRef] [PubMed]

Choe, R.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc., A369, 4390–4406 (2011).
[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Choi, B. J. T. B.

Clancy, N. T.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. ODoherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl.22, 105–126 (2007).
[CrossRef]

Cuccia, D. J.

Culver, J. P.

Y. Zhan, A. T. Eggebrecht, J. P. Culver, and H. Dehghani, “Image quality analysis of high-density diffuse optical tomography incorporating a subject-specific head model,” Front. Neuroenerg.4, 103389 (2012).
[CrossRef]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23, 911–924 (2003).
[CrossRef] [PubMed]

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett.28, 2061–2063 (2003).
[CrossRef] [PubMed]

Dale, A.

A. Devor, S. Sakadžić, V. Srinivasan, M. Yaseen, K. Nizar, P. Saisan, P. Tian, A. Dale, S. Vinogradov, M. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32, 1259–1276 (2012).
[CrossRef] [PubMed]

Dehghani, H.

Y. Zhan, A. T. Eggebrecht, J. P. Culver, and H. Dehghani, “Image quality analysis of high-density diffuse optical tomography incorporating a subject-specific head model,” Front. Neuroenerg.4, 103389 (2012).
[CrossRef]

Delpy, D.

T. Binzoni, T. S. Leung, D. Boggett, and D. Delpy, “Non-invasive laser doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol.48, 2527 (2003).
[CrossRef] [PubMed]

Devor, A.

A. Devor, S. Sakadžić, V. Srinivasan, M. Yaseen, K. Nizar, P. Saisan, P. Tian, A. Dale, S. Vinogradov, M. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32, 1259–1276 (2012).
[CrossRef] [PubMed]

Dietsche, G.

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Dong, J.

Dorri-Nowkoorani, F.

R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” J. Quant. Spectrosc. Radiat. Transfer52, 713–727 (1994).
[CrossRef]

Dougherty, R. L.

R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” J. Quant. Spectrosc. Radiat. Transfer52, 713–727 (1994).
[CrossRef]

B. J. Ackerson, R. L. Dougherty, N. M. Reguigui, and U. Nobbmann, “Correlation transfer- application of radiative transfer solution methods to photon correlation problems,” J. Thermophys. Heat Transf.6, 577–588 (1992).
[CrossRef]

Dunn, A. K.

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40, 367–377 (2012).
[CrossRef]

Dunn, J. F.

J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med.43, 21–28 (2011).
[CrossRef] [PubMed]

Durduran, T.

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage85, 51–63 (2014).
[CrossRef]

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc., A369, 4390–4406 (2011).
[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. J. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express14, 1125–1144 (2006).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23, 911–924 (2003).
[CrossRef] [PubMed]

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Durkin, A. J.

Eggebrecht, A. T.

Y. Zhan, A. T. Eggebrecht, J. P. Culver, and H. Dehghani, “Image quality analysis of high-density diffuse optical tomography incorporating a subject-specific head model,” Front. Neuroenerg.4, 103389 (2012).
[CrossRef]

Enfield, J. G.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. ODoherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl.22, 105–126 (2007).
[CrossRef]

Fercher, A. F.

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37, 326–330 (1981).
[CrossRef]

Forrester, K. R.

J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med.43, 21–28 (2011).
[CrossRef] [PubMed]

Franceschini, M.

A. Devor, S. Sakadžić, V. Srinivasan, M. Yaseen, K. Nizar, P. Saisan, P. Tian, A. Dale, S. Vinogradov, M. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32, 1259–1276 (2012).
[CrossRef] [PubMed]

Franceschini, M.-A.

Furuya, D.

C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. J. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express14, 1125–1144 (2006).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23, 911–924 (2003).
[CrossRef] [PubMed]

Gisler, T.

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Greenberg, J.

Greenberg, J. H.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23, 911–924 (2003).
[CrossRef] [PubMed]

He, H.

Heckmeier, M.

Hyvönen, N.

N. Hyvönen, A. K. Nandakumaran, H. M. Varma, and R. M. Vasu, “Generalized eigenvalue decomposition of the field autocorrelation in correlation diffusion of photons in turbid media,” Math. Meth. Appl. Sci. (2012).

Jaillon, F.

