Abstract

Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. There is a growing need to directly trap the cells of interest rather than introduce beads to the sample that can affect the fundamental biological functions of the sample and impact on the very properties the user wishes to observe and measure. However, instabilities while tracking large inhomogeneous objects, such as cells, can make tracking position, calibrating trap strength and making reliable measurements challenging. These instabilities often manifest themselves as cell roll or re-orientation and can occur as a result of viscous drag forces and thermal convection, as well as spontaneously due to Brownian forces. In this paper we discuss and mathematically model the cause of this roll and present several experimental approaches for tackling these issues, including using a novel beam profile consisting of three closely spaced traps and tracking a trapped object by analysing fluorescence images. The approaches presented here trap T cells which form part of the adaptive immune response system, but in principle can be applied to a wide range of samples where the size and inhomogeneous nature of the trapped object can hinder particle tracking experiments.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys.43(4), 241–258 (2002).
    [CrossRef]
  2. J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and Manipulation of Pathogens with an Optical Trap for Live Cell Imaging of Intercellular Interactions,” PLoS ONE5(2), 15215 (2010).
    [CrossRef]
  3. Y. Su and L. Hsu, “Measurement of Macrophage Adhesion at Various pH Values by Optical Tweezers with Backward-Scattered Detection,” Jpn. J. Appl. Phys.49, 077002 (2010).
    [CrossRef]
  4. X. Wei, M. Si, D. K. Imagawa, P. Ji, B. J. Tromberg, and M. D. Cahalan, “Perillyl Alcohol Inhibits TCR-Mediated [Ca2+]i Signaling, Alters Cell Shape and Motility, and Induces Apoptosis in T Lymphocytes,” Cell. Immunol.201, 6–13 (2000).
    [CrossRef] [PubMed]
  5. B. Anvari, J. H. Torres, and B. W. McIntyre, “Regulation of pseudopodia localization in lymphocytes through application of mechanical forces by optical tweezers,” J. Biomed. Opt.9(5), 865–872 (2004).
    [CrossRef] [PubMed]
  6. P. A. Negulescu, T. B. Krasieva, A. Khan, H. H. Kerschbaum, and M. D. Cahalan, “Polarity of T Cell Shape, Motility, and Sensitivity to Antigen,” Immunity4, 421–430 (1996).
    [CrossRef] [PubMed]
  7. X. Wei, B. J. Tromberg, and M. D. Cahalan, “Mapping the sensitivity of T cells with an optical trap: Polarity and minimal number of receptors for Ca2+ signaling,” Proc. Natl. Acad. Sci. USA96, 8471–8476, (1999).
    [CrossRef]
  8. K. Neuman and S. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–27809 (2004).
    [CrossRef]
  9. S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S264–S266 (2007).
    [CrossRef]
  10. M. Andersson, A. Madgavkar, M. Stjerndahl, Y. Wu, W. Tan, and R. Duran, “Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration,” Rev. Sci. Instrum.78, 074302 (2007).
    [CrossRef] [PubMed]
  11. S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-Speed High-Resolution Imaging of Intercellular Immune Synapses Using Optical Tweezers,” Biophys. J: Biophys. Lett.96(10), L66–L68 (2008).
    [CrossRef]
  12. N. McAlinden, D. G. Glass, O. R. Millington, and A. J. Wright, “Designing an experiment to measure cellular interaction forces,” Proceedings of SPIE, 8810, 88101L (2013).
    [CrossRef]
  13. R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, “iTweezers: Optical micromanipulation controlled by an Apple iPad,” J. Opt.13, 044002 (2011).
    [CrossRef]
  14. M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11, 1196–11205 (2011).
    [CrossRef] [PubMed]
  15. M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles,” Biophys. J.81(4), 2378–2388 (2001).
    [CrossRef] [PubMed]
  16. D. D. Udrea, P. J. Bryanston-Cross, W. K. Lee, and M. Funes-Gallanzi, “Two sub-pixel processing algorithms for high accuracy particle centre estimation in low seeding density particle image velocimetry,” Opt. Laser Technol.28(5), 389–396 (1996).
    [CrossRef]
  17. M. V. Kristensen, P. Ahrendt, T. B. Lindballe, O. Højager Attermann Nielsen, A. P. Kylling, H. Karstoft, A. Imparato, L. Hosta-Rigau, B. Stadler, H. Stapelfeldt, and S. R. Keiding, “Motion analysis of optically trapped particles and cells using 2D Fourier analysis,” Opt. Express20(3), 1953–1962 (2012).
    [CrossRef] [PubMed]
  18. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J.81(2), 767–784 (2001).
    [CrossRef] [PubMed]
  19. X. Wang, S. Chen, M. Kong, Z Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip11(21), 3656–3662 (2011).
    [CrossRef] [PubMed]
  20. N. McAlinden, D. G. Glass, O. Millington, and A. J. Wright, “Viability studies of optically trapped T-cells,” Proceedings of SPIE, 8097, 80970J (2011).
    [CrossRef]
  21. D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
    [CrossRef] [PubMed]

