Abstract

Optical coherence tomography (OCT) is a noninvasive, three-dimensional imaging modality with several medical and industrial applications. Integrated photonics has the potential to enable mass production of OCT devices to significantly reduce size and cost, which can increase its use in established fields as well as enable new applications. Using silicon nitride (Si3N4) and silicon dioxide (SiO2) waveguides, we fabricated an integrated interferometer for spectrometer-based OCT. The integrated photonic circuit consists of four splitters and a 190 mm long reference arm with a foot-print of only 10 × 33 mm2. It is used as the core of a spectral domain OCT system consisting of a superluminescent diode centered at 1320 nm with 100 nm bandwidth, a spectrometer with 1024 channels, and an x-y scanner. The sensitivity of the system was measured at 0.25 mm depth to be 65 dB with 0.1 mW on the sample. Using the system, we imaged human skin in vivo. With further optimization in design and fabrication technology, Si3N4/SiO2 waveguides have a potential to serve as a platform for passive photonic integrated circuits for OCT.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49(16), D30–D61 (2010).
    [CrossRef] [PubMed]
  3. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B88(3), 337–357 (2007).
    [CrossRef]
  4. G. Grasso, P. Galli, M. Romagnoli, E. Iannone, and A. Bogoni, “Role of Integrated Photonics Technologies in the Realization of Terabit Nodes [Invited],” Opt. Commun. Netw.1(3), B111–B119 (2009).
    [CrossRef]
  5. I. P. Kaminow, “Optical Integrated Circuits: A Personal Perspective,” J. Lightwave Technol.26(9), 994–1004 (2008).
    [CrossRef]
  6. L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, and J. M. Fedeli, “Hybrid integration for silicon photonics applications,” Opt. Quantum Electron.44(12-13), 527–534 (2012).
    [CrossRef]
  7. C. R. Doerr and K. Okamoto, “Advances in Silica Planar Lightwave Circuits,” J. Lightwave Technol.24(12), 4763–4789 (2006).
    [CrossRef]
  8. G. D. Cole, E. Behymer, T. C. Bond, and L. L. Goddard, “Short-wavelength MEMS-tunable VCSELs,” Opt. Express16(20), 16093–16103 (2008).
    [CrossRef] [PubMed]
  9. V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett.48(21), 1331–1333 (2012).
    [CrossRef] [PubMed]
  10. M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116 (2011).
    [CrossRef]
  11. B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Ntzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron.48(2), 87–98 (2012).
    [CrossRef]
  12. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
    [CrossRef]
  13. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express19(23), 23162–23170 (2011).
    [CrossRef] [PubMed]
  14. D. Culemann, A. Knuettel, and E. Voges, “Integrated optical sensor in glass for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.6(5), 730–734 (2000).
    [CrossRef]
  15. G. Yurtsever, K. Komorowska, and R. Baets, “Low Dispersion Integrated Michelson Interferometer on Silicon on Insulator for Optical Coherence Tomography,” Proc. SPIE8091, 80910 (2011).
    [CrossRef]
  16. V. D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. G. Heideman, T. G. van Leeuwen, and J. Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett.37(23), 4820–4822 (2012).
    [CrossRef] [PubMed]
  17. B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express21(14), 16648–16656 (2013).
    [CrossRef] [PubMed]
  18. F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?” J. Lightwave Technol.25(9), 2579–2589 (2007).
    [CrossRef]
  19. W. Bogaerts and S. K. Selvaraja, “Compact Single-Mode Silicon Hybrid Rib/Strip Waveguide With Adiabatic Bends,” IEEE Photon. J.3(3), 422–432 (2011).
  20. M. Izutsu, Y. Nakai, and T. Sueta, “Operation mechanism of the single-mode optical-waveguide Y junction,” Opt. Lett.7(3), 136–138 (1982).
    [CrossRef] [PubMed]
  21. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express17(1), 7–24 (2009)..
    [CrossRef] [PubMed]
  22. T. Mizuno, Y. Hashizume, M. Yanagisawa, T. Kitoh, A. Kaneko, and H. Takahashi, “Wideband planar lightwave circuit type variable optical attenuator using phase-generating coupler,” Electron. Lett.11(42), 636638 (2006).
  23. M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
    [CrossRef]
  24. I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 13081320 (1997).
    [CrossRef]
  25. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett.24(21), 1484–1486 (1999).
    [CrossRef] [PubMed]
  26. K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).

