Abstract

We describe a simple but robust algorithm for estimating the heart rate pulse from video sequences containing human skin in real time. Based on a model of light interaction with human skin, we define the change of blood concentration due to arterial pulsation as a pixel quotient in log space, and successfully use the derived signal for computing the pulse heart rate. Various experiments with different cameras, different illumination condition, and different skin locations were conducted to demonstrate the effectiveness and robustness of the proposed algorithm. Examples computed with normal illumination show the algorithm is comparable with pulse oximeter devices both in accuracy and sensitivity.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Mengelkoch, D. Martin, and J. Lawler, “A review of the principles of pulse oximetry and accuracy of pulse oximeter estimates during exercise,” Phys. Ther.74, 40–49 (1994).
    [PubMed]
  2. P. Pelegris, K. Banitsas, T. Orbach, and K. Marias, “A novel method to detect heart beat rate using a mobile phone,” in ”Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE,” (IEEE, 2010), pp. 5488–5491.
    [CrossRef]
  3. Https://play.google.com/store/apps/details?id=si.modula.android.instantheartrate&feature=related_apps .
  4. C. Takano and Y. Ohta, “Heart rate measurement based on a time-lapse image,” Med. Engin. Phys.29, 853–857 (2007).
    [CrossRef]
  5. K. Humphreys, T. Ward, and C. Markham, Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum.78, 044304 (2007).
    [CrossRef] [PubMed]
  6. C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59, 303–306 (2012).
    [CrossRef]
  7. M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Optics Express18, 10762–10774 (2010).
    [CrossRef] [PubMed]
  8. M.-Z. Poh, D. J. McDuff, and R. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng.58, 7–11 (2011).
    [CrossRef]
  9. A. A. Kamshilin, S. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express2, 996–1006 (2011).
    [CrossRef] [PubMed]
  10. Https://play.google.com/store/apps/details?id=com.vitrox.facion.gui&hl=en .
  11. A. Krishnaswamy and G. V. Baranoski, “A study on skin optics,” Natural Phenomena Simulation Group, School of Computer Science, University of Waterloo, Canada, Technical Report1, 1–17 (2004).
  12. J. Dawson, D. Barker, D. Ellis, J. Cotterill, E. Grassam, G. Fisher, and J. Feather, ”A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol.25, 695 (1980).
    [CrossRef] [PubMed]
  13. N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, ”Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” in ”ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 770–779.
    [CrossRef]
  14. S. Xu, X. Ye, Y. Wu, F. Giron, J.-L. Leveque, and B. Querleux, “Automatic skin decomposition based on single image,” Computer Vision and Image Understanding110, 1–6 (2008).
    [CrossRef]
  15. G. D. Finlayson, M. S. Drew, and C. Lu, “Intrinsic images by entropy minimization,” in Computer Vision-ECCV 2004 (Springer, 2004), pp. 582–595.
    [CrossRef]
  16. W. Verkruysse, L. O. Svaasand, and J. S. Nelson, ”Remote plethysmographic imaging using ambient light,” Opt. Express16, 21434–21445 (2008).
    [CrossRef] [PubMed]
  17. “handyscope-mobile dermatoscope,” http://www.handyscope.net/ .
  18. Http://www.santamedical.net/servlet/the-243/Finger-Pulse-Oximeter-SM-dsh-110/Detail .
  19. J. Martin Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” The lancet327, 307–310 (1986).
    [CrossRef]
  20. S. J. Preece, I. B. Styles, S. D. Cotton, E. Claridge, and A. Calcagni, “Model-based parameter recovery from uncalibrated optical images.” Med. Image Comput. Comput. Assist. Interv.8, 509–516 (2005).

2012 (1)

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59, 303–306 (2012).
[CrossRef]

2011 (2)

M.-Z. Poh, D. J. McDuff, and R. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng.58, 7–11 (2011).
[CrossRef]

A. A. Kamshilin, S. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express2, 996–1006 (2011).
[CrossRef] [PubMed]

2010 (1)

M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Optics Express18, 10762–10774 (2010).
[CrossRef] [PubMed]

2008 (2)

S. Xu, X. Ye, Y. Wu, F. Giron, J.-L. Leveque, and B. Querleux, “Automatic skin decomposition based on single image,” Computer Vision and Image Understanding110, 1–6 (2008).
[CrossRef]

W. Verkruysse, L. O. Svaasand, and J. S. Nelson, ”Remote plethysmographic imaging using ambient light,” Opt. Express16, 21434–21445 (2008).
[CrossRef] [PubMed]

2007 (2)

C. Takano and Y. Ohta, “Heart rate measurement based on a time-lapse image,” Med. Engin. Phys.29, 853–857 (2007).
[CrossRef]

K. Humphreys, T. Ward, and C. Markham, Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum.78, 044304 (2007).
[CrossRef] [PubMed]

2005 (1)

S. J. Preece, I. B. Styles, S. D. Cotton, E. Claridge, and A. Calcagni, “Model-based parameter recovery from uncalibrated optical images.” Med. Image Comput. Comput. Assist. Interv.8, 509–516 (2005).