2013 (1)

N. McAlinden, D. G. Glass, O. R. Millington, and A. J. Wright, “Designing an experiment to measure cellular interaction forces,” Proceedings of SPIE, 8810, 88101L (2013).
[CrossRef]

2012 (1)

2011 (5)

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, “iTweezers: Optical micromanipulation controlled by an Apple iPad,” J. Opt.13, 044002 (2011).
[CrossRef]

M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11, 1196–11205 (2011).
[CrossRef] [PubMed]

X. Wang, S. Chen, M. Kong, Z Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip11(21), 3656–3662 (2011).
[CrossRef] [PubMed]

N. McAlinden, D. G. Glass, O. Millington, and A. J. Wright, “Viability studies of optically trapped T-cells,” Proceedings of SPIE, 8097, 80970J (2011).
[CrossRef]

D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
[CrossRef] [PubMed]

2010 (2)

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and Manipulation of Pathogens with an Optical Trap for Live Cell Imaging of Intercellular Interactions,” PLoS ONE5(2), 15215 (2010).
[CrossRef]

Y. Su and L. Hsu, “Measurement of Macrophage Adhesion at Various pH Values by Optical Tweezers with Backward-Scattered Detection,” Jpn. J. Appl. Phys.49, 077002 (2010).
[CrossRef]

2008 (1)

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-Speed High-Resolution Imaging of Intercellular Immune Synapses Using Optical Tweezers,” Biophys. J: Biophys. Lett.96(10), L66–L68 (2008).
[CrossRef]

2007 (2)

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S264–S266 (2007).
[CrossRef]

M. Andersson, A. Madgavkar, M. Stjerndahl, Y. Wu, W. Tan, and R. Duran, “Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration,” Rev. Sci. Instrum.78, 074302 (2007).
[CrossRef] [PubMed]

2004 (2)

B. Anvari, J. H. Torres, and B. W. McIntyre, “Regulation of pseudopodia localization in lymphocytes through application of mechanical forces by optical tweezers,” J. Biomed. Opt.9(5), 865–872 (2004).
[CrossRef] [PubMed]

K. Neuman and S. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–27809 (2004).
[CrossRef]

2002 (1)

J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys.43(4), 241–258 (2002).
[CrossRef]

2001 (2)

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles,” Biophys. J.81(4), 2378–2388 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

2000 (1)

X. Wei, M. Si, D. K. Imagawa, P. Ji, B. J. Tromberg, and M. D. Cahalan, “Perillyl Alcohol Inhibits TCR-Mediated [Ca2+]i Signaling, Alters Cell Shape and Motility, and Induces Apoptosis in T Lymphocytes,” Cell. Immunol.201, 6–13 (2000).
[CrossRef] [PubMed]

1999 (1)

X. Wei, B. J. Tromberg, and M. D. Cahalan, “Mapping the sensitivity of T cells with an optical trap: Polarity and minimal number of receptors for Ca2+ signaling,” Proc. Natl. Acad. Sci. USA96, 8471–8476, (1999).
[CrossRef]

1996 (2)

P. A. Negulescu, T. B. Krasieva, A. Khan, H. H. Kerschbaum, and M. D. Cahalan, “Polarity of T Cell Shape, Motility, and Sensitivity to Antigen,” Immunity4, 421–430 (1996).
[CrossRef] [PubMed]

D. D. Udrea, P. J. Bryanston-Cross, W. K. Lee, and M. Funes-Gallanzi, “Two sub-pixel processing algorithms for high accuracy particle centre estimation in low seeding density particle image velocimetry,” Opt. Laser Technol.28(5), 389–396 (1996).
[CrossRef]

Ahrendt, P.