2013 (1)

2012 (4)

V. D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. G. Heideman, T. G. van Leeuwen, and J. Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett.37(23), 4820–4822 (2012).
[CrossRef] [PubMed]

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett.48(21), 1331–1333 (2012).
[CrossRef] [PubMed]

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Ntzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron.48(2), 87–98 (2012).
[CrossRef]

L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, and J. M. Fedeli, “Hybrid integration for silicon photonics applications,” Opt. Quantum Electron.44(12-13), 527–534 (2012).
[CrossRef]

2011 (5)

W. Bogaerts and S. K. Selvaraja, “Compact Single-Mode Silicon Hybrid Rib/Strip Waveguide With Adiabatic Bends,” IEEE Photon. J.3(3), 422–432 (2011).

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

G. Yurtsever, K. Komorowska, and R. Baets, “Low Dispersion Integrated Michelson Interferometer on Silicon on Insulator for Optical Coherence Tomography,” Proc. SPIE8091, 80910 (2011).
[CrossRef]

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116 (2011).
[CrossRef]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express19(23), 23162–23170 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (3)

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express17(1), 7–24 (2009)..
[CrossRef] [PubMed]

G. Grasso, P. Galli, M. Romagnoli, E. Iannone, and A. Bogoni, “Role of Integrated Photonics Technologies in the Realization of Terabit Nodes [Invited],” Opt. Commun. Netw.1(3), B111–B119 (2009).
[CrossRef]

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

2008 (2)

2007 (2)

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?” J. Lightwave Technol.25(9), 2579–2589 (2007).
[CrossRef]

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B88(3), 337–357 (2007).
[CrossRef]

2006 (2)

T. Mizuno, Y. Hashizume, M. Yanagisawa, T. Kitoh, A. Kaneko, and H. Takahashi, “Wideband planar lightwave circuit type variable optical attenuator using phase-generating coupler,” Electron. Lett.11(42), 636638 (2006).

C. R. Doerr and K. Okamoto, “Advances in Silica Planar Lightwave Circuits,” J. Lightwave Technol.24(12), 4763–4789 (2006).
[CrossRef]

2000 (2)

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).

D. Culemann, A. Knuettel, and E. Voges, “Integrated optical sensor in glass for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.6(5), 730–734 (2000).
[CrossRef]

1999 (1)

1997 (1)

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 13081320 (1997).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1982 (1)

Akca, B. I.

Alex, A.

Ambrosius, H. P. M. M.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Ntzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron.48(2), 87–98 (2012).
[CrossRef]

Augendre, E.

L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, and J. M. Fedeli, “Hybrid integration for silicon photonics applications,” Opt. Quantum Electron.44(12-13), 527–534 (2012).
[CrossRef]

Baets, R.

G. Yurtsever, K. Komorowska, and R. Baets, “Low Dispersion Integrated Michelson Interferometer on Silicon on Insulator for Optical Coherence Tomography,” Proc. SPIE8091, 80910 (2011).
[CrossRef]

Beeker, W.

Behymer, E.

Bente, E. A. J. M.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Ntzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron.48(2), 87–98 (2012).
[CrossRef]

Bogaerts, W.

W. Bogaerts and S. K. Selvaraja, “Compact Single-Mode Silicon Hybrid Rib/Strip Waveguide With Adiabatic Bends,” IEEE Photon. J.3(3), 422–432 (2011).