2004 (1)

A. Krishnaswamy and G. V. Baranoski, “A study on skin optics,” Natural Phenomena Simulation Group, School of Computer Science, University of Waterloo, Canada, Technical Report1, 1–17 (2004).

1994 (1)

L. J. Mengelkoch, D. Martin, and J. Lawler, “A review of the principles of pulse oximetry and accuracy of pulse oximeter estimates during exercise,” Phys. Ther.74, 40–49 (1994).
[PubMed]

1986 (1)

J. Martin Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” The lancet327, 307–310 (1986).
[CrossRef]

1980 (1)

J. Dawson, D. Barker, D. Ellis, J. Cotterill, E. Grassam, G. Fisher, and J. Feather, ”A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol.25, 695 (1980).
[CrossRef] [PubMed]

Akazaki, S.

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, ”Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” in ”ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 770–779.
[CrossRef]

Altman, D.

J. Martin Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” The lancet327, 307–310 (1986).
[CrossRef]

Banitsas, K.

P. Pelegris, K. Banitsas, T. Orbach, and K. Marias, “A novel method to detect heart beat rate using a mobile phone,” in ”Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE,” (IEEE, 2010), pp. 5488–5491.
[CrossRef]

Baranoski, G. V.

A. Krishnaswamy and G. V. Baranoski, “A study on skin optics,” Natural Phenomena Simulation Group, School of Computer Science, University of Waterloo, Canada, Technical Report1, 1–17 (2004).

Barker, D.

J. Dawson, D. Barker, D. Ellis, J. Cotterill, E. Grassam, G. Fisher, and J. Feather, ”A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol.25, 695 (1980).
[CrossRef] [PubMed]

Calcagni, A.

S. J. Preece, I. B. Styles, S. D. Cotton, E. Claridge, and A. Calcagni, “Model-based parameter recovery from uncalibrated optical images.” Med. Image Comput. Comput. Assist. Interv.8, 509–516 (2005).

Chon, K. H.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59, 303–306 (2012).
[CrossRef]

Claridge, E.

S. J. Preece, I. B. Styles, S. D. Cotton, E. Claridge, and A. Calcagni, “Model-based parameter recovery from uncalibrated optical images.” Med. Image Comput. Comput. Assist. Interv.8, 509–516 (2005).

Cotterill, J.

J. Dawson, D. Barker, D. Ellis, J. Cotterill, E. Grassam, G. Fisher, and J. Feather, ”A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol.25, 695 (1980).
[CrossRef] [PubMed]

Cotton, S. D.

S. J. Preece, I. B. Styles, S. D. Cotton, E. Claridge, and A. Calcagni, “Model-based parameter recovery from uncalibrated optical images.” Med. Image Comput. Comput. Assist. Interv.8, 509–516 (2005).

Dawson, J.

J. Dawson, D. Barker, D. Ellis, J. Cotterill, E. Grassam, G. Fisher, and J. Feather, ”A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol.25, 695 (1980).
[CrossRef] [PubMed]

Drew, M. S.

G. D. Finlayson, M. S. Drew, and C. Lu, “Intrinsic images by entropy minimization,” in Computer Vision-ECCV 2004 (Springer, 2004), pp. 582–595.
[CrossRef]

Ellis, D.

J. Dawson, D. Barker, D. Ellis, J. Cotterill, E. Grassam, G. Fisher, and J. Feather, ”A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol.25, 695 (1980).
[CrossRef] [PubMed]

Feather, J.

J. Dawson, D. Barker, D. Ellis, J. Cotterill, E. Grassam, G. Fisher, and J. Feather, ”A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol.25, 695 (1980).
[CrossRef] [PubMed]

Finlayson, G. D.

G. D. Finlayson, M. S. Drew, and C. Lu, “Intrinsic images by entropy minimization,” in Computer Vision-ECCV 2004 (Springer, 2004), pp. 582–595.
[CrossRef]

Fisher, G.

J. Dawson, D. Barker, D. Ellis, J. Cotterill, E. Grassam, G. Fisher, and J. Feather, ”A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol.25, 695 (1980).
[CrossRef] [PubMed]

Giron, F.