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

Andersson, M.

M. Andersson, A. Madgavkar, M. Stjerndahl, Y. Wu, W. Tan, and R. Duran, “Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration,” Rev. Sci. Instrum.78, 074302 (2007).
[CrossRef] [PubMed]

Anvari, B.

B. Anvari, J. H. Torres, and B. W. McIntyre, “Regulation of pseudopodia localization in lymphocytes through application of mechanical forces by optical tweezers,” J. Biomed. Opt.9(5), 865–872 (2004).
[CrossRef] [PubMed]

Block, S.

K. Neuman and S. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–27809 (2004).
[CrossRef]

Bowman, R.

Bowman, R. W.

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, “iTweezers: Optical micromanipulation controlled by an Apple iPad,” J. Opt.13, 044002 (2011).
[CrossRef]

Bryanston-Cross, P. J.

D. D. Udrea, P. J. Bryanston-Cross, W. K. Lee, and M. Funes-Gallanzi, “Two sub-pixel processing algorithms for high accuracy particle centre estimation in low seeding density particle image velocimetry,” Opt. Laser Technol.28(5), 389–396 (1996).
[CrossRef]

Cahalan, M. D.

X. Wei, M. Si, D. K. Imagawa, P. Ji, B. J. Tromberg, and M. D. Cahalan, “Perillyl Alcohol Inhibits TCR-Mediated [Ca2+]i Signaling, Alters Cell Shape and Motility, and Induces Apoptosis in T Lymphocytes,” Cell. Immunol.201, 6–13 (2000).
[CrossRef] [PubMed]

X. Wei, B. J. Tromberg, and M. D. Cahalan, “Mapping the sensitivity of T cells with an optical trap: Polarity and minimal number of receptors for Ca2+ signaling,” Proc. Natl. Acad. Sci. USA96, 8471–8476, (1999).
[CrossRef]

P. A. Negulescu, T. B. Krasieva, A. Khan, H. H. Kerschbaum, and M. D. Cahalan, “Polarity of T Cell Shape, Motility, and Sensitivity to Antigen,” Immunity4, 421–430 (1996).
[CrossRef] [PubMed]

Carberry, D.

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, “iTweezers: Optical micromanipulation controlled by an Apple iPad,” J. Opt.13, 044002 (2011).
[CrossRef]

Carberry, D. M.

Cardenas, M. L.

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and Manipulation of Pathogens with an Optical Trap for Live Cell Imaging of Intercellular Interactions,” PLoS ONE5(2), 15215 (2010).
[CrossRef]

Castro, C. E.

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and Manipulation of Pathogens with an Optical Trap for Live Cell Imaging of Intercellular Interactions,” PLoS ONE5(2), 15215 (2010).
[CrossRef]

Chauveau, A.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-Speed High-Resolution Imaging of Intercellular Immune Synapses Using Optical Tweezers,” Biophys. J: Biophys. Lett.96(10), L66–L68 (2008).
[CrossRef]

Cheezum, M. K.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles,” Biophys. J.81(4), 2378–2388 (2001).
[CrossRef] [PubMed]

Chen, S.

X. Wang, S. Chen, M. Kong, Z Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip11(21), 3656–3662 (2011).
[CrossRef] [PubMed]

Costa, K. D.

X. Wang, S. Chen, M. Kong, Z Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip11(21), 3656–3662 (2011).
[CrossRef] [PubMed]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

Davis, D. M.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-Speed High-Resolution Imaging of Intercellular Immune Synapses Using Optical Tweezers,” Biophys. J: Biophys. Lett.96(10), L66–L68 (2008).
[CrossRef]

Di Leonardo, R.

M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11, 1196–11205 (2011).
[CrossRef] [PubMed]

Dunsby, C.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-Speed High-Resolution Imaging of Intercellular Immune Synapses Using Optical Tweezers,” Biophys. J: Biophys. Lett.96(10), L66–L68 (2008).
[CrossRef]

Duran, R.

M. Andersson, A. Madgavkar, M. Stjerndahl, Y. Wu, W. Tan, and R. Duran, “Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration,” Rev. Sci. Instrum.78, 074302 (2007).
[CrossRef] [PubMed]

French, P. M. W.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-Speed High-Resolution Imaging of Intercellular Immune Synapses Using Optical Tweezers,” Biophys. J: Biophys. Lett.96(10), L66–L68 (2008).
[CrossRef]

Funes-Gallanzi, M.

D. D. Udrea, P. J. Bryanston-Cross, W. K. Lee, and M. Funes-Gallanzi, “Two sub-pixel processing algorithms for high accuracy particle centre estimation in low seeding density particle image velocimetry,” Opt. Laser Technol.28(5), 389–396 (1996).
[CrossRef]

Gibson, G.

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, “iTweezers: Optical micromanipulation controlled by an Apple iPad,” J. Opt.13, 044002 (2011).
[CrossRef]

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S264–S266 (2007).
[CrossRef]

Gibson, G. M.

Glass, D. G.

N. McAlinden, D. G. Glass, O. R. Millington, and A. J. Wright, “Designing an experiment to measure cellular interaction forces,” Proceedings of SPIE, 8810, 88101L (2013).
[CrossRef]

N. McAlinden, D. G. Glass, O. Millington, and A. J. Wright, “Viability studies of optically trapped T-cells,” Proceedings of SPIE, 8097, 80970J (2011).
[CrossRef]

Grieve, J. A.

Guck, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

Guilford, W. H.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles,” Biophys. J.81(4), 2378–2388 (2001).
[CrossRef] [PubMed]

Heath, R. J. W.

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and Manipulation of Pathogens with an Optical Trap for Live Cell Imaging of Intercellular Interactions,” PLoS ONE5(2), 15215 (2010).
[CrossRef]

Højager Attermann Nielsen, O.

Hosta-Rigau, L.

Hsu, L.

Y. Su and L. Hsu, “Measurement of Macrophage Adhesion at Various pH Values by Optical Tweezers with Backward-Scattered Detection,” Jpn. J. Appl. Phys.49, 077002 (2010).
[CrossRef]

Imagawa, D. K.

X. Wei, M. Si, D. K. Imagawa, P. Ji, B. J. Tromberg, and M. D. Cahalan, “Perillyl Alcohol Inhibits TCR-Mediated [Ca2+]i Signaling, Alters Cell Shape and Motility, and Induces Apoptosis in T Lymphocytes,” Cell. Immunol.201, 6–13 (2000).
[CrossRef] [PubMed]

Imparato, A.

Ji, P.

X. Wei, M. Si, D. K. Imagawa, P. Ji, B. J. Tromberg, and M. D. Cahalan, “Perillyl Alcohol Inhibits TCR-Mediated [Ca2+]i Signaling, Alters Cell Shape and Motility, and Induces Apoptosis in T Lymphocytes,” Cell. Immunol.201, 6–13 (2000).
[CrossRef] [PubMed]

Karstoft, H.

Käs, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

Keen, S.

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S264–S266 (2007).
[CrossRef]

Keiding, S. R.

Kerschbaum, H. H.

P. A. Negulescu, T. B. Krasieva, A. Khan, H. H. Kerschbaum, and M. D. Cahalan, “Polarity of T Cell Shape, Motility, and Sensitivity to Antigen,” Immunity4, 421–430 (1996).
[CrossRef] [PubMed]

Khan, A.

P. A. Negulescu, T. B. Krasieva, A. Khan, H. H. Kerschbaum, and M. D. Cahalan, “Polarity of T Cell Shape, Motility, and Sensitivity to Antigen,” Immunity4, 421–430 (1996).
[CrossRef] [PubMed]

Kong, M.

X. Wang, S. Chen, M. Kong, Z Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip11(21), 3656–3662 (2011).
[CrossRef] [PubMed]

Krasieva, T. B.

P. A. Negulescu, T. B. Krasieva, A. Khan, H. H. Kerschbaum, and M. D. Cahalan, “Polarity of T Cell Shape, Motility, and Sensitivity to Antigen,” Immunity4, 421–430 (1996).
[CrossRef] [PubMed]

Kristensen, M. V.

Kylling, A. P.

Lang, M. J.

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and Manipulation of Pathogens with an Optical Trap for Live Cell Imaging of Intercellular Interactions,” PLoS ONE5(2), 15215 (2010).
[CrossRef]

Leach, J.

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S264–S266 (2007).
[CrossRef]

Lee, W. K.

D. D. Udrea, P. J. Bryanston-Cross, W. K. Lee, and M. Funes-Gallanzi, “Two sub-pixel processing algorithms for high accuracy particle centre estimation in low seeding density particle image velocimetry,” Opt. Laser Technol.28(5), 389–396 (1996).
[CrossRef]

Li, R. A.

X. Wang, S. Chen, M. Kong, Z Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip11(21), 3656–3662 (2011).
[CrossRef] [PubMed]

Lindballe, T. B.

Madgavkar, A.

M. Andersson, A. Madgavkar, M. Stjerndahl, Y. Wu, W. Tan, and R. Duran, “Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration,” Rev. Sci. Instrum.78, 074302 (2007).
[CrossRef] [PubMed]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

McAlinden, N.

N. McAlinden, D. G. Glass, O. R. Millington, and A. J. Wright, “Designing an experiment to measure cellular interaction forces,” Proceedings of SPIE, 8810, 88101L (2013).
[CrossRef]

N. McAlinden, D. G. Glass, O. Millington, and A. J. Wright, “Viability studies of optically trapped T-cells,” Proceedings of SPIE, 8097, 80970J (2011).
[CrossRef]

McIntyre, B. W.

B. Anvari, J. H. Torres, and B. W. McIntyre, “Regulation of pseudopodia localization in lymphocytes through application of mechanical forces by optical tweezers,” J. Biomed. Opt.9(5), 865–872 (2004).
[CrossRef] [PubMed]

Miles, M.

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, “iTweezers: Optical micromanipulation controlled by an Apple iPad,” J. Opt.13, 044002 (2011).
[CrossRef]

Miles, M. J.

Millington, O.

N. McAlinden, D. G. Glass, O. Millington, and A. J. Wright, “Viability studies of optically trapped T-cells,” Proceedings of SPIE, 8097, 80970J (2011).
[CrossRef]

Millington, O. R.

N. McAlinden, D. G. Glass, O. R. Millington, and A. J. Wright, “Designing an experiment to measure cellular interaction forces,” Proceedings of SPIE, 8810, 88101L (2013).
[CrossRef]

Molloy, J. E.

J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys.43(4), 241–258 (2002).
[CrossRef]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

Negulescu, P. A.

P. A. Negulescu, T. B. Krasieva, A. Khan, H. H. Kerschbaum, and M. D. Cahalan, “Polarity of T Cell Shape, Motility, and Sensitivity to Antigen,” Immunity4, 421–430 (1996).
[CrossRef] [PubMed]

Neil, M. A. A.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-Speed High-Resolution Imaging of Intercellular Immune Synapses Using Optical Tweezers,” Biophys. J: Biophys. Lett.96(10), L66–L68 (2008).
[CrossRef]

Neuman, K.

K. Neuman and S. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–27809 (2004).
[CrossRef]

Oddos, S.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-Speed High-Resolution Imaging of Intercellular Immune Synapses Using Optical Tweezers,” Biophys. J: Biophys. Lett.96(10), L66–L68 (2008).
[CrossRef]

Owen, D. M.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-Speed High-Resolution Imaging of Intercellular Immune Synapses Using Optical Tweezers,” Biophys. J: Biophys. Lett.96(10), L66–L68 (2008).
[CrossRef]

Padgett, M. J.

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, “iTweezers: Optical micromanipulation controlled by an Apple iPad,” J. Opt.13, 044002 (2011).
[CrossRef]

D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011).
[CrossRef] [PubMed]

M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11, 1196–11205 (2011).
[CrossRef] [PubMed]

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S264–S266 (2007).
[CrossRef]

J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys.43(4), 241–258 (2002).
[CrossRef]

Phillips, D. B.

Picco, L.

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, “iTweezers: Optical micromanipulation controlled by an Apple iPad,” J. Opt.13, 044002 (2011).
[CrossRef]

Purbhoo, M. A.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-Speed High-Resolution Imaging of Intercellular Immune Synapses Using Optical Tweezers,” Biophys. J: Biophys. Lett.96(10), L66–L68 (2008).
[CrossRef]

Si, M.

X. Wei, M. Si, D. K. Imagawa, P. Ji, B. J. Tromberg, and M. D. Cahalan, “Perillyl Alcohol Inhibits TCR-Mediated [Ca2+]i Signaling, Alters Cell Shape and Motility, and Induces Apoptosis in T Lymphocytes,” Cell. Immunol.201, 6–13 (2000).
[CrossRef] [PubMed]

Simpson, S. H.

Stadler, B.

Stapelfeldt, H.

Stjerndahl, M.

M. Andersson, A. Madgavkar, M. Stjerndahl, Y. Wu, W. Tan, and R. Duran, “Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration,” Rev. Sci. Instrum.78, 074302 (2007).
[CrossRef] [PubMed]

Su, Y.

Y. Su and L. Hsu, “Measurement of Macrophage Adhesion at Various pH Values by Optical Tweezers with Backward-Scattered Detection,” Jpn. J. Appl. Phys.49, 077002 (2010).
[CrossRef]

Sun, D.

X. Wang, S. Chen, M. Kong, Z Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip11(21), 3656–3662 (2011).
[CrossRef] [PubMed]

Tam, J. M.

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and Manipulation of Pathogens with an Optical Trap for Live Cell Imaging of Intercellular Interactions,” PLoS ONE5(2), 15215 (2010).
[CrossRef]

Tan, W.

M. Andersson, A. Madgavkar, M. Stjerndahl, Y. Wu, W. Tan, and R. Duran, “Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration,” Rev. Sci. Instrum.78, 074302 (2007).
[CrossRef] [PubMed]

Torres, J. H.

B. Anvari, J. H. Torres, and B. W. McIntyre, “Regulation of pseudopodia localization in lymphocytes through application of mechanical forces by optical tweezers,” J. Biomed. Opt.9(5), 865–872 (2004).
[CrossRef] [PubMed]

Tromberg, B. J.

X. Wei, M. Si, D. K. Imagawa, P. Ji, B. J. Tromberg, and M. D. Cahalan, “Perillyl Alcohol Inhibits TCR-Mediated [Ca2+]i Signaling, Alters Cell Shape and Motility, and Induces Apoptosis in T Lymphocytes,” Cell. Immunol.201, 6–13 (2000).
[CrossRef] [PubMed]

X. Wei, B. J. Tromberg, and M. D. Cahalan, “Mapping the sensitivity of T cells with an optical trap: Polarity and minimal number of receptors for Ca2+ signaling,” Proc. Natl. Acad. Sci. USA96, 8471–8476, (1999).
[CrossRef]

Udrea, D. D.

D. D. Udrea, P. J. Bryanston-Cross, W. K. Lee, and M. Funes-Gallanzi, “Two sub-pixel processing algorithms for high accuracy particle centre estimation in low seeding density particle image velocimetry,” Opt. Laser Technol.28(5), 389–396 (1996).
[CrossRef]

Vyas, J. M.

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and Manipulation of Pathogens with an Optical Trap for Live Cell Imaging of Intercellular Interactions,” PLoS ONE5(2), 15215 (2010).
[CrossRef]

Walker, W. F.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles,” Biophys. J.81(4), 2378–2388 (2001).
[CrossRef] [PubMed]

Wang, X.

X. Wang, S. Chen, M. Kong, Z Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip11(21), 3656–3662 (2011).
[CrossRef] [PubMed]

Wang, Z

X. Wang, S. Chen, M. Kong, Z Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip11(21), 3656–3662 (2011).
[CrossRef] [PubMed]

Wei, X.

X. Wei, M. Si, D. K. Imagawa, P. Ji, B. J. Tromberg, and M. D. Cahalan, “Perillyl Alcohol Inhibits TCR-Mediated [Ca2+]i Signaling, Alters Cell Shape and Motility, and Induces Apoptosis in T Lymphocytes,” Cell. Immunol.201, 6–13 (2000).
[CrossRef] [PubMed]

X. Wei, B. J. Tromberg, and M. D. Cahalan, “Mapping the sensitivity of T cells with an optical trap: Polarity and minimal number of receptors for Ca2+ signaling,” Proc. Natl. Acad. Sci. USA96, 8471–8476, (1999).
[CrossRef]

Wright, A. J.

N. McAlinden, D. G. Glass, O. R. Millington, and A. J. Wright, “Designing an experiment to measure cellular interaction forces,” Proceedings of SPIE, 8810, 88101L (2013).
[CrossRef]

N. McAlinden, D. G. Glass, O. Millington, and A. J. Wright, “Viability studies of optically trapped T-cells,” Proceedings of SPIE, 8097, 80970J (2011).
[CrossRef]

Wu, Y.

M. Andersson, A. Madgavkar, M. Stjerndahl, Y. Wu, W. Tan, and R. Duran, “Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration,” Rev. Sci. Instrum.78, 074302 (2007).
[CrossRef] [PubMed]

Xavier, R. J.

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and Manipulation of Pathogens with an Optical Trap for Live Cell Imaging of Intercellular Interactions,” PLoS ONE5(2), 15215 (2010).
[CrossRef]

Biophys. J. (2)

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles,” Biophys. J.81(4), 2378–2388 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

Biophys. J: Biophys. Lett. (1)

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-Speed High-Resolution Imaging of Intercellular Immune Synapses Using Optical Tweezers,” Biophys. J: Biophys. Lett.96(10), L66–L68 (2008).
[CrossRef]

Cell. Immunol. (1)

X. Wei, M. Si, D. K. Imagawa, P. Ji, B. J. Tromberg, and M. D. Cahalan, “Perillyl Alcohol Inhibits TCR-Mediated [Ca2+]i Signaling, Alters Cell Shape and Motility, and Induces Apoptosis in T Lymphocytes,” Cell. Immunol.201, 6–13 (2000).
[CrossRef] [PubMed]

Contemp. Phys. (1)

J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys.43(4), 241–258 (2002).
[CrossRef]

Immunity (1)

P. A. Negulescu, T. B. Krasieva, A. Khan, H. H. Kerschbaum, and M. D. Cahalan, “Polarity of T Cell Shape, Motility, and Sensitivity to Antigen,” Immunity4, 421–430 (1996).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

B. Anvari, J. H. Torres, and B. W. McIntyre, “Regulation of pseudopodia localization in lymphocytes through application of mechanical forces by optical tweezers,” J. Biomed. Opt.9(5), 865–872 (2004).
[CrossRef] [PubMed]

J. Opt. (1)

R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, “iTweezers: Optical micromanipulation controlled by an Apple iPad,” J. Opt.13, 044002 (2011).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S264–S266 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Su and L. Hsu, “Measurement of Macrophage Adhesion at Various pH Values by Optical Tweezers with Backward-Scattered Detection,” Jpn. J. Appl. Phys.49, 077002 (2010).
[CrossRef]

Lab Chip (2)

M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11, 1196–11205 (2011).
[CrossRef] [PubMed]

X. Wang, S. Chen, M. Kong, Z Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip11(21), 3656–3662 (2011).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Laser Technol. (1)

D. D. Udrea, P. J. Bryanston-Cross, W. K. Lee, and M. Funes-Gallanzi, “Two sub-pixel processing algorithms for high accuracy particle centre estimation in low seeding density particle image velocimetry,” Opt. Laser Technol.28(5), 389–396 (1996).
[CrossRef]

PLoS ONE (1)