Kim, M. N.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc., A369, 4390–4406 (2011).
[CrossRef]

Leahy, M. J.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. ODoherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl.22, 105–126 (2007).
[CrossRef]

Lee, K.

Lequeux, F.

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum.73, 2336–2344 (2002).
[CrossRef]

Leung, T. S.

T. Binzoni, T. S. Leung, D. Boggett, and D. Delpy, “Non-invasive laser doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol.48, 2527 (2003).
[CrossRef] [PubMed]

Li, J.

Li, P.

Luo, Q.

Maret, G.

Markel, V. A.

V. A. Markel and J. C. Schotland, “On the convergence of the born series in optical tomography with diffuse light,” Inverse Problems23, 1445 (2007).
[CrossRef]

Martin, L.

J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med.43, 21–28 (2011).
[CrossRef] [PubMed]

Maynard, R.

Mazhar, A.

McKinney, J. D.

McNamara, P.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. ODoherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl.22, 105–126 (2007).
[CrossRef]

Mesquita, R. C.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc., A369, 4390–4406 (2011).
[CrossRef]

Nandakumaran, A. K.

Nieuwenhuizen, T. M.

M. v. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys.71, 313 (1999).
[CrossRef]

Nilsson, G. E.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. ODoherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl.22, 105–126 (2007).
[CrossRef]

Ninck, M.

Nizar, K.

A. Devor, S. Sakadžić, V. Srinivasan, M. Yaseen, K. Nizar, P. Saisan, P. Tian, A. Dale, S. Vinogradov, M. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32, 1259–1276 (2012).
[CrossRef] [PubMed]

Nobbmann, U.

R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” J. Quant. Spectrosc. Radiat. Transfer52, 713–727 (1994).
[CrossRef]

B. J. Ackerson, R. L. Dougherty, N. M. Reguigui, and U. Nobbmann, “Correlation transfer- application of radiative transfer solution methods to photon correlation problems,” J. Thermophys. Heat Transf.6, 577–588 (1992).
[CrossRef]

Nossal, R.

R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue,” Appl. Opt, 20, 2097–2107 (1981).
[CrossRef] [PubMed]

O’Leary, M. A.

M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. thesis, University of Pennsylvania (1996).

ODoherty, J.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. ODoherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl.22, 105–126 (2007).
[CrossRef]

Ortolf, C.

Pine, D. J.

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum.73, 2336–2344 (2002).
[CrossRef]

Rajan, V.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci.24, 269–283 (2009).
[CrossRef]

Reguigui, N. M.

R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” J. Quant. Spectrosc. Radiat. Transfer52, 713–727 (1994).
[CrossRef]

B. J. Ackerson, R. L. Dougherty, N. M. Reguigui, and U. Nobbmann, “Correlation transfer- application of radiative transfer solution methods to photon correlation problems,” J. Thermophys. Heat Transf.6, 577–588 (1992).
[CrossRef]

Rice, T. B.

Riva, C.

C. Riva, B. Ross, and G. B. Benedek, “Laser doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. Visual Sci.11, 936–944 (1972).

Roche-Labarbe, N.

Ross, B.

C. Riva, B. Ross, and G. B. Benedek, “Laser doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. Visual Sci.11, 936–944 (1972).

Roy, D.

Saisan, P.

A. Devor, S. Sakadžić, V. Srinivasan, M. Yaseen, K. Nizar, P. Saisan, P. Tian, A. Dale, S. Vinogradov, M. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32, 1259–1276 (2012).
[CrossRef] [PubMed]

Sakadžic, S.

A. Devor, S. Sakadžić, V. Srinivasan, M. Yaseen, K. Nizar, P. Saisan, P. Tian, A. Dale, S. Vinogradov, M. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32, 1259–1276 (2012).
[CrossRef] [PubMed]

S. A. Carp, N. Roche-Labarbe, M.-A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, diffuse correlation spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express2, 2047 (2011).
[CrossRef] [PubMed]

Schotland, J. C.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Problems25, 123010 (2009).
[CrossRef]

V. A. Markel and J. C. Schotland, “On the convergence of the born series in optical tomography with diffuse light,” Inverse Problems23, 1445 (2007).
[CrossRef]

Siegel, A. M.

Skipetrov, S. E.