S. Xu, X. Ye, Y. Wu, F. Giron, J.-L. Leveque, and B. Querleux, “Automatic skin decomposition based on single image,” Computer Vision and Image Understanding110, 1–6 (2008).
[CrossRef]

Gorbach, A. M.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59, 303–306 (2012).
[CrossRef]

Granquist-Fraser, D.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59, 303–306 (2012).
[CrossRef]

Grassam, E.

J. Dawson, D. Barker, D. Ellis, J. Cotterill, E. Grassam, G. Fisher, and J. Feather, ”A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol.25, 695 (1980).
[CrossRef] [PubMed]

Hori, K.

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, ”Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” in ”ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 770–779.
[CrossRef]

Humphreys, K.

K. Humphreys, T. Ward, and C. Markham, Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum.78, 044304 (2007).
[CrossRef] [PubMed]

Kamshilin, A. A.

Krishnaswamy, A.

A. Krishnaswamy and G. V. Baranoski, “A study on skin optics,” Natural Phenomena Simulation Group, School of Computer Science, University of Waterloo, Canada, Technical Report1, 1–17 (2004).

Lawler, J.

L. J. Mengelkoch, D. Martin, and J. Lawler, “A review of the principles of pulse oximetry and accuracy of pulse oximeter estimates during exercise,” Phys. Ther.74, 40–49 (1994).
[PubMed]

Lee, J.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59, 303–306 (2012).
[CrossRef]

Leveque, J.-L.

S. Xu, X. Ye, Y. Wu, F. Giron, J.-L. Leveque, and B. Querleux, “Automatic skin decomposition based on single image,” Computer Vision and Image Understanding110, 1–6 (2008).
[CrossRef]

Lu, C.

G. D. Finlayson, M. S. Drew, and C. Lu, “Intrinsic images by entropy minimization,” in Computer Vision-ECCV 2004 (Springer, 2004), pp. 582–595.
[CrossRef]

Marias, K.

P. Pelegris, K. Banitsas, T. Orbach, and K. Marias, “A novel method to detect heart beat rate using a mobile phone,” in ”Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE,” (IEEE, 2010), pp. 5488–5491.
[CrossRef]

Markham, C.

K. Humphreys, T. Ward, and C. Markham, Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum.78, 044304 (2007).
[CrossRef] [PubMed]

Martin, D.

L. J. Mengelkoch, D. Martin, and J. Lawler, “A review of the principles of pulse oximetry and accuracy of pulse oximeter estimates during exercise,” Phys. Ther.74, 40–49 (1994).
[PubMed]

Martin Bland, J.

J. Martin Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” The lancet327, 307–310 (1986).
[CrossRef]

McDuff, D. J.

M.-Z. Poh, D. J. McDuff, and R. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng.58, 7–11 (2011).
[CrossRef]

M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Optics Express18, 10762–10774 (2010).
[CrossRef] [PubMed]

Mendelson, Y.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59, 303–306 (2012).
[CrossRef]

Mengelkoch, L. J.

L. J. Mengelkoch, D. Martin, and J. Lawler, “A review of the principles of pulse oximetry and accuracy of pulse oximeter estimates during exercise,” Phys. Ther.74, 40–49 (1994).
[PubMed]

Meyer, J.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59, 303–306 (2012).
[CrossRef]

Miridonov, S.

Miyake, Y.

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, ”Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” in ”ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 770–779.
[CrossRef]

Nabeshima, H.

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, ”Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” in ”ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 770–779.
[CrossRef]

Nelson, J. S.

Nippolainen, E.

Ohta, Y.

C. Takano and Y. Ohta, “Heart rate measurement based on a time-lapse image,” Med. Engin. Phys.29, 853–857 (2007).
[CrossRef]

Ojima, N.

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, ”Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” in ”ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 770–779.
[CrossRef]

Orbach, T.

P. Pelegris, K. Banitsas, T. Orbach, and K. Marias, “A novel method to detect heart beat rate using a mobile phone,” in ”Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE,” (IEEE, 2010), pp. 5488–5491.
[CrossRef]

Pelegris, P.

P. Pelegris, K. Banitsas, T. Orbach, and K. Marias, “A novel method to detect heart beat rate using a mobile phone,” in ”Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE,” (IEEE, 2010), pp. 5488–5491.
[CrossRef]

Picard, R.

M.-Z. Poh, D. J. McDuff, and R. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng.58, 7–11 (2011).
[CrossRef]

Picard, R. W.

M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Optics Express18, 10762–10774 (2010).
[CrossRef] [PubMed]

Poh, M.-Z.