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and Manipulation of Pathogens with an Optical Trap for Live Cell Imaging of Intercellular Interactions,” PLoS ONE5(2), 15215 (2010).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

X. Wei, B. J. Tromberg, and M. D. Cahalan, “Mapping the sensitivity of T cells with an optical trap: Polarity and minimal number of receptors for Ca2+ signaling,” Proc. Natl. Acad. Sci. USA96, 8471–8476, (1999).
[CrossRef]

Proceedings of SPIE (2)

N. McAlinden, D. G. Glass, O. Millington, and A. J. Wright, “Viability studies of optically trapped T-cells,” Proceedings of SPIE, 8097, 80970J (2011).
[CrossRef]

N. McAlinden, D. G. Glass, O. R. Millington, and A. J. Wright, “Designing an experiment to measure cellular interaction forces,” Proceedings of SPIE, 8810, 88101L (2013).
[CrossRef]

Rev. Sci. Instrum. (2)

K. Neuman and S. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–27809 (2004).
[CrossRef]

M. Andersson, A. Madgavkar, M. Stjerndahl, Y. Wu, W. Tan, and R. Duran, “Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration,” Rev. Sci. Instrum.78, 074302 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental set up, including the laser, the Spatial Light Modulator (SLM), the oil immersion microscope objective, white light illumination, fluorescence illumination and camera. Also displayed is the hologram required for a single-spot trap (off set from the central position) and a triple-spot trap with 3 closely spaced traps, the grey scale representing a 0–2π phase change.

Fig. 2
Fig. 2

Images of the different scenarios discussed here. The image of the bead is symmetric with large contrast between the centre and background making it simple to track. However, the contrast between the cell and background is poor and the cell is not symmetric. When the cell is flourescently stained and imaged in dark field the contrast and symmetry is improved.

Fig. 3
Fig. 3

(a) A series of white light transmission images showing a T-cell rotating in a single-spot trap as the microscope stage is moved. Red arrows are a guide for the eye highlighting the same spot on the cell in each image. The white bar represents 10 μm. (b) Scatter plots comparing the position determined by centre of mass tracking of an optically trapped bead (red) and cell (black) recorded over a 20 second time frame using a single-spot trap with the sample stage held stationary. A bead of similar size to the trapped cell was used. (c) The same data as (b) but looking at a single axis over time, the influence of cell roll on the data clearly visible. (d) By subtracting a 1000 point floating average from the cell position data presented in (c), the impact of cell roll has been greatly reduced but still visible as indicated by the arrow.

Fig. 4
Fig. 4

(a) A scatter plot from a modelled single-(black) and double-spot trap (red). (b) Modelled position versus time data for a single- (red) and double-spot trap (black).

Fig. 5
Fig. 5

(a) Sequence of images showing that a cell in a triple-spot trap does not rotate as the sample stage is moved. The white scale bar is 10 μm. The red arrow is a guide for the eye, indicating the same position on the cell in each image. (b) With the stage held stationary, a scatter plot of a cell trapped using a triple-spot trap (black) is compared that of a bead trapped using a single-spot trap (green) and a cell trapped using a single-spot trap. (c) The cell position versus time in both the x and y directions.

Fig. 6
Fig. 6

(a) A scatter plot of a fluorescently stained cell trapped using a single-spot trap, imaged in dark field and tracked using the centre of mass tracking algorithm. The scatter plot is similar to that of a trapped bead of similar size and an un-stained cell trapped using a triple-spot trap. For comparison the scatter plot of an un-stained cell trapped with a single-spot trap in bright field mode is also shown. (b) The position of the fluorescently stained cell in x and y over time.

Fig. 7
Fig. 7

Scatter plots of an optically trapped T cell, tracked using a cross correlation tracking algorithm, comparing a single-spot trap (a) to a triple-spot trap (b).

Tables (1)

Tables Icon

Table 1 Summary of results

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C x = i = 1 m j = 1 n ( x i I i j ) / i = 1 m j = 1 n I i j
X x , y = i = 0 m 1 j = 0 n 1 I x + i , j + j { K i , j }
F T = 0
F R = κ x
F D = 6 π r η d x d t

Metrics