Srinivasan, V.

A. Devor, S. Sakadžić, V. Srinivasan, M. Yaseen, K. Nizar, P. Saisan, P. Tian, A. Dale, S. Vinogradov, M. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32, 1259–1276 (2012).
[CrossRef] [PubMed]

Srinivasan, V. J.

Steenbergen, W.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci.24, 269–283 (2009).
[CrossRef]

Stern, M.

M. Stern, “In vivo evaluation of microcirculation by coherent light scattering.” Nature254, 56–58 (1975).
[CrossRef] [PubMed]

Stott, J. J.

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Sunar, U.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc., A369, 4390–4406 (2011).
[CrossRef]

Tang, Y.

Tian, P.

A. Devor, S. Sakadžić, V. Srinivasan, M. Yaseen, K. Nizar, P. Saisan, P. Tian, A. Dale, S. Vinogradov, M. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32, 1259–1276 (2012).
[CrossRef] [PubMed]

Tulip, J.

J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med.43, 21–28 (2011).
[CrossRef] [PubMed]

van Leeuwen, T. G.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci.24, 269–283 (2009).
[CrossRef]

van Rossum, M. v.

M. v. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys.71, 313 (1999).
[CrossRef]

Varghese, B.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci.24, 269–283 (2009).
[CrossRef]

Varma, H. M.

Vasu, R. M.

Viasnoff, V.

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum.73, 2336–2344 (2002).
[CrossRef]

Vinogradov, S.

A. Devor, S. Sakadžić, V. Srinivasan, M. Yaseen, K. Nizar, P. Saisan, P. Tian, A. Dale, S. Vinogradov, M. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32, 1259–1276 (2012).
[CrossRef] [PubMed]

Wang, J.

Webb, K. J.

Webster, M. A.

Weiner, A. M.

White, B. C.

B. C. White, “Developing high-density diffuse optical tomography for neuroimaging,” Ph.D. thesis, Washington University in St. Louis (2012).

Wiltzius, P.

A. P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a ccd camera,” Rev. Sci. Instrum.64, 2547–2549 (1993).
[CrossRef]

Wong, A. P. Y.

A. P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a ccd camera,” Rev. Sci. Instrum.64, 2547–2549 (1993).
[CrossRef]

Xu, C.

C. Xu and Q. Zhu, “Light shadowing effect of large breast lesions imaged by optical tomography in reflection geometry,” J. Biomed. Opt.15, 036003 (2010).
[CrossRef] [PubMed]

Yaseen, M.

A. Devor, S. Sakadžić, V. Srinivasan, M. Yaseen, K. Nizar, P. Saisan, P. Tian, A. Dale, S. Vinogradov, M. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32, 1259–1276 (2012).
[CrossRef] [PubMed]

Yodh, A. G.

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage85, 51–63 (2014).
[CrossRef]

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc., A369, 4390–4406 (2011).
[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23, 911–924 (2003).
[CrossRef] [PubMed]

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A14, 192–215 (1997).
[CrossRef]

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett.75, 1855–1858 (1995).
[CrossRef] [PubMed]

Yodh, A. J.

Yu, G.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc., A369, 4390–4406 (2011).
[CrossRef]

C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. J. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express14, 1125–1144 (2006).
[CrossRef] [PubMed]

Yuan, S.

S. Yuan, “Sensitivity, noise and quantitative model of laser speckle contrast imaging,” Ph.D. thesis, Tufts University (2008).

Zhan, Y.

Y. Zhan, A. T. Eggebrecht, J. P. Culver, and H. Dehghani, “Image quality analysis of high-density diffuse optical tomography incorporating a subject-specific head model,” Front. Neuroenerg.4, 103389 (2012).
[CrossRef]

Zhou, C.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc., A369, 4390–4406 (2011).
[CrossRef]

C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. J. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express14, 1125–1144 (2006).
[CrossRef] [PubMed]

Zhou, F.

Zhu, Q.

C. Xu and Q. Zhu, “Light shadowing effect of large breast lesions imaged by optical tomography in reflection geometry,” J. Biomed. Opt.15, 036003 (2010).
[CrossRef] [PubMed]

Ann. Biomed. Eng. (1)

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40, 367–377 (2012).
[CrossRef]

Appl. Opt (1)

R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue,” Appl. Opt, 20, 2097–2107 (1981).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Front. Neuroenerg. (1)

Y. Zhan, A. T. Eggebrecht, J. P. Culver, and H. Dehghani, “Image quality analysis of high-density diffuse optical tomography incorporating a subject-specific head model,” Front. Neuroenerg.4, 103389 (2012).
[CrossRef]

Inverse Problems (3)

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Problems25, 123010 (2009).
[CrossRef]

V. A. Markel and J. C. Schotland, “On the convergence of the born series in optical tomography with diffuse light,” Inverse Problems23, 1445 (2007).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems15, R41 (1999).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (1)

C. Riva, B. Ross, and G. B. Benedek, “Laser doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. Visual Sci.11, 936–944 (1972).

J. Biomed. Opt. (1)

C. Xu and Q. Zhu, “Light shadowing effect of large breast lesions imaged by optical tomography in reflection geometry,” J. Biomed. Opt.15, 036003 (2010).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (2)

A. Devor, S. Sakadžić, V. Srinivasan, M. Yaseen, K. Nizar, P. Saisan, P. Tian, A. Dale, S. Vinogradov, M. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32, 1259–1276 (2012).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23, 911–924 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (4)

J. Quant. Spectrosc. Radiat. Transfer (1)

R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” J. Quant. Spectrosc. Radiat. Transfer52, 713–727 (1994).
[CrossRef]

J. Thermophys. Heat Transf. (1)

B. J. Ackerson, R. L. Dougherty, N. M. Reguigui, and U. Nobbmann, “Correlation transfer- application of radiative transfer solution methods to photon correlation problems,” J. Thermophys. Heat Transf.6, 577–588 (1992).
[CrossRef]

Lasers Med. Sci. (1)

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci.24, 269–283 (2009).
[CrossRef]

Lasers Surg. Med. (1)

J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med.43, 21–28 (2011).
[CrossRef] [PubMed]

Med. Laser Appl. (1)

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. ODoherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl.22, 105–126 (2007).
[CrossRef]

Nature (1)

M. Stern, “In vivo evaluation of microcirculation by coherent light scattering.” Nature254, 56–58 (1975).
[CrossRef] [PubMed]

NeuroImage (1)

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage85, 51–63 (2014).
[CrossRef]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37, 326–330 (1981).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Philos. Trans. R. Soc., A (1)

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc., A369, 4390–4406 (2011).
[CrossRef]

Phys. Med. Biol. (1)

T. Binzoni, T. S. Leung, D. Boggett, and D. Delpy, “Non-invasive laser doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol.48, 2527 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett.75, 1855–1858 (1995).
[CrossRef] [PubMed]

Physiol. Measurement (1)

J. D. Briers, “Laser doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Measurement22, R35 (2001).
[CrossRef]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Rev. Mod. Phys. (1)

M. v. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys.71, 313 (1999).
[CrossRef]

Rev. Sci. Instrum. (3)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum.73, 2336–2344 (2002).
[CrossRef]

A. P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a ccd camera,” Rev. Sci. Instrum.64, 2547–2549 (1993).
[CrossRef]

Other (5)

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. thesis, University of Pennsylvania (1996).

N. Hyvönen, A. K. Nandakumaran, H. M. Varma, and R. M. Vasu, “Generalized eigenvalue decomposition of the field autocorrelation in correlation diffusion of photons in turbid media,” Math. Meth. Appl. Sci. (2012).

B. C. White, “Developing high-density diffuse optical tomography for neuroimaging,” Ph.D. thesis, Washington University in St. Louis (2012).

S. Yuan, “Sensitivity, noise and quantitative model of laser speckle contrast imaging,” Ph.D. thesis, Tufts University (2008).

M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. thesis, University of Pennsylvania (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The computed speckle contrast based on CDE model in transmission geometry with DB = 10−8cm2/s: (a) Speckle contrast versus exposure time (b) Speckle contrast versus source detector separation (r).

Fig. 2
Fig. 2

The geometry of the scanning in SCOT along with the plot of Jacobian and location of the tube used to generate the flow.

Fig. 3
Fig. 3

Speckle contrast optical tomography (SCOT): General experimental setup consisting of a point laser source, galvo-controlled scanning, CCD and the data processing unit.