M.-Z. Poh, D. J. McDuff, and R. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng.58, 7–11 (2011).
[CrossRef]

M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Optics Express18, 10762–10774 (2010).
[CrossRef] [PubMed]

Preece, S. J.

S. J. Preece, I. B. Styles, S. D. Cotton, E. Claridge, and A. Calcagni, “Model-based parameter recovery from uncalibrated optical images.” Med. Image Comput. Comput. Assist. Interv.8, 509–516 (2005).

Querleux, B.

S. Xu, X. Ye, Y. Wu, F. Giron, J.-L. Leveque, and B. Querleux, “Automatic skin decomposition based on single image,” Computer Vision and Image Understanding110, 1–6 (2008).
[CrossRef]

Saarenheimo, R.

Sato, K.

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, ”Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” in ”ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 770–779.
[CrossRef]

Scully, C. G.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59, 303–306 (2012).
[CrossRef]

Shimizu, H.

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, ”Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” in ”ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 770–779.
[CrossRef]

Shiraishi, M.

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, ”Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” in ”ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 770–779.
[CrossRef]

Styles, I. B.

S. J. Preece, I. B. Styles, S. D. Cotton, E. Claridge, and A. Calcagni, “Model-based parameter recovery from uncalibrated optical images.” Med. Image Comput. Comput. Assist. Interv.8, 509–516 (2005).

Svaasand, L. O.

Takano, C.

C. Takano and Y. Ohta, “Heart rate measurement based on a time-lapse image,” Med. Engin. Phys.29, 853–857 (2007).
[CrossRef]

Teplov, V.

Tsumura, N.

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, ”Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” in ”ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 770–779.
[CrossRef]

Verkruysse, W.

Ward, T.

K. Humphreys, T. Ward, and C. Markham, Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum.78, 044304 (2007).
[CrossRef] [PubMed]

Wu, Y.

S. Xu, X. Ye, Y. Wu, F. Giron, J.-L. Leveque, and B. Querleux, “Automatic skin decomposition based on single image,” Computer Vision and Image Understanding110, 1–6 (2008).
[CrossRef]

Xu, S.

S. Xu, X. Ye, Y. Wu, F. Giron, J.-L. Leveque, and B. Querleux, “Automatic skin decomposition based on single image,” Computer Vision and Image Understanding110, 1–6 (2008).
[CrossRef]

Ye, X.

S. Xu, X. Ye, Y. Wu, F. Giron, J.-L. Leveque, and B. Querleux, “Automatic skin decomposition based on single image,” Computer Vision and Image Understanding110, 1–6 (2008).
[CrossRef]

Biomed. Opt. Express (1)

Computer Vision and Image Understanding (1)

S. Xu, X. Ye, Y. Wu, F. Giron, J.-L. Leveque, and B. Querleux, “Automatic skin decomposition based on single image,” Computer Vision and Image Understanding110, 1–6 (2008).
[CrossRef]

IEEE Trans. Biomed. Eng. (2)

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59, 303–306 (2012).
[CrossRef]

M.-Z. Poh, D. J. McDuff, and R. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng.58, 7–11 (2011).
[CrossRef]

Med. Engin. Phys. (1)

C. Takano and Y. Ohta, “Heart rate measurement based on a time-lapse image,” Med. Engin. Phys.29, 853–857 (2007).
[CrossRef]

Med. Image Comput. Comput. Assist. Interv. (1)

S. J. Preece, I. B. Styles, S. D. Cotton, E. Claridge, and A. Calcagni, “Model-based parameter recovery from uncalibrated optical images.” Med. Image Comput. Comput. Assist. Interv.8, 509–516 (2005).

Natural Phenomena Simulation Group, School of Computer Science, University of Waterloo, Canada, Technical Report (1)

A. Krishnaswamy and G. V. Baranoski, “A study on skin optics,” Natural Phenomena Simulation Group, School of Computer Science, University of Waterloo, Canada, Technical Report1, 1–17 (2004).

Opt. Express (1)

Optics Express (1)

M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Optics Express18, 10762–10774 (2010).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

J. Dawson, D. Barker, D. Ellis, J. Cotterill, E. Grassam, G. Fisher, and J. Feather, ”A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol.25, 695 (1980).
[CrossRef] [PubMed]

Phys. Ther. (1)

L. J. Mengelkoch, D. Martin, and J. Lawler, “A review of the principles of pulse oximetry and accuracy of pulse oximeter estimates during exercise,” Phys. Ther.74, 40–49 (1994).
[PubMed]

Rev. Sci. Instrum. (1)

K. Humphreys, T. Ward, and C. Markham, Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum.78, 044304 (2007).
[CrossRef] [PubMed]

The lancet (1)

J. Martin Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” The lancet327, 307–310 (1986).
[CrossRef]

Other (7)

P. Pelegris, K. Banitsas, T. Orbach, and K. Marias, “A novel method to detect heart beat rate using a mobile phone,” in ”Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE,” (IEEE, 2010), pp. 5488–5491.
[CrossRef]

Https://play.google.com/store/apps/details?id=si.modula.android.instantheartrate&feature=related_apps .

Https://play.google.com/store/apps/details?id=com.vitrox.facion.gui&hl=en .

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, ”Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” in ”ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 770–779.
[CrossRef]

G. D. Finlayson, M. S. Drew, and C. Lu, “Intrinsic images by entropy minimization,” in Computer Vision-ECCV 2004 (Springer, 2004), pp. 582–595.
[CrossRef]

“handyscope-mobile dermatoscope,” http://www.handyscope.net/ .

Http://www.santamedical.net/servlet/the-243/Finger-Pulse-Oximeter-SM-dsh-110/Detail .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Two different pulse oximeters and corresponding principles

Fig. 2
Fig. 2

Time trace of y(t) during the recorded video. (Left Column) a screenshot with manually selected ROI shown in red. (Middle Column) Proposed algorithm based heart rate signal y(t) and corresponding frequency domain. (Right Column) Average intensity based heart rate signal y(t) and corresponding frequency domain. We note that, for better understanding the properties of both methods, band pass filtering has not been applied to these examples. In addition, both methods use signals averaged from the same ROI.

Fig. 3
Fig. 3

HR estimation under normal illumination. Different skin locations with unfixed distance were recorded while finger optical oximeter is attached to provide real value as reference. One or two sequential clips were extracted to test the accuracy and sensitivity of the proposed algorithm.

Fig. 4
Fig. 4

HR estimation under bad illumination. Examples both under insufficient and over sufficient illumination are selected. Two sequential clips with 500 frames and 700 frames are respectively extracted from every video for analysis

Fig. 5
Fig. 5

HR estimation under variable illumination. The video was recorded by smart phone and contains 653 frames. The real HR is 56 and the estimated is 0.7812×60=46.87

Fig. 6
Fig. 6

HR estimation under variable illumination. The video was recorded by digital camera and contains 1455 frames. The real HR is 55 and the estimated is 0.8203×60=49.2

Fig. 7
Fig. 7

Bland-Altman plots (x-axis: average heat rate by estimation value and reference value. y-axis: difference of estimation value and reference value) is used to demonstrate the agreement between estimation and reference data. (Left) Plots of proposed algorithm. (Right) Plots of intensity based algorithms.

Fig. 8
Fig. 8

Testing consistency of the proposed algorithm. Three different ROIs were selected as inputs to separately estimate the heart rate. The results of three FFTs are exactly identical with accuracy 97% (reference: 58, estimation: 0.9375×60=56.25)

Fig. 9
Fig. 9

Failure example. The skin regions are dominated by noise (strong highlight, hair and beards).

Tables (3)

Tables Icon

Table 1 Comparisons of Heart rate estimation algorithms

Tables Icon

Table 2 summary of experiments under ambient illumination.

Tables Icon

Table 3 summary of experiments under insufficient illumination.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A ( λ ) = v m ( λ ) c m + v h ( λ ) c h + A 0 ( λ )
A = log ( L / E )
L = E exp { ( v m c m + v h c h + A 0 ) }
P i ( x , y ) = k L ( x , y , λ ) S i ( λ ) d λ
log P R = { v m ( R ) c m + v h ( R ) c h + A 0 ( R ) } + log k E ( R ) log P G = { v m ( G ) c m + v h ( G ) c h + A 0 ( G ) } + log k E ( G ) log P B = { v m ( B ) c m + v h ( B ) c h + A 0 ( B ) } + log k E ( B ) .
Q = log P R P G = ( Δ v m c m + Δ v h c h ) + log E ( R ) E ( G )
Δ Q t ( x , y ) = Q t + 1 ( x , y ) Q t ( x , y ) = Δ v h Δ c h ( x , y ) + Δ log E ( R , x , y ) E ( G , x , y )
Δ c h ( x , y ) = [ Δ Q ( x , y ) a ] / b
y ( t ) = [ Δ Q 1 , Δ Q 2 , , Δ Q z 1 ] = [ log P ¯ R 2 P ¯ G 1 P ¯ G 2 P ¯ R 1 , log P ¯ R 3 P ¯ G 2 P ¯ G 3 P ¯ R 2 , , log P ¯ R z P ¯ G z 1 P ¯ G z P ¯ R z 1 ]

Metrics