Bogoni, A.

G. Grasso, P. Galli, M. Romagnoli, E. Iannone, and A. Bogoni, “Role of Integrated Photonics Technologies in the Realization of Terabit Nodes [Invited],” Opt. Commun. Netw.1(3), B111–B119 (2009).
[CrossRef]

Bond, T. C.

Bordel, D.

L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, and J. M. Fedeli, “Hybrid integration for silicon photonics applications,” Opt. Quantum Electron.44(12-13), 527–534 (2012).
[CrossRef]

Borreman, A.

Burgner, C.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett.48(21), 1331–1333 (2012).
[CrossRef] [PubMed]

Burla, M.

Cable, A.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett.48(21), 1331–1333 (2012).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chelnokov, A.

L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, and J. M. Fedeli, “Hybrid integration for silicon photonics applications,” Opt. Quantum Electron.44(12-13), 527–534 (2012).
[CrossRef]

Cole, G. D.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett.48(21), 1331–1333 (2012).
[CrossRef] [PubMed]

G. D. Cole, E. Behymer, T. C. Bond, and L. L. Goddard, “Short-wavelength MEMS-tunable VCSELs,” Opt. Express16(20), 16093–16103 (2008).
[CrossRef] [PubMed]

Crawford, M.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116 (2011).
[CrossRef]

Culemann, D.

D. Culemann, A. Knuettel, and E. Voges, “Integrated optical sensor in glass for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.6(5), 730–734 (2000).
[CrossRef]

de Ridder, R. M.

Demeester, P. M.

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 13081320 (1997).
[CrossRef]

Derickson, D.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116 (2011).
[CrossRef]

Dobbelaere, P. D.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Doerr, C. R.

Dong, L.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Drexler, W.

Dupont, T.

L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, and J. M. Fedeli, “Hybrid integration for silicon photonics applications,” Opt. Quantum Electron.44(12-13), 527–534 (2012).
[CrossRef]

Ensher, J.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116 (2011).
[CrossRef]

Fedeli, J. M.

L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, and J. M. Fedeli, “Hybrid integration for silicon photonics applications,” Opt. Quantum Electron.44(12-13), 527–534 (2012).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fu, L. B.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Galli, P.

G. Grasso, P. Galli, M. Romagnoli, E. Iannone, and A. Bogoni, “Role of Integrated Photonics Technologies in the Realization of Terabit Nodes [Invited],” Opt. Commun. Netw.1(3), B111–B119 (2009).
[CrossRef]

Geuzebroek, D. H.

Gilbert, K.

L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, and J. M. Fedeli, “Hybrid integration for silicon photonics applications,” Opt. Quantum Electron.44(12-13), 527–534 (2012).
[CrossRef]

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Goddard, L. L.

Grasso, G.

G. Grasso, P. Galli, M. Romagnoli, E. Iannone, and A. Bogoni, “Role of Integrated Photonics Technologies in the Realization of Terabit Nodes [Invited],” Opt. Commun. Netw.1(3), B111–B119 (2009).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grenouillet, L.

L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, and J. M. Fedeli, “Hybrid integration for silicon photonics applications,” Opt. Quantum Electron.44(12-13), 527–534 (2012).
[CrossRef]

Grosse, P.

L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, and J. M. Fedeli, “Hybrid integration for silicon photonics applications,” Opt. Quantum Electron.44(12-13), 527–534 (2012).
[CrossRef]

Harduin, J.

L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, and J. M. Fedeli, “Hybrid integration for silicon photonics applications,” Opt. Quantum Electron.44(12-13), 527–534 (2012).
[CrossRef]

Hashizume, Y.

T. Mizuno, Y. Hashizume, M. Yanagisawa, T. Kitoh, A. Kaneko, and H. Takahashi, “Wideband planar lightwave circuit type variable optical attenuator using phase-generating coupler,” Electron. Lett.11(42), 636638 (2006).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Heideman, R. G.