Fig. 4
Fig. 4

Speckle contrast due to Brownian motion: (a) The speckle contrast computed with (κc) and without (κ) shot noise correction for the Lipofundin phantom, (b) theoretical speckle contrast fitted for DB against the corrected speckle contrast (κc)

Fig. 5
Fig. 5

The perturbation in speckle contrast from the background, Δκ2, for two different velocities differing approximately by three folds (v1 = 3v2).

Fig. 6
Fig. 6

The three dimensional slice plot of the reconstructed flow velocity for original velocity of 3.18 cm/s, 1.06 cm/s and 0.43 cm/s are shown in (a), (b) and (c) respectively. The volume integral of the reconstructed velocity against the original velocity is shown in (d) where the volume integration is done in a predetermined volume.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

D ( r ) G 1 ( r , τ ) + ( μ a ( r ) + 1 3 μ s k 0 2 < Δ r 2 ( τ ) > ) G 1 ( r , τ ) = S 0 ( r r 0 ) ,
κ ( r , T ) = σ I ( r , T ) μ I ( r , T ) ,
κ 2 ( r , T ) = 2 β T 0 T | g 1 ( r , τ ) | 2 ( 1 τ T ) d τ .
G s c ( r d , r s , τ ) = C 0 Ω G ( r , r d , τ ) ( G 1 0 ( r , r s , τ ) + G s c ( r , r s , τ ) ) Δ r 2 ( τ ) δ d r .
G s c ( r d , r s , τ ) = ( C b Ω G ( r , r d , τ ) G 1 0 ( r , r s , τ ) D B δ d r + C v Ω G ( r , r d , τ ) G 1 0 ( r , r s , τ ) ( V 2 ) δ d r ) .
G 1 ( r , τ ) G 1 ( r , 0 ) = G 1 0 ( r , τ ) G 1 ( r , 0 ) + G s c ( r , τ ) G 1 ( r , 0 ) ,
G 1 ( r , τ ) G 1 ( r , 0 ) = G 1 0 ( r , τ ) G 1 0 ( r , 0 ) G 1 0 ( r , 0 ) G 1 ( r , 0 ) + G s c ( r , τ ) G 1 ( r , 0 ) .
g 1 ( r , τ ) = g 1 0 ( r , τ ) + G s c ( r , τ ) G 1 ( r , 0 ) .
κ 2 ( r , T ) = 2 β T 0 T [ g 1 0 ( r , τ ) + G s c ( r , τ ) G 1 ( r , 0 ) ] 2 ( 1 τ T ) d τ = 2 β T 0 T [ ( g 1 0 ( r , τ ) 2 + 2 g 1 0 ( r , τ ) G s c ( r , τ ) G 1 ( r , 0 ) + ( G s c ( r , τ ) G 1 ( r , 0 ) ) 2 ] ( 1 τ T ) d τ .
g 1 0 ( r , τ ) 2 + ( G s c ( r , τ ) G 1 ( r , 0 ) ) 2 = [ G 1 0 ( r , τ ) G 1 0 ( r , 0 ) ] 2 + [ G s c ( r , τ ) G 1 ( r , 0 ) ] 2 G 1 0 ( r , τ ) 2 + G s c ( r , τ ) 2 G 1 0 ( r , 0 ) 2 G 1 0 ( r , τ ) 2 G 1 0 ( r , 0 ) 2 = g 1 0 ( r , τ ) 2 .
κ 2 ( r , T ) = 2 β T 0 T g 1 0 ( r , τ ) 2 ( 1 τ T ) + 4 β T 0 T ( 1 τ T ) g 1 0 ( r , τ ) G s c ( r , τ ) G 1 ( r , 0 ) .
Δ κ 2 = 4 β T 0 T ( 1 τ T ) g 1 0 ( r , τ ) G 1 ( r , 0 ) [ C b Ω G ( r , r d , τ ) G 1 0 ( r , r s , τ ) D B δ d r + C v Ω G ( r , r d , τ ) G 1 0 ( r , r s , τ ) ( V 2 ) δ d r ] d τ .
( V 2 ) δ = B T J ˜ T ( J ˜ T J ˜ + λ I ) 1 Δ κ 2

Metrics