Abstract

Abstract: A novel clinical Raman probe for sampling superficial tissue to improve in vivo detection of epithelial malignancies is compared to a non-superficial probe regarding depth response function and signal-to-noise ratio. Depth response measurements were performed in a phantom tissue model consisting of a polyethylene terephthalate disc in an 20%-Intralipid® solution. Sampling ranges of 0-200 and 0-300 μm were obtained for the superficial and non-superficial probe, respectively. The mean signal-to-noise ratio of the superficial probe increased by a factor of 2 compared with the non-superficial probe. This newly developed superficial Raman probe is expected to improve epithelial cancer detection in vivo.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer128(11), 2673–2680 (2011).
    [CrossRef] [PubMed]
  2. P. Crow, J. S. Uff, J. A. Farmer, M. P. Wright, and N. Stone, “The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro,” BJU Int.93(9), 1232–1236 (2004).
    [CrossRef] [PubMed]
  3. R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. van Swol, T. G. Jonges, J. A. Kummer, and J. L. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem.82(14), 5993–5999 (2010).
    [CrossRef] [PubMed]
  4. E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J. Biophotonics2(1-2), 81–90 (2009).
    [CrossRef] [PubMed]
  5. A. Molckovsky, L. M. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc.57(3), 396–402 (2003).
    [CrossRef] [PubMed]
  6. G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer94(10), 1460–1464 (2006).
    [CrossRef] [PubMed]
  7. J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol.54(23), 7077–7087 (2009).
    [CrossRef] [PubMed]
  8. Y. Hattori, Y. Komachi, T. Asakura, T. Shimosegawa, G. Kanai, H. Tashiro, and H. Sato, “In vivo Raman study of the living rat esophagus and stomach using a micro-Raman probe under an endoscope,” Appl. Spectrosc.61(6), 579–584 (2007).
    [CrossRef] [PubMed]
  9. Z. Huang, S. K. Teh, W. Zheng, J. Mo, K. Lin, X. Shao, K. Y. Ho, M. Teh, and K. G. Yeoh, “Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy,” Opt. Lett.34(6), 758–760 (2009).
    [CrossRef] [PubMed]
  10. A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol.68(3), 427–431 (1998).
    [CrossRef] [PubMed]
  11. J. Mo, W. Zheng, J. J. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem.81(21), 8908–8915 (2009).
    [CrossRef] [PubMed]
  12. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt.43(3), 542–554 (2004).
    [CrossRef] [PubMed]
  13. M. G. Shim, B. Wilson, E. Marple, and M. Wach, “Study of Fiber-Optic probes for in Vivo Medical Raman Spectroscopy,” Appl. Spectrosc.53(6), 619–627 (1999).
    [CrossRef]
  14. Marple, E. Filtered Fiber Optic Probe. 12/630,640[US 8,175,432 B2], 0–11. 2012. Florida/USA. 12–3-2009. Ref Type: Patent.
  15. P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express2(8), 2265–2278 (2011).
    [CrossRef] [PubMed]
  16. P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
    [CrossRef] [PubMed]
  17. C. A. Thompson, J. S. Reynolds, K. J. Webb, F. P. Laplant, and D. Ben-Amotz, “Raman spectroscopic studies of diamond in Intralipid,” Opt. Lett.20(10), 1195–1197 (1995).
    [CrossRef] [PubMed]
  18. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  19. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc.57(11), 1363–1367 (2003).
    [CrossRef] [PubMed]
  20. R. L. McCreery, “Signal-to-noise in Raman spectroscopy,” in Raman Spectroscopy for Chemical Analysis (Wiley, 2000), p. 49.
  21. J. Mo, W. Zheng, and Z. Huang, “Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue,” Biomed. Opt. Express1(1), 17–30 (2010).
    [CrossRef] [PubMed]
  22. J. Wang, M. S. Bergholt, W. Zheng, and Z. Huang, “Development of a beveled fiber-optic confocal Raman probe for enhancing in vivo epithelial tissue Raman measurements at endoscopy,” Opt. Lett.38(13), 2321–2323 (2013).
    [CrossRef] [PubMed]
  23. M. G. Shim and B. Wilson, “Development of an In Vivo Raman Spectroscopic System for Diagnostic Applications,” J. Raman Spectros.28(2-3), 131–142 (1997).
    [CrossRef]

2013

2011

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer128(11), 2673–2680 (2011).
[CrossRef] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express2(8), 2265–2278 (2011).
[CrossRef] [PubMed]

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

2010

R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. van Swol, T. G. Jonges, J. A. Kummer, and J. L. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem.82(14), 5993–5999 (2010).
[CrossRef] [PubMed]

J. Mo, W. Zheng, and Z. Huang, “Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue,” Biomed. Opt. Express1(1), 17–30 (2010).
[CrossRef] [PubMed]

2009

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J. Biophotonics2(1-2), 81–90 (2009).
[CrossRef] [PubMed]

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol.54(23), 7077–7087 (2009).
[CrossRef] [PubMed]

Z. Huang, S. K. Teh, W. Zheng, J. Mo, K. Lin, X. Shao, K. Y. Ho, M. Teh, and K. G. Yeoh, “Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy,” Opt. Lett.34(6), 758–760 (2009).
[CrossRef] [PubMed]

J. Mo, W. Zheng, J. J. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem.81(21), 8908–8915 (2009).
[CrossRef] [PubMed]

2007

2006

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer94(10), 1460–1464 (2006).
[CrossRef] [PubMed]

2004

J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt.43(3), 542–554 (2004).
[CrossRef] [PubMed]

P. Crow, J. S. Uff, J. A. Farmer, M. P. Wright, and N. Stone, “The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro,” BJU Int.93(9), 1232–1236 (2004).
[CrossRef] [PubMed]

2003

A. Molckovsky, L. M. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc.57(3), 396–402 (2003).
[CrossRef] [PubMed]

C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc.57(11), 1363–1367 (2003).
[CrossRef] [PubMed]

1999

1998

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol.68(3), 427–431 (1998).
[CrossRef] [PubMed]

1997

M. G. Shim and B. Wilson, “Development of an In Vivo Raman Spectroscopic System for Diagnostic Applications,” J. Raman Spectros.28(2-3), 131–142 (1997).
[CrossRef]

1995

1991

Asakura, T.

Barr, H.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer94(10), 1460–1464 (2006).
[CrossRef] [PubMed]

Ben-Amotz, D.

Bennett, R.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol.54(23), 7077–7087 (2009).
[CrossRef] [PubMed]

Bergholt, M. S.

J. Wang, M. S. Bergholt, W. Zheng, and Z. Huang, “Development of a beveled fiber-optic confocal Raman probe for enhancing in vivo epithelial tissue Raman measurements at endoscopy,” Opt. Lett.38(13), 2321–2323 (2013).
[CrossRef] [PubMed]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer128(11), 2673–2680 (2011).
[CrossRef] [PubMed]

Born, C.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol.54(23), 7077–7087 (2009).
[CrossRef] [PubMed]

Crow, P.

P. Crow, J. S. Uff, J. A. Farmer, M. P. Wright, and N. Stone, “The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro,” BJU Int.93(9), 1232–1236 (2004).
[CrossRef] [PubMed]

Dasari, R. R.

Day, J. C.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol.54(23), 7077–7087 (2009).
[CrossRef] [PubMed]

Di Ninni, P.

Draga, R. O.

R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. van Swol, T. G. Jonges, J. A. Kummer, and J. L. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem.82(14), 5993–5999 (2010).
[CrossRef] [PubMed]

Farmer, J. A.

P. Crow, J. S. Uff, J. A. Farmer, M. P. Wright, and N. Stone, “The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro,” BJU Int.93(9), 1232–1236 (2004).
[CrossRef] [PubMed]

Feld, M. S.

Galindo, L. H.

Gardecki, J. A.

Grimbergen, M. C.

R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. van Swol, T. G. Jonges, J. A. Kummer, and J. L. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem.82(14), 5993–5999 (2010).
[CrossRef] [PubMed]

Hattori, Y.

Ho, K. Y.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer128(11), 2673–2680 (2011).
[CrossRef] [PubMed]

Z. Huang, S. K. Teh, W. Zheng, J. Mo, K. Lin, X. Shao, K. Y. Ho, M. Teh, and K. G. Yeoh, “Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy,” Opt. Lett.34(6), 758–760 (2009).
[CrossRef] [PubMed]

Huang, Z.

Hunter, M.

Hutchings, J.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol.54(23), 7077–7087 (2009).
[CrossRef] [PubMed]

Ilancheran, A.

J. Mo, W. Zheng, J. J. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem.81(21), 8908–8915 (2009).
[CrossRef] [PubMed]

Jonges, T. G.

R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. van Swol, T. G. Jonges, J. A. Kummer, and J. L. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem.82(14), 5993–5999 (2010).
[CrossRef] [PubMed]

Kanai, G.

Kanter, E. M.

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J. Biophotonics2(1-2), 81–90 (2009).
[CrossRef] [PubMed]

Keller, M. D.

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J. Biophotonics2(1-2), 81–90 (2009).
[CrossRef] [PubMed]

Kendall, C.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol.54(23), 7077–7087 (2009).
[CrossRef] [PubMed]

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer94(10), 1460–1464 (2006).
[CrossRef] [PubMed]

Komachi, Y.

Kramer, J. R.

Kummer, J. A.

R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. van Swol, T. G. Jonges, J. A. Kummer, and J. L. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem.82(14), 5993–5999 (2010).
[CrossRef] [PubMed]

Laplant, F. P.

Lieber, C. A.

Lin, K.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer128(11), 2673–2680 (2011).
[CrossRef] [PubMed]

Z. Huang, S. K. Teh, W. Zheng, J. Mo, K. Lin, X. Shao, K. Y. Ho, M. Teh, and K. G. Yeoh, “Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy,” Opt. Lett.34(6), 758–760 (2009).
[CrossRef] [PubMed]

Low, J. J.

J. Mo, W. Zheng, J. J. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem.81(21), 8908–8915 (2009).
[CrossRef] [PubMed]

Mahadevan-Jansen, A.

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J. Biophotonics2(1-2), 81–90 (2009).
[CrossRef] [PubMed]

C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc.57(11), 1363–1367 (2003).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol.68(3), 427–431 (1998).
[CrossRef] [PubMed]

Majumder, S.

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J. Biophotonics2(1-2), 81–90 (2009).
[CrossRef] [PubMed]

Marcon, N. E.

A. Molckovsky, L. M. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc.57(3), 396–402 (2003).
[CrossRef] [PubMed]

Marple, E.

Martelli, F.

P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express2(8), 2265–2278 (2011).
[CrossRef] [PubMed]

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

Meaden, G. M.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol.54(23), 7077–7087 (2009).
[CrossRef] [PubMed]

Mitchell, M. F.

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol.68(3), 427–431 (1998).
[CrossRef] [PubMed]

Mo, J.

Moes, C. J.

Molckovsky, A.

A. Molckovsky, L. M. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc.57(3), 396–402 (2003).
[CrossRef] [PubMed]

Motz, J. T.

Ng, J.

J. Mo, W. Zheng, J. J. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem.81(21), 8908–8915 (2009).
[CrossRef] [PubMed]

Ninni, P. D.

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

Prahl, S. A.

Ramanujam, N.

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol.68(3), 427–431 (1998).
[CrossRef] [PubMed]

Rao, G. G.

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J. Biophotonics2(1-2), 81–90 (2009).
[CrossRef] [PubMed]

Reynolds, J. S.

Richards-Kortum, R.

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol.68(3), 427–431 (1998).
[CrossRef] [PubMed]

Ruud Bosch, J. L.

R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. van Swol, T. G. Jonges, J. A. Kummer, and J. L. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem.82(14), 5993–5999 (2010).
[CrossRef] [PubMed]

Sato, H.

Shao, X.

Shepherd, N.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer94(10), 1460–1464 (2006).
[CrossRef] [PubMed]

Shetty, G.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer94(10), 1460–1464 (2006).
[CrossRef] [PubMed]

Shim, M. G.

A. Molckovsky, L. M. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc.57(3), 396–402 (2003).
[CrossRef] [PubMed]

M. G. Shim, B. Wilson, E. Marple, and M. Wach, “Study of Fiber-Optic probes for in Vivo Medical Raman Spectroscopy,” Appl. Spectrosc.53(6), 619–627 (1999).
[CrossRef]

M. G. Shim and B. Wilson, “Development of an In Vivo Raman Spectroscopic System for Diagnostic Applications,” J. Raman Spectros.28(2-3), 131–142 (1997).
[CrossRef]

Shimosegawa, T.

Smith, B.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol.54(23), 7077–7087 (2009).
[CrossRef] [PubMed]

Song, L. M.

A. Molckovsky, L. M. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc.57(3), 396–402 (2003).
[CrossRef] [PubMed]

Stone, N.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol.54(23), 7077–7087 (2009).
[CrossRef] [PubMed]

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer94(10), 1460–1464 (2006).
[CrossRef] [PubMed]

P. Crow, J. S. Uff, J. A. Farmer, M. P. Wright, and N. Stone, “The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro,” BJU Int.93(9), 1232–1236 (2004).
[CrossRef] [PubMed]

Tashiro, H.

Teh, M.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer128(11), 2673–2680 (2011).
[CrossRef] [PubMed]

Z. Huang, S. K. Teh, W. Zheng, J. Mo, K. Lin, X. Shao, K. Y. Ho, M. Teh, and K. G. Yeoh, “Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy,” Opt. Lett.34(6), 758–760 (2009).
[CrossRef] [PubMed]

Teh, S. K.

Thompson, C. A.

Uff, J. S.

P. Crow, J. S. Uff, J. A. Farmer, M. P. Wright, and N. Stone, “The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro,” BJU Int.93(9), 1232–1236 (2004).
[CrossRef] [PubMed]

Utzinger, U.

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol.68(3), 427–431 (1998).
[CrossRef] [PubMed]

van Gemert, M. J.

van Marie, J.

van Staveren, H. J.

van Swol, C. F.

R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. van Swol, T. G. Jonges, J. A. Kummer, and J. L. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem.82(14), 5993–5999 (2010).
[CrossRef] [PubMed]

Vargis, E.

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J. Biophotonics2(1-2), 81–90 (2009).
[CrossRef] [PubMed]

Vijverberg, P. L.

R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. van Swol, T. G. Jonges, J. A. Kummer, and J. L. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem.82(14), 5993–5999 (2010).
[CrossRef] [PubMed]

Wach, M.

Wang, J.

Webb, K. J.

Wilson, B.

M. G. Shim, B. Wilson, E. Marple, and M. Wach, “Study of Fiber-Optic probes for in Vivo Medical Raman Spectroscopy,” Appl. Spectrosc.53(6), 619–627 (1999).
[CrossRef]

M. G. Shim and B. Wilson, “Development of an In Vivo Raman Spectroscopic System for Diagnostic Applications,” J. Raman Spectros.28(2-3), 131–142 (1997).
[CrossRef]

Wilson, B. C.

A. Molckovsky, L. M. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc.57(3), 396–402 (2003).
[CrossRef] [PubMed]

Woeste, E.

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J. Biophotonics2(1-2), 81–90 (2009).
[CrossRef] [PubMed]

Wright, M. P.

P. Crow, J. S. Uff, J. A. Farmer, M. P. Wright, and N. Stone, “The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro,” BJU Int.93(9), 1232–1236 (2004).
[CrossRef] [PubMed]

Yan So, J. B.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer128(11), 2673–2680 (2011).
[CrossRef] [PubMed]

Yeoh, K. G.

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer128(11), 2673–2680 (2011).
[CrossRef] [PubMed]

Z. Huang, S. K. Teh, W. Zheng, J. Mo, K. Lin, X. Shao, K. Y. Ho, M. Teh, and K. G. Yeoh, “Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy,” Opt. Lett.34(6), 758–760 (2009).
[CrossRef] [PubMed]

Yu, S.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol.54(23), 7077–7087 (2009).
[CrossRef] [PubMed]

Zaccanti, G.

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express2(8), 2265–2278 (2011).
[CrossRef] [PubMed]

Zheng, W.

Anal. Chem.

R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. van Swol, T. G. Jonges, J. A. Kummer, and J. L. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem.82(14), 5993–5999 (2010).
[CrossRef] [PubMed]

J. Mo, W. Zheng, J. J. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem.81(21), 8908–8915 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Spectrosc.

Biomed. Opt. Express

BJU Int.

P. Crow, J. S. Uff, J. A. Farmer, M. P. Wright, and N. Stone, “The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro,” BJU Int.93(9), 1232–1236 (2004).
[CrossRef] [PubMed]

Br. J. Cancer

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer94(10), 1460–1464 (2006).
[CrossRef] [PubMed]

Gastrointest. Endosc.

A. Molckovsky, L. M. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc.57(3), 396–402 (2003).
[CrossRef] [PubMed]

Int. J. Cancer

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer128(11), 2673–2680 (2011).
[CrossRef] [PubMed]

J. Biophotonics

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J. Biophotonics2(1-2), 81–90 (2009).
[CrossRef] [PubMed]

J. Raman Spectros.

M. G. Shim and B. Wilson, “Development of an In Vivo Raman Spectroscopic System for Diagnostic Applications,” J. Raman Spectros.28(2-3), 131–142 (1997).
[CrossRef]

Opt. Lett.

Photochem. Photobiol.

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol.68(3), 427–431 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol.54(23), 7077–7087 (2009).
[CrossRef] [PubMed]

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

Other

Marple, E. Filtered Fiber Optic Probe. 12/630,640[US 8,175,432 B2], 0–11. 2012. Florida/USA. 12–3-2009. Ref Type: Patent.

R. L. McCreery, “Signal-to-noise in Raman spectroscopy,” in Raman Spectroscopy for Chemical Analysis (Wiley, 2000), p. 49.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Top left (A) and right (B) are exploded views of the distal probe tip. The Raman laser excitation region and the direction of the Raman collection cone(s) create an overlap with the laser cone at the surface of the lens and is illustrated for the non-superficial Raman probe (A) and the superficial Raman probe (B) (1 = 7 times collection fibers, 2 = excitation fiber, 3 = Raman laser cone, 4 = Raman collection cone, 5 = two component front lens). Bottom left (C) and right (D) are Zemax ray traces of the non-superficial and the superficial Raman probe, respectively, using the refractive index of water, which is comparable to the 20%-Intralipid ® that was used in the phantom tissue model. The Raman excitation light and only one collection fiber cone is illustrated; however, all the collection light is altered in the same way as this one.

Fig. 2
Fig. 2

Top (A) shows a schematic depiction of the phantom tissue model based on two layers i.e. 20%-Intralipid® (top layer) and PET (sub layer). The Raman probe is vertically fixed perpendicular to the PET slide (1 = Raman probe, 2 = 20%-Intralipid®, 3 = PET slide, 4 = 30 cc cup, 5 = Aluminum foil, 6 = Hollow tube). Bottom (B) shows a schematic depiction of the probe volume in the phantom tissue model that mimics epithelial tissue (top layer) and its stromal tissue (sub layer) below. The top layer is variable in thickness as opposed to the sub layer which has a constant thickness of 170 μm. By increasing the top layer thickness, the specific top layer and sub layer contributions can be compared and the sample depth is determined at which top layer thickness both contributions are equal.

Fig. 3
Fig. 3

Mean raw Raman spectra of all measurements per probe, before correction.

Fig. 4
Fig. 4

Mean Raman spectra of all measurements per probe after background fluorescence subtraction and noise smoothing.

Fig. 5
Fig. 5

Mean Raman spectra after normalization to their mean intensity of top layer-only and sub layer-only measurements. The main peak of the top layer (light blue) was found at a wavenumber shift of 1,439.5 cm−1 and the main peak of the sub layer (dark blue) was found at 732.5 cm−1.

Fig. 6
Fig. 6

Raman peak intensities at 1,439.5 cm−1 and 732.5 cm−1 and (top layer and sub layer peak) as a function of top layer thickness in the phantom tissue model for the non-superficial and the superficial Raman probe with their standard deviation. The intersections of the non-superficial Raman probe and the superficial Raman probe at approximately 300 μm and 200 μm, respectively, indicate that the sampling depth is closer to the distal probe tip for the superficial Raman probe.

Fig. 7
Fig. 7

The sampling range of both Raman probes are illustrated in urothelial tissue. The superficial probe has a sampling range of approximately 0-200 μm, which is similar to the total urothelium thickness. The non-superficial Raman probe has a less pure urothelium signal, as the stromal tissue is part of the sampling range which was 0-300 μm. The stromal layer may blur the urothelial signal.

Tables (2)

Tables Icon

Table 1 Signal-to-noise ratio over the mean spectral range (SNRmsr) measured in the phantom tissue model at 200 μm probe distance from the sub layer and specific SNRmsr of the sub layer and top layer peaks.

Tables Icon

Table 2 Information on the Raman probe developed since the 1990s

Metrics