Hermann, B.

Hoekman, M.

Hofer, B.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Iannone, E.

G. Grasso, P. Galli, M. Romagnoli, E. Iannone, and A. Bogoni, “Role of Integrated Photonics Technologies in the Realization of Terabit Nodes [Invited],” Opt. Commun. Netw.1(3), B111–B119 (2009).
[CrossRef]

Izatt, J. A.

Izutsu, M.

Jayaraman, V.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett.48(21), 1331–1333 (2012).
[CrossRef] [PubMed]

Jiao, Y.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Ntzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron.48(2), 87–98 (2012).
[CrossRef]

John, D.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett.48(21), 1331–1333 (2012).
[CrossRef] [PubMed]

Kalkman, J.

Kaminow, I. P.

Kaneko, A.

T. Mizuno, Y. Hashizume, M. Yanagisawa, T. Kitoh, A. Kaneko, and H. Takahashi, “Wideband planar lightwave circuit type variable optical attenuator using phase-generating coupler,” Electron. Lett.11(42), 636638 (2006).

Kato, K.

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).

Kitoh, T.

T. Mizuno, Y. Hashizume, M. Yanagisawa, T. Kitoh, A. Kaneko, and H. Takahashi, “Wideband planar lightwave circuit type variable optical attenuator using phase-generating coupler,” Electron. Lett.11(42), 636638 (2006).

Knuettel, A.

D. Culemann, A. Knuettel, and E. Voges, “Integrated optical sensor in glass for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.6(5), 730–734 (2000).
[CrossRef]

Komorowska, K.

G. Yurtsever, K. Komorowska, and R. Baets, “Low Dispersion Integrated Michelson Interferometer on Silicon on Insulator for Optical Coherence Tomography,” Proc. SPIE8091, 80910 (2011).
[CrossRef]

Kotani, J.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Ntzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron.48(2), 87–98 (2012).
[CrossRef]

Leijtens, X. J. M.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Ntzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron.48(2), 87–98 (2012).
[CrossRef]

Leinse, A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lu, C.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Marpaung, D.

Martinelli, M.

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Matz, G.

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Melloni, A.

Minneman, M. P.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116 (2011).
[CrossRef]

Mizuno, T.

T. Mizuno, Y. Hashizume, M. Yanagisawa, T. Kitoh, A. Kaneko, and H. Takahashi, “Wideband planar lightwave circuit type variable optical attenuator using phase-generating coupler,” Electron. Lett.11(42), 636638 (2006).

Moerman, I.

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 13081320 (1997).
[CrossRef]

Morichetti, F.

Nakai, Y.

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Nguyen, V. D.

Ntzel, R.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Ntzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron.48(2), 87–98 (2012).
[CrossRef]

Okamoto, K.

Olivier, N.

L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, and J. M. Fedeli, “Hybrid integration for silicon photonics applications,” Opt. Quantum Electron.44(12-13), 527–534 (2012).
[CrossRef]

Philippe, P.

L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, and J. M. Fedeli, “Hybrid integration for silicon photonics applications,” Opt. Quantum Electron.44(12-13), 527–534 (2012).
[CrossRef]

Pinguet, T.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Pollnau, M.

Považay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Robertson, M.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett.48(21), 1331–1333 (2012).
[CrossRef] [PubMed]

Roeloffzen, C.

Rollins, A. M.

Romagnoli, M.

G. Grasso, P. Galli, M. Romagnoli, E. Iannone, and A. Bogoni, “Role of Integrated Photonics Technologies in the Realization of Terabit Nodes [Invited],” Opt. Commun. Netw.1(3), B111–B119 (2009).
[CrossRef]

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Selvaraja, S. K.

W. Bogaerts and S. K. Selvaraja, “Compact Single-Mode Silicon Hybrid Rib/Strip Waveguide With Adiabatic Bends,” IEEE Photon. J.3(3), 422–432 (2011).

Smalbrugge, B.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Ntzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron.48(2), 87–98 (2012).
[CrossRef]

Smit, M. K.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Ntzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron.48(2), 87–98 (2012).
[CrossRef]

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B88(3), 337–357 (2007).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sueta, T.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Takahashi, H.

T. Mizuno, Y. Hashizume, M. Yanagisawa, T. Kitoh, A. Kaneko, and H. Takahashi, “Wideband planar lightwave circuit type variable optical attenuator using phase-generating coupler,” Electron. Lett.11(42), 636638 (2006).

Tam, H. Y.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Thijs, P. J.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Ntzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron.48(2), 87–98 (2012).
[CrossRef]

Thomas, B. K.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Tilma, B. W.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Ntzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron.48(2), 87–98 (2012).
[CrossRef]

Tohmori, Y.

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).

Tse, M. L. V.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Uddin, A.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett.48(21), 1331–1333 (2012).
[CrossRef] [PubMed]

Unterhuber, A.

Van Daele, P. P.

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 13081320 (1997).
[CrossRef]

van Leeuwen, T. G.

Voges, E.

D. Culemann, A. Knuettel, and E. Voges, “Integrated optical sensor in glass for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.6(5), 730–734 (2000).
[CrossRef]

Wai, P. K. A.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Weiss, N.

Wojtkowski, M.

Wörhoff, K.

Yanagisawa, M.

T. Mizuno, Y. Hashizume, M. Yanagisawa, T. Kitoh, A. Kaneko, and H. Takahashi, “Wideband planar lightwave circuit type variable optical attenuator using phase-generating coupler,” Electron. Lett.11(42), 636638 (2006).

Yurtsever, G.

G. Yurtsever, K. Komorowska, and R. Baets, “Low Dispersion Integrated Michelson Interferometer on Silicon on Insulator for Optical Coherence Tomography,” Proc. SPIE8091, 80910 (2011).
[CrossRef]

Zhuang, L.

Appl. Opt. (1)

Appl. Phys. B (1)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B88(3), 337–357 (2007).
[CrossRef]

Electron. Lett. (2)

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett.48(21), 1331–1333 (2012).
[CrossRef] [PubMed]

T. Mizuno, Y. Hashizume, M. Yanagisawa, T. Kitoh, A. Kaneko, and H. Takahashi, “Wideband planar lightwave circuit type variable optical attenuator using phase-generating coupler,” Electron. Lett.11(42), 636638 (2006).

IEEE J. Quantum Electron. (1)

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Ntzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron.48(2), 87–98 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

D. Culemann, A. Knuettel, and E. Voges, “Integrated optical sensor in glass for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.6(5), 730–734 (2000).
[CrossRef]

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 13081320 (1997).
[CrossRef]

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).

IEEE Photon. J. (1)

W. Bogaerts and S. K. Selvaraja, “Compact Single-Mode Silicon Hybrid Rib/Strip Waveguide With Adiabatic Bends,” IEEE Photon. J.3(3), 422–432 (2011).

IEEE Photon. Technol. Lett. (1)

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Commun. Netw. (1)

G. Grasso, P. Galli, M. Romagnoli, E. Iannone, and A. Bogoni, “Role of Integrated Photonics Technologies in the Realization of Terabit Nodes [Invited],” Opt. Commun. Netw.1(3), B111–B119 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, and J. M. Fedeli, “Hybrid integration for silicon photonics applications,” Opt. Quantum Electron.44(12-13), 527–534 (2012).
[CrossRef]

Proc. SPIE (2)

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116 (2011).
[CrossRef]

G. Yurtsever, K. Komorowska, and R. Baets, “Low Dispersion Integrated Michelson Interferometer on Silicon on Insulator for Optical Coherence Tomography,” Proc. SPIE8091, 80910 (2011